G 2 N 2 : Weisfeiler and Lehman go grammatical - INSA CENTRE VAL DE LOIRE
Communication Dans Un Congrès Année : 2024

G 2 N 2 : Weisfeiler and Lehman go grammatical

Résumé

This paper introduces a framework for formally establishing a connection between a portion of an algebraic language and a Graph Neural Network (GNN). The framework leverages Context-Free Grammars (CFG) to organize algebraic operations into generative rules that can be translated into a GNN layer model. As CFGs derived directly from a language tend to contain redundancies in their rules and variables, we present a grammar reduction scheme. By applying this strategy, we define a CFG that conforms to the third-order Weisfeiler-Lehman (3-WL) test using MATLANG. From this 3-WL CFG, we derive a GNN model, named G 2 N 2 , which is provably 3-WL compliant. Through various experiments, we demonstrate the superior efficiency of G 2 N 2 compared to other 3-WL GNNs across numerous downstream tasks. Specifically, one experiment highlights the benefits of grammar reduction within our framework.

Fichier principal
Vignette du fichier
1280_G_2_N_2_Weisfeiler_and_Le.pdf (4.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04741367 , version 1 (14-11-2024)

Licence

Identifiants

  • HAL Id : hal-04741367 , version 1

Citer

Jason Piquenot, Aldo Moscatelli, Maxime Bérar, Pierre Héroux, Jean-Yves Ramel, et al.. G 2 N 2 : Weisfeiler and Lehman go grammatical. The Twelfth International Conference on Learning Representations, May 2024, Vienne (AUT), France. ⟨hal-04741367⟩
0 Consultations
0 Téléchargements

Partager

More