Carotenoid gene nucleotide diversity reflects carrot history and selection
Jeremy Clotault, Emmanuel E. Geoffriau, Cécile Dubois-Laurent, Sébastien Huet, Vanessa Soufflet-Freslon, Mathilde Briard, Didier Peltier

To cite this version:
Jeremy Clotault, Emmanuel E. Geoffriau, Cécile Dubois-Laurent, Sébastien Huet, Vanessa Soufflet-Freslon, et al.. Carotenoid gene nucleotide diversity reflects carrot history and selection. International carrot conference, Jul 2010, Pasco (USA), United States. hal-00729458

HAL Id: hal-00729458
https://institut-agro-rennes-angers.hal.science/hal-00729458
Submitted on 6 Mar 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Carotenoid Gene Nucleotide Diversity Reflects Carrot History and Selection

J. Clotault¹, Emmanuel Geoffriau¹, C. Dubois-Laurent¹, S. Huet¹, V. Soufflet-Freslon¹, M. Briard¹, and D. Peltier²

¹Agrocampus Ouest – INHP, UMR GenHort, 2 rue Le Nôtre F-49045 Angers, France
²Université Angers, UMR GenHort, 2 Bd Lavoisier F-49045 Angers, France

Carotenoid content is an important quality attribute for carrot, with a high variation exhibited in this species and along the history of cultivated carrot. The purpose of our work was to study the nucleotide diversity of carotenoid biosynthesis genes. A sample of 48 genotypes, representing a wide carrot diversity, was studied for the sequence polymorphism of seven genes chosen for their position in the carotenoid pathway (IPI, PDS, CRTISO, LCYB1, LCYE, CHXE and ZEP). Compared to other species, a quite high single nucleotide (SNP) frequency was found for these genes (1/22 bp on average; 1/11 to 1/38 bp range). The haplotype diversity ranged from 0.523 to 0.851, with 9 to 15 haplotypes per gene. However, this high diversity was mainly due to silent or synonymous sites. The nucleotide diversity was shown to be structured by cultivar geographical origin, reflecting the species history, but also stressing out the consequence of this result when studying carotenoid genetics using association approaches. A second important factor was shown to be the gene position in the carotenoid pathway. When looking for signatures of selection, CRTISO, LCB1 and LCYE genes, located in a central position in the pathway, displayed a pattern consistent with a diversifying selection. However, the impact of selection varies depending on the root color group. Upstream genes, such as PDS, displayed a negative selection pattern, and may have been subjected to high constraints due to their overall importance for the subsequent pathway. Besides better understanding the functioning of this important pathway, our results provide valuable information for the identification of critical genes for carotenoid genetic studies, and about carrot evolutionary genetics and root color history.