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Abstract: Abstract: We propose a modelling strategy to determine froma large set of
reactions the smallest set necessary to be compatible with acompendium of required
properties and experimental data. We applied this strategyto define a model of hepatic
fatty acid metabolism integrating both metabolic pathwaysand the contribution of some
major genetic regulators. We considered the fatty acid metabolism in hepatic cells of
mice during a 72 hours fed-to-fast transition and we tested the key role of oxidation and
elongation in fatty acid metabolism
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1 Introduction

Fatty acid metabolism plays a central role in energy homeostasis and related disorders such as the
metabolic syndrome, obesity or type-II diabetes. In farm animals, the distribution and composition of
body lipids is of great importance for meat quality.

Synthesis, degradation, and transformation of fatty acidsin cells are performed by more than
300 well-known enzymatic reactions [6] participating to different processes calledpathways(e.g.,
glycolysis, fatty acid oxidation, . . . ) [6,4]. These reactions are regulated at the metabolic and genetic
levels by hormones and nutrients. To describe these biochemical transformations and their genetic
regulation, abundant knowledge exists for different cellstypes and organisms (221751 references for
fatty acid metabolismin Pubmed; 1742 forPPARα), bu the simple aggregation of knowledge cannot
explain a global phenomenon caused by interations of regulations. While the metabolic pathways
involved in fatty acid homeostasis are quite well understood and referenced, the genetic regulations
are much less accurately described.

To date, several biochemical models that describe extensively a single pathway, such as glycolysis
[5,12] have been proposed. A major disadvantage of full-scale models lies in the large number of pa-
rameters required compared to the limited information available from experiments. Model-reduction



techniques for complex chemical kinetics pool variables have been proposed, based on timescales or
correlation arguments [2,7]; they are however dependent onthe availability of experimental data and
kinetic coefficients. Other models have considered the genetic regulation of few enzymatic reactions
[11]. To the best of our knowledge, there is no model for the complete fatty acid metabolism along
with its regulations. The purpose of this study is to build a reduced model, aiming at identifying
and quantifying the key regulators of fatty acid metabolismin the mouse liver, during a fed-to-fast
transition.

In this study, we focused on liver because this is the main synthesis organ allowing the conversion
of excess dietary carbohydrates into triglycerides and also an important catabolizing organ where
fatty acids are oxidized and transformed into other products such as ketone bodies[4].

We propose to build areduced dynamical modelin which single reactions are grouped as much as
possible into a limited number of integrated pathways. First, a complex knowledge model is obtained
from the current state of the art. Then, a reduction strategyis applied, based on acompendium of
required propertiesprovided by experts. This compendium can be seen as the degree of detail that is
considered as essential in developing the model; the more accurate it is, the more complex the model
will be. The knowledge model is simplified by merging molecules or reactions into pathways and
aliasing regulators that do not need to be represented explicitly given the compendium. Lastly, we
use an experiment to decide if the degree of detail has been correctly assessed. This will be illustrated
by the analysis of the synthetic and oxidation pathways in the context of wild-type and PPARα-/-
mutant mice.

2 Model abstraction

We inted to build the smallest dynamical model described by differential equations representing fatty
acid metabolism, while being consistent with experimentaldata and biological knowledge. In this
framework, thebiochemical kinetic modelis defined as a differential equation model where the time
variations of components are governed by reactions, influx and efflux, all being regulated genetically
or metabolically. Together with the model, we considered acompendium of required biological prop-
ertiesand experimental data. The model was consideredconsistentif the required behaviour can be
predicted by the model, and if the model fits with experimental data with reasonable precision.

We first built a model from a literature study after a discussion with experts. Then, the reduction
of each element of the model was considered: (a) Areaction R was removed from the model if
the compendium of required properties was still satisfied when the reaction rate is fixed to zero.
Biologically, this means thatR was not necessary to influence the process from a phenomenological
point of view. (b) Aregulation process(i.e., the dependency of a reactionR on a variableX), could
be removed if the biological properties were still satisfiedwhen the variableX was considered as a
constant in the expression ofR. (c) A set of variablescould be eliminated when they areintermediate
componentsof a pathway, meaning that they do not have an influence outside the pathway. Then,
reactions in the pathway could be reduced as a single reaction regulated by the regulator of its rate-
limiting step. (d) Twovariables were pooledif they participated in the same pathway with the same
kinetic coefficients, or when they were correlated regulators. For example, glucose can be pooled with
insulin because of their synergistic functional effects; even though their effects have been proved to
be independent.

The model was said to beminimal if no reduction could be performed without losing consistency.
The model was qualitatively verified by confronting model predictions to biological behavior (e.g.,
lipogenesis during the fed state, lipolysis and fatty acid oxidation in the fasting state). With this



approach, the resulting variables then representsynthesized components, which were single molecules
or groups of molecules that do not need to be distinguished for a given set of observed properties.
Therefore, the main mechanisms included in the model were not a priori selected from knowledge,
but because they were needed to respect biological behaviour.

3 Application : a minimal model for fatty acids metabolism in mouse liver
during a fed-to-fast transition

State of the art on fatty acid metabolism and its regulation The following pathways
were chosen from metabolic databases [6] and litterature reviews [4] as related to fatty acids (FA)
metabolism : glycolysis, tricarboxylic acid (TCA) cycle, ketogenesis, the pentose phosphate cycle,
FA oxidation, FA synthesis, long chain polyunsaturated fatty acids (LCPUFA)synthesis. We obtained
a model with 61 metabolites.

Despite being a multi step enzymatic process, de novo FA synthesis from acetyl-CoA in eukary-
otes is accomplished through the catalytic activities of only two enzymes (gene products): acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FAS). Among the several transcriptional regulators in-
volved in the balance between FA synthesis and oxidation, two classes of central regulators emerge:
liver X receptors (LXR) that act in synergy with sterol regulatory element binding protein (SREBP1)
in promoting hepatic lipogenesis [1], and peroxisome proliferator-activated receptor (PPARα) con-
troling the expression of numerous genes involved in FA uptake andβ-oxidation [10].

Compendium of required biological properties and experimental data The degree of
detail of the model was determined to include the main pathways dependencies described in the
literature (condition 1), fundamental behavior related tothe context of the fed-to-fasting transition
(conditions 2−6) and experimental data related to a fasting protocol [3] (condition 7).

1. Pathway dependenciesThe cell needs energy, therefore it uses ATP. In the liver, ATP can be
produced from glucose or from FAs. The liver can synthesize lipids from glucose. This synthesis
is active only when the glucose concentration exceeds the minimum concentration needed to
cover energy needs by prod ucing ATP in the TCA cycle [4]. We consider that ketogenesis cannot
happen without FA oxidation. Since the liver is aerobic, theTCA cycle is running at a high speed.
FA oxidation and synthesis cannot occur at the same time. Acetyl-CoA does not accumulate into
the cells. FA can be imported or exported from the liver. Enzymes are synthesized and degraded.s

2. In the fed state, (a) FA oxidative reactions are null; (b) ketogenesis is also absent; (c) enzymes of
FA oxidation and ketogenesis are not synthesized; (d) FA synthesis is active; (e) the corresponding
enzymes and LXR-SREBP1 are synthesized.

3. During fasting, (a) there is no FA synthesis; (b) enzymes of FA synthesis arenot synthesized.
4. In wild-type mice, during fasting, (a) transcriptional genetic activators (GA) of FAs oxidation

are synthetized; (b) Ketogenesis is active; (c) Oxidative enzymes are synthetized; (d) Blood ke-
tone concentration is elevated.

5. In wild-type mice, Ketogenesis is active only when oxidation is high.
6. When PPARα is genetically lacking(e.g. in PPARalpha knock-out (PPAR-/-) mice ), (a) keto-

genesis and (b) oxidation are low, and not regulated during fasting.
7. Wild-type and PPAR-/- experimental data. Additionnally, we expect our model to be consis-

tent with experimental data obtained on wild-type and PPAR-/- mice during a 72 hour period of
fasting. Mice were sacrificed after different periods of fasting (0, 3, 6, 9, 12, 18, 24, 36, 48, 60, 72



hours) weighed and lipid hepatic mass was determined. Bloodwas collected, and glucose concen-
trations were measured in the plasma. Liver and epididymal white adipose tissue were dissected
and weighed. Lipids were extracted from liver and adipose tissue, and FAs (CC12:0, C14:0,
C16:0, C16:1ω9, C16:1ω7, C18:0, C18:1ω9, C18:1ω7, C18:2ω6, C18:3ω3, C20:1ω9, C20:3ω6,
C20:4ω6, C20:5ω3, C22:6ω3) composition was determined in the tissues by gas chromatography.

Reduction hypotheses for mouse hepatic fatty acid metabolism during fasting In the
biological context considered, we performed a first reduction of components and reactions: (a) Lactate
production by liver is not considered since liver metabolism is aerobic. (b) NADH and FADH2 were
abstracted as intermediates involved in ATP production, and we considered these as being oxidized
in the respiratory chain providing respectively 3 and 2 ATP.(c) In liver, because glucose transport
is important, we assumed that intracellular glucose concentration was similar to blood glucose con-
centration. Therefore, glycogenolysis and neoglucogenesis are not needed in the model. (d) The
timescale of regulation of pentose phosphate cycle is shortcompared to the integration time step of
the model (3 hours); pentose phosphate pathway was reduced to the consumption of glucose and ATP
instead of NADPH consumption. (e) The consumption of ATP by the remaining (and not modelled)
part of cell metabolism is reduced to a single function. (f) Two components were included in the
model for the transcriptional control of FA oxidation and synthesis (denoted by Activating Transcrip-
tion Factors). They relate to LXR-SREBP1 and PPARα, respectively, or may be a combination of
several transcriptional regulators involved in FA oxidation or lipogenesis. (g) The synthesis of gly-
colysis, ketonegesis and TCA Cycle enzymes are modelled by asingle reaction for each pathway. (h)
A unique reaction stands forβ-oxidation of each FA. (i) At this stage, the model does not need to
include transformations from one FA to an other because there is no biological behaviour concerning
a specific FA, they are all merged into a single node FA.

From the knowledge model depicted in Fig 1, we derived a mathematical model by using Michaelis-
Menten regulated functions for the reaction rates. The model was consistent with the desired biologi-
cal behavior, but was not able to fit properly individual fatty acid behaviour in wild-type experimental
data.

Challenging the model with experimental data The remaining question is whether the ab-
straction of the model is sufficient to match data available on fasting PPAR-/- and wild-type mice.
During fasting, active pathways are lipid influx, oxidation, desaturation and ketogenesis. The other
pathways are not active, hence no information about these can be deduced from the experiment.

In PPAR-/- mice, oxidation is low and a massive accumulationof the total amount of FAs in the
liver is observed. The simplest model includes only FAs influx with no transformation between FAs
: the FA liver influx is assumed to be proportional to adipose tissue efflux. This corresponds to a
dynamical modeldFLiver

dt = ImpF = −Kimp
dFAdiposeTissue

dt for each fatty acidF , the import ratio
Kimp being the same for all FAs. We foundKimp = 0.22 with a fitting procedure on the sum of all
FAs. A statistical score taking into account the variability of observations and predictions showed that
this import model is accurate except for C16:1ω9 and C22:6ω3. This indicates that the model based
on desired properties only is not sufficient to explain the observed changes for all FAs. To further
refine the model, we included LCPUFA synthesis and oxidationof some FAs.

– Elongation produces C22:6ω3 from C18:3ω3 and C20:4ω6 from C18:2ω6, without a need to
consider intermediates explicitly. LCPUFA synthesis is composed of∆5 and ∆6 desatura-
tion, elongation and peroxisomalβ-oxidation. The first step, desaturation of both C18:3ω3 and
C18:2ω6 by D6D, is considered as limiting. Because substrates accumulates, we suppose that



Figure 1. A reduced representation of lipid metabolism in mouse liverand its regulations. Each node stands
for a product. Each arrow stands for a reaction combined withits stoechiometry. Reactions are regulated by
the following processes: +(E) Enzymes catalyze, +(A) Activator, +(GA) Activating transcription factor, -(BI)
Blocking inhibition, -(CI) Competitive inhibition.

the reaction is limited by the enzyme quantity and used the following formula: SynC22:6ω3 =
VsynAC18:3ω3C18:3ω3

AC18:3ω3C18:3ω3+AC18:2ω6C18:2ω6
andSynC20:4ω6 =

VsynAC18:2ω6C18:2ω6

AC18:3ω3C18:3ω3+AC18:2ω6C18:2ω6
.

– We added oxidation and one of its intermediates reaction : C18:1ω9 produces C16:1ω9, other
FAs are considered as fully oxidized. The activity ofβ-oxidation depends on the length of the
FA: in PPAR-/- mice, being greater for shorter chain length.For each F in (C18:1ω9 : C18:1ω7,
C18:0, C16:1ω9, C16:0), and assuming that the affinities are the same for these FAs, we set
OxiF =

VoxiF
Voxi+F For the other FAs, we assumedOxiF = 0.

– The full model then becomesdLiverF
dt = ImpF + SynF + OxiF for eachF .

From the biological data, we adjusted the values ofKsyn, AC18:2ω6, AC18:3ω3 andVoxi with a
good score. Notice thatω3 LCPUFA synthesis is faster thanω6 synthesis, which is consistent with
the literature data. The low value ofVoxi is consistent with the hypothesis of a low oxidation : 0.09
mmol/h of FA are accumulated while 0.003 are oxidated.

The model parameters were then adjusted with wild-type micedata, by assuming that the import
ratio Kimp is still valid. Under this hypothesis, the sum of FAs fits witha constant oxidation rate of
0.062 mmol/h. As expected, the wild-type mice oxidize much more than PPAR -/-.

Model Import Elongation Oxidation Bad fitting score
Importation model in PPAR-/- Kimp = 0.22 0 0 C16:1w9, C22:6w3

Importation, synthesis, short FA oxida-
tion in PPAR-/-

Kimp = 0.22
Vsyn = 810−4mmol/h
AC18:3w3 = 0.98
AC18:2w6 = 0.02

Voxi = 0.003mmol/h for
short FA
Voxi = 0 either

All good

4 Discussion

We proposed a modelling strategy to exhibit the smallest setof reduced metabolic reactions needed
to explain a compendium of required properties together with experimental data. We applied our
method to modelling fatty acid metabolism during a fed-to-fasting transition. Starting from a simple



model of FA metabolism, the modelling approach indicated that a small set of reactions was sufficient
to properly fit the model to both mutant and wild-type fatty acid data.

We conclude that a minimal model in fasted PPAR-/- mice must include synthesis of C22:6ω3
from C18:3ω3. This reaction is known to be limited by D6D, whose expression is activated by
both PPARα and SREBP1 [8,9]. However, PPARα is not present in PPAR-/- and SREBP1 activity
decreases during fasting. This suggests that C22:6ω3 production in PPAR-/- mice should decrease but
our analysis pointed out a constant accumulation rate. Thisindicates the need to measure D6D activity
in both PPAR-/- and wild-type mice in order to check the prediction of the model. Confirmation would
represent a strong indication for regulators of D6D that remain to be identified.

Our analysis also indicated a difference in oxidation rate between mutant and wild-type mice.
This confirms the strong effect of PPARα on FA oxidation. Since the model fits with an oxidation
rate that is dependant on the genotype and independent from nutritional status, we conclude that the
nutritional regulation of oxidation mediated by PPARα is smaller than its constitutive effect.

In the future, we intend to expand the model by including PCR-experimental data on enzymes
of FA oxidation and LCPUFA synthesis. Other experimental protocols will then be studied, such as
fasting-to-fed transition and the reaction to different diets. The model will then be used to analyze
the difference between mice and other species (like chicken) for which the liver is the main tissue for
fatty acid synthesis.
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[3] S.Déjean, PG. Martin, A. Baccini, P. Besse. Clusteringtime-series gene expression data using smoothing
spline derivatives.EURASIP J Bioinform Syst Biol. 70561, 2007.

[4] RK. Murray, DK. Granner, PA. Mayes and VW. Rodwell,Harper’s Biochemistry, Twenty-fifth edition,
Appelton & Lange, 2000.

[5] F. Hynne,S. Dan, PG. Srensen, Full-scale model of glycolysis in Saccharomyces cerevisiae.Biophys
Chem, 94(1-2):121-63, 2001.

[6] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, M. Hattori The KEGG resource for deciphering the
genome.Nucleic Acids Res32(Database issue):D277–80, 2004.

[7] J. Maertens, B.M.R. Donckels,G. Lequeux, P.A. Vanrolleghem Metabolic model reduction by metabolite
pooling on the basis of dynamic phase planes and metabolite correlation analysis. inProceedings of the
Conference on Modeling and Simulation in Biology, Medicine and Biomedical Engineering. BioMedSim,
Linkping, Sweden, 2005.

[8] PG Martin, H. Guillou, F. Lasserre et al, Novel aspects ofPPARalpha-mediated regulation of lipid and
xenobiotic metabolism revealed through a nutrigenomic study, Hepatology, 45(3):767-77, 2007.

[9] T. Matsuzaka, H. Shimano, N. Yahagi N, et al. Dual regulation of mouse Delta(5)- and Delta(6)-desaturase
gene expression by SREBP-1 and PPARalpha.J Lipid Res. 43(1):107-14, 2002.

[10] H. Sampath and JM. Ntambi, Stearoyl-coenzyme A desaturase 1, sterol regulatory element binding
protein-1c and peroxisome proliferator-activated receptor-alpha: independent and interactive roles in the
regulation of lipid metabolism,Curr Opin Clin Nutr Metab Care,9(2):84-8, 2006.

[11] M. Santilln. Bistable behavior in a model of the lac operon in Escherichia coli with variable growth rate.
Biophys J, 94(6):2065-81, 2008.

[12] B. Teusink, J. Passarge, CA. Reijenga, E. Esgalhado, CC. van der Weijden, M. Schepper, MC. Walsh,
BM. Bakker, K. van Dam, HV. Westerhoff, JL. Snoep, Can yeast glycolysis be understood in terms of in
vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem, 267: 5313-29,2000


