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Abstract
Background: The recent sequencing of full genomes has led to the availability of many SNP
markers which are very useful for the mapping of complex traits. In livestock production, there are
still no commercial arrays and many studies use home-made sets of SNPs. Thus, the current
methodologies for SNP genotyping are still expensive and it is a crucial step to select the SNPs to
use. Indeed, the main factors affecting the power of the linkage analyses are the density of the
genetic map and the heterozygosity of markers in tested animal parents.

Findings: This is why we have developed a PERL program selecting a defined number of markers
based on their locations on the genome and their informativity in specific experimental designs. As
an option, different experimental designs can be combined in order to select the best possible
common marker set. The program has been tested using different conditions of marker
informativity and density with both real and simulated datasets. The results show the efficiency of
our program to select the most informative markers even if there is a wide range of informativity
for whole genome scan mapping analyses. In case of combination of different experimental crosses,
the multidesign mode can optimize the SNP markers selection.

Conclusion: Written in PERL, it assures a maximum portability to other operating systems (OS)
and the source code availability for user modifications. Except for the simulation mode which could
be time consuming, MarkerSet can compute results in a very short time.

Findings
The recent sequencing of full genomes has led to the avail-
ability of many SNP markers ([1] for Human and [2] for
Chicken). The current methodologies for home-made
SNP sets genotyping are still expensive, meaning that only
few thousands of SNPs can be used. It is then a crucial step
for a specific study to select the best suited SNPs. For link-
age analyses, the main criteria to increase the analysis
power are the distances between markers and the ability to
follow the marker's allele segregation in the experimental

design. It means that the markers must be as much as pos-
sible heterozygous for phenotyped animal parents. This is
why the heterozygosity in phenotyped animal parents
(further called reference animals) must be included in the
marker selection. In this manuscript, this heterozygosity
for reference animals will be referred as informativity of
the markers. From our point of view, if there are no avail-
able SNP arrays, the best strategy is a two step genotyping,
with a test of a large panel of SNPs informativity on refer-
ence animals from the studied experimental design, fol-
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lowed by a genotyping of all the animals for markers
selected based on the results of the first step. The marker
selection is complicated by the fact that markers the most
heterozygous in reference animals are not homogenously
spaced across the genome, and the number of markers to
handle has greatly increased. It is therefore not possible
anymore to select the markers without dedicated software.
Different tools have already been proposed to select Tag
SNPs [3-11], but most of them are based on very high
marker density and linkage disequilibrium information
and cannot be used in exotic species and species without
SNP arrays for which linkage disequilibrium information
is not always available. We propose here a tool to select
the best possible markers for further linkage analysis,
without any use of linkage disequilibrium information.
Its originality is the use of both marker location in the
genome and heterozygosity in parental animals.

The MarkerSet software was written in the PERL program-
ming language and can be downloaded with manual and
example files at http://www.sigenae.org/
index.php?id=136.

The software is designed to use already available informa-
tion about markers informativity, expressed in number of
heterozygous animals out of all the reference animals
tested in the experimental design. This allows the use of
any kind of markers, as well as their combinations if
needed. If more than one experimental design is to be
genotyped, a specific set of SNPs can be selected, or the
marker informativity for all these experimental designs
can be used simultaneously to select common sets of
markers. In case of a marker set selection common to all
designs, both general informativity score and experimen-
tal design specific scores are detailed, so it is possible to
evaluate specifically the marker set informativity for each
experimental design.

In most species, the only available information for the
markers will be their physical location (especially true for
SNP markers), as all the markers have not been tested on
a reference population to estimate genetic distances. Nev-
ertheless, for a QTL mapping, the genetic distances are the
key points as, depending on the species, the recombina-
tion rate can highly vary. So MarkerSet uses physical dis-
tances as input and converts them into cM. This
conversion can be adapted to fit the specificity of the stud-
ied species (as an example, in pigs, we can considerer that
1 cM corresponds to approximately 1 Mb).

Basically, the algorithm will select the most informative
markers in two windows separated by a constant gap, and
sliding on the genome (see Figure 1A). In case of a similar
informativity between several markers in a window, Mark-
erSet will select the closest marker from the middle of the

window. Using this strategy, the distance between two
markers is the first criterion of selection, and the informa-
tivity is used for discriminating closely located markers.
The two main variables are the first window starting point
on the genome and the size of the gap separating the two
windows. Depending on the number of markers to select
and the size of the genome, MarkerSet will compute dif-
ferent window starting points to get the best genome cov-
erage.

The gap size and the window size are defined by the aver-
age marker interval (AMI), corresponding to a ratio of the
whole genome size and the number of the markers to
select. The AMI percentage used to calculate the window
size is defined in the config.pm file (set by default as 20%
of the AMI). So, the setting of the selection window size is
automatically handled by the software.

Principles of MarkerSet and main parametersFigure 1
Principles of MarkerSet and main parameters. a) MarkerSet 
selects markers in two windows separated by the Average 
Marker Interval (AMI), which is the whole genome size 
divided by the number of markers to select. The window size 
is a percentage of the AMI (20% by default). Shifting itera-
tively the windows by the AMI gives a full genome coverage. 
Different sets are created by using all the possible starting 
points (x and y). b) Several parameters and options are avail-
able in order to improve the sets quality. The space_plus and 
space_resampling parameters are used to enlarge the win-
dow size in case of low (or no) informativity: space_plus is 
set by default as 50% of the window size on each side. This is 
automatically performed if the informativity of markers avail-
able is lower than the defined informativity threshold. 
Space_resampling is used to iteratively enlarge window size 
(by default +1 cM on each side at each step) until markers 
with informativity higher than the defined resampling thresh-
old are found (resampling option mode).
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These two parameters (AMI and window size) permit to
compute the number of possible starting points (i.e. the
number of selected marker panels). Thus, for each combi-
nation of these parameters, a marker selection will be per-
formed with a fixed starting point and multiple iterations
over the genome (Selection Frame). At each iteration step,
the starting point of each pickup box will be increased by
AMI+window size (see Figure 1A).

For all analyses, an informativity threshold is set, so if the
best available marker in one window has an informativity
strictly lower than this threshold, the window is enlarged
(space plus: 50% of the window size is added to each side
of the window, as default – see Figure 1B) and a more
informative marker is searched. By default, this threshold
is set as half of the best possible informativity score for
one marker (i.e. half of the total animals tested). If there
is no marker with a higher informativity, the best previous
marker is conserved, as it results in shorter distance

between markers. As an option, the window size can be
enlarged as long as a marker more informative than the
resampling threshold (set by the user) is not found (resa-
mpling option). The window size enlargement is defined
by the user through the space resampling parameter (see
Figure 1B). The working principle of the software is
exposed in figure 2.

In order to score the different obtained panel, one
approach is to sum basically the informativity value for
each selected marker (i.e. the number of heterozygous
parental animals in our case). This approach of linear
scoring is effective for markers with an extreme informa-
tivity value (i.e. 0 or 1 heterozygous animals or, on the
other hand, all animals heterozygous), but it is not
enough discriminative for "middle-range" marker. As an
example, on a total of 6 tested animals, we prefer to give
much more weight to a marker with 4 heterozygous ani-
mals than one with 3 heterozygous animals. In order to
best represent the informativity of a marker, we decided to
transform the informativity value of each marker on a sig-
moid scale (see Figure 3). Obviously, this approach max-
imises or minimises the score for maximum or minimum
informative markers respectively, but more importantly,
discriminates "middle-range" informative markers.
Finally, a panel score is obtained by summing the score
values of all markers selected for this panel. In addition,
the software computes some informations to describe
each experimental design: maximum informativity score
(i.e. the sum of informativity scores of all available mark-
ers), and the distribution of the number of markers in
each informativity value class. These data are available to
user in a log file.

When studying several experimental designs in the same
species, user may want to compare what is the best option:
to select markers perfectly fitted for each experimental
design (for example heterozygous for all F1 sires), or to try
to select a larger set of markers common to all experimen-
tal designs (in this case, some markers will be
homozygous in some families resulting in a loss of power
in the linkage analysis). To help with this dilemma, a
multidesign option has been implemented. The principle
of marker selection and panel scoring is absolutely the
same except that the software use a global informativity
value generated by summing, for each marker, the inform-
ativity value of each experimental design. Based on this
global informativity, MarkerSet will select the best
informative markers for the multidesign, and score it with
the multidesign informativity values (score A). As men-
tioned above, this multidesign option should permit to
evaluate which solution best fits for a number of defined
markers: a set of common marker for all experimental
designs or several sets of markers specific for each design.
In order to measure the loss of informativity, MarkerSet

Working principle of MarkerSetFigure 2
Working principle of MarkerSet.
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will perform a simulation of marker selection specific for
each design using the same selection frame (with the
number of marker to select in multidesign option) and
score it (score B). A ratio between multidesign score (score
A) and experimental design specific score (score B) is cal-
culated (called MD/Sim, r in the logfile). This ratio gives
an estimation of the "conserved" informativity score
between multidesign and design-specific marker selec-
tion: as an example, a ratio of 0.82 means that only 18%
of informativity score is lost with the multidesign option.

As the results can highly fluctuate according to the inform-
ativity and the density of available markers, it is possible
to perform a simulation to define the best suited window

sizes percentage. It is also possible to combine this simu-
lation with all available options (resampling and multide-
sign).

In order to test the program core functions and options,
MarkerSet has been run on several different data files.
First, a small data file corresponding to a real case has
been generated with 206 low informativity markers
(among them, 162 are not informative at all), located on
one chromosome of 63 Mb and 4 tested animals. Using
MarkerSet with this file in verbose mode, we have checked
that the algorithm selects effectively the best informative
marker taking into consideration the marker location in
case of similar informativity, but also enlarges the win-

Computation of informativity weightFigure 3
Computation of informativity weight. Empirically, this sigmoid scale is obtained by computing values between -5 and +5 with 
the arctangent function (corresponding to -1.37 to +1.37 transformed informativity scores). For each experimental design, we 
re-assign the different informativity values to a -5 to +5 scale (see Figure 3). Let X = {X0, X1, ..., Xn} denoting the informativity 
status value, with n denoting the number of tested animals for one experimental design. Each informativity value is determined 
as Xi = Xi-1 + 10/n, with X0 = -5 to fit a scale from -5 to +5. The informativity score values are then expressed from -1.37 to 
+1.37 (corresponding to -5 and +5 arctangent values respectively). The scores obtained are finally adjusted to a 0 to 2.74 range 
in order to get only positive score values. vertical axis represents the informativity weight, horizontal axis the informativity val-
ues.

0
atan(-5)+MAX

MAX = atan(+5)

2.74
atan(+5)+MAX

y

-5 +5

0 informativity max

xn=xn-1+
10

number of animals 
for each design

atan(x)+MAX
Page 4 of 8
(page number not for citation purposes)



BMC Research Notes 2008, 1:9 http://www.biomedcentral.com/1756-0500/1/9
dow in case of low or no informativity. The resampling
function has also been validated. The test file and the
results log are available on the website as examples.

Once the main concept of the program was tested and val-
idated with the small data file, we have extended the func-
tioning of the program to other various situations by
generating simulated data files with different marker den-
sity and informativity distribution. Finally, the program
has been also tested on a real informativity file of 9216
markers with five experimental designs (cf. Figure 4 for
the distribution of the number of maker in each informa-
tivity value). For each informativity file, a selection of 384
markers has been performed in the basic mode with or
without resampling option, and in the multidesign mode
(1536 markers requested) with or without resampling
option. Score results for simulated data files and real data
file are shown in table 1 and 2, respectively (see additional
files 1 and 2 for complete results). As expected, MarkerSet
results are very sensitive to marker density and informativ-
ity distribution. It is noticeable that, with our real data file,
there are not enough informative markers to select 1536
SNP. Moreover, multidesign option could have a drastic
impact on the scores and the loss of informativity (Ratio)
with low informativity files (especially with the resam-
pling option).

The simulation option has been also tested for simulated
data and real data files (see additional files 1 and 2). As
expected, the highest score is always obtained with the
highest AMI percentage since the window sizes are larger
(see Figure 5). Depending on the priority given to the
marker locations or their informativity, users should test
different conditions to find out which parameters are best
fitted to their experimental designs.

Availability and requirements
Project name: MarkerSet

Project homepage: http://www.sigenae.org/
index.php?id=136

Operating system: Platform independent

Programming language: PERL

Other requirements: POSIX PERL module

License: GNU GPL

Any restrictions to use by non-academics: license needed

Competing interests
The authors declare that they have no competing interests.

Table 1: Testing results for simulated data files, requesting 384 and 1536 markers.

Low Density (5K) High Density (40K)

Score Ratio -r gain Score Ratio -r gain

Basic HI 1002.86 1051.61
VI 927.44 1047.9
LI 317.92 500

R HI 1008.3 0.54% 1051.61 0%
VI 932.38 0.53% 1047.9 0%
LI 320.59 0.84% 500 0%

MD MD 1879.48 3513.19
HI 2774.49 0.99 3959.82 0.96
VI 1940.27 0.96 3760.68 0.94
LI 428.14 0.80 769.18 0.49

R + MD MD 2428.19 29.19% 3513.19 0%
HI 3487.45 0.98 25.70% 3959.82 0.96 0%
VI 2519.01 0.82 29.83% 3760.68 0.94 0%
LI 539.56 0.53 26.02% 769.18 0.49 0%

For this purpose, six files with different marker informativity status have been generated with two variables. The first one is the marker density (5K 
markers – LD for low density or 40K markers – HD for High Density spanned homogeneously on the genome). The second one is marker 
informativity distribution. Considering a total of 100 reference animals, the following conditions have been explored: markers with heterozygozity 
values ranging from 50 to 100 (High Informativity, HI), 0 to 100 (Various Informativity, VI) or 0 to 50 (Low Informativity, LI). For each markers 
panel and condition, the maximal available informativity score (max info), the selected set score, the multidesign/monodesign ratio and the score 
gain obtained by using the resampling options (-r gain) are detailed. R and MD refer at resampling option activation and multidesign option 
activation respectively. Scores results are depending on marker density and informativity distribution (better with HI and lower with LI files). 
Nevertheless, there's only a slight score difference between HI and VI, showing the efficiency of MarkerSet to select the most informative markers. 
Resampling option is more useful with LD files but can have an impact on the loss of informativity (Ratio) in multidesign mode with LI file.
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Table 2: Testing results for the real data set, requesting 384 and 1536 markers.

Real dataset

Max info Score Ratio -r gain Dmax Dmin AveD StD Markers 0 markers

Basic Exp1 3509.86 528.67 28.6 0.4 9.2 2.2 380 72

Exp2 5958.31 808.76 28.7 0.4 9.2 2.2 380 32

Exp3 5685.11 680.55 20.6 0.6 9.2 2 380 10

Exp4 6503.60 785.52 17.8 0.2 9.1 2.1 382 7

Exp5 5293.64 673.66 17.5 0.2 9.1 2 382 26

R Exp1 605.03 14.44% 90.3 0.4 9.5 5.8 366 0

Exp2 887.82 9.78% 20.6 0.3 9.2 2.5 383 0

Exp3 701.85 3.13% 16.8 0.5 9.1 2.1 384 0

Exp4 803.9 2.34% 16.6 0 9.1 2.1 384 0

Exp5 713.43 5.90% 26.9 0.5 9.2 2.5 380 0

MD MD 3581.64 979.58 11.7 0.1 2.5 0.9 1461 137

Exp1 801.79 0.81

Exp2 1512.85 0.92

Exp3 1282.7 0.89

Exp4 1494.43 0.9

Exp5 1229.34 0.89

R + MD MD 1114.33 13.76% 11.3 0.1 2.4 0.9 1483 0

Exp1 898.48 0.47 12.06%

Exp2 1720.82 0.6 13.75%

Exp3 1446.47 0.72 12.77%

Exp4 1695.42 0.73 13.45%

Exp5 1400.07 0.63 13.89%

The data file includes the genotype of 9216 SNPs covering the whole genome for The 26 F1 sires of five real chicken F2 designs (4 in Exp1, 5 in 
Exp3 and Exp5 and 6 in Exp2 and Exp4). For each markers panel and condition, the maximal available informativity score (max info), the selected set 
score, the multidesign/monodesign ratio, the score gain obtained by using the resampling (-r gain), the maximal (Dmax), minimal (Dmin), average 
(AveD) and standard deviation (StD) distances between two markers, the number of selected markers and the number of no informative markers 
in this set are detailed. R and MD refer at resampling option activation and multidesign option activation, respectively. With the resampling option, 
the gain is inversely proportional to the maximum informativity, except for Exp2, because of an overrepresentation of markers heterozygous for 0 
and 6 animals in this experimental design. The results for multidesign mode (1536 markers) are similar to those obtained with the 5K markers file: 
the ratio is about 0.90, and the resampling option permits the increase of the number of selected markers (and thus the final score) without 
significant modifications of the average distance and the standard deviation.
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Experimental designs marker informativity distributionFigure 4
Experimental designs marker informativity distribution. Each bar represents the number of markers for every informativity val-
ues for each experimental design.
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