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ABSTRACT. We discuss related aspects of the simplest possible games, i.e. games

where two players have two pure strategies each, and consider static games, pop-

ulation games, a generalization of evolutionary games, and dynamic games.

FOREWORD

Gilles Kahn and I were classmates at École Polytechnique where, in the aca-

demic year 1965–1966, he taught me programming (this was in MAGE 2, a trans-

lation in French of Fortran 2 I believe, on a punched tape computer SETI PALAS

250), then we met again and became good friends at Stanford University, where he

was a computer science student while I was in aeronautics and astronautics. Our

paths were to get closer starting in the spring of 1980 when we started planning

and, from 1983 on, heading INRIA-Sophia Antipolis together.

Gilles has always believed that game theory was worth pursuing. He was ada-

ment that our laboratory should take advantage of my being conversant with that

topic. He was instrumental in maintaining it alive in the lab.

He was to be later the president of INRIA who presided over the introduction of

“biological systems” as a full-fledged scientific theme of INRIA. Although this was

after I had left INRIA, this again met with my personal scientific taste, since I had

embraced behavioural ecology as my main domain of interest and of application

of dynamic games, much thanks to Eric Wajnberg, from INRA, but also out of an

old desire of looking into ecological applications of these techniques.

It is why I think fit to write here a few words about games and behavioural

ecology, and also population dynamics and evolution, closely related topics.

Pierre Bernhard

1. INTRODUCTION

What follows must be regarded as a distraction with 2×2 games, the very simple

structure of such static games shaping the dynamic aspects of both evolutionary

games, —a topic invented by the biologists—, and bilinear differential games, of

which we show here an example in behavioural ecology where it arises naturally.

We begin with a short taxonomy of two by two static games, which will be

usefull in the sequel. Then we investigate how concepts of evolutionary game the-

ory translate in that simple case. A natural generalization of classical evolutionary
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games is population games. We develop some very simple, yet probably origi-

nal, results for such games still in the 2 × 2 case, and look at their relationship to

evolutionary games.

Then we venture into differential games. The literature on differential games

bears a striking difference with that on classical game theory in that, while the

latter is mainly concerned with mixed strategies —up to the point that ordinary

decisions have to be called pure strategies to recall that they are not mixed—,

mixed strategies have had little impact on differential games research. On the one

hand, differential games have been mainly concerned with state feedback or non

anticipative strategies, and the concept of mixed state feedback, or, for that matter

mixed nonanticipative strategy, is surely not simple. On the other hand, most of

that literature has considered continous decision sets, as opposed to finite, thus

allowing for enough convexity or concavity without relying on mixed strategies.

However, we recently showed ([7]) that in the case of a two-player (non-zero-

sum) game where each player has only two possible controls —the framework of

this article—, not only mixed strategies come up as a natural concept, but more-

over they lead to a concept of bi-singular trajectory field which seems to have no

counterpart in control theory. Looking into older literature, this concept should

have been uncovered in the late 60’s or early 70’s. We are surprised —and a bit

suspicious— that we did not find any mention of it.

We use this theory to investigate a problem of conflict over parental care which

has been investigated in the literature on behavioural ecology ([8, 11, 9, 4]) in var-

ious forms (static, discrete dynamic, symmetric. . . ). Here we adopt a continuous

time model, asymmetric, that fits with the current paper, and is solved via our the-

ory of bi-singular trajectory field. We find that the solution of the more realistic

finite horizon version investigated here, shares, to our surprise, some features of

the infinite horizon version investigated in [7], but also displays new features.

2. STATIC GAMES

There is a wealth of classical 2×2 static games, starting with the famous Prisoner

Dilemma —a story due to Tucker—, including Stag and Hare, Hawk and Doves,

Sex War, —four related games that attempt to capture the benefit of cooperation

over agression (See [3]). We propose here a taxonomy of all 2 × 2 games adapted

to our use in the sequel.

2.1. Notations. Let a two-person game be described by the following 2 × 2 bi-

matrix:
u1\u2 1 2

a2 c2

1 a1 b1

b2 d2

2 c1 d1

Player 1 chooses the row through his control u1, his payments —or rewards— are

indexed by the subscript 1, while player 2 chooses the column through her control

u2, her payments being indexed by the subscript 2.
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We shall all along adopt the convention that when a property holds for indices

i = 1 and i = 2, we shall simply write it with the index i without everytime writing

i ∈ {1, 2}, which shall be implicit. Also, the index j in an expression involving i
will mean j = 3 − i.

We let

Ai =

(

ai bi

ci di

)

Because of the way we have arranged the bi-matrix of payments, each player

chooses the line of his or her own matrix, the opponent chooses the column. Let

δi = aidi − bici , σi = ai − bi − ci + di ,

and when σi 6= 0,

(1) p⋆
j =

di − bi

σi

, 1 − p⋆
j =

ai − ci

σi

.

2.2. Interpretation. We notice that if σi = 0, player i has a dominating pure

strategy since ai − ci = bi − di, so that the first strategy dominates the second one

if both are positive, and the second dominates if both are negative. (And his choice

is void if both are zero.)

Moreover, we also stress that σi is the second derivative of the restriction of the

quadratic form of R
2

x 7→ 〈x,
1

2
(Ai + At

i)x〉

to the subspace orthogonal to the vector (1 1). This will have an impact in view of

classical theorems on evolutionary stable strategies (ESS).

If we let pi and 1−pi be the probabilities that player i chooses his or her first and

second pure strategy respectively, p⋆
i is a candidate strategy of player i equalizing

for player j, i.e. such that

( pi 1 − pi )Aj =
δj

σj

( 1 1 ) .

However, p⋆
i can be a mixed strategy only if it belongs to [0, 1].

The property that p⋆
i ∈ (0, 1) means that player j has a dilemma: the best

decision for that player depends on the decision of the other one. Conversely, if

either p⋆
i ≤ 0 or p⋆

i ≥ 1, one line of Aj dominates the other one (weakly if p⋆
i

is at one of the bounds), so that player j can play that decision regardless of the

opponent’s choice. The dominating line is the first one if σjp
⋆
i < 0, and the second

one if σjp
⋆
i > 0.

Invariance We stress the following invariances and symetries:

• under addition of the same constant to all four entries of Ai, σi and pj are

invariant.

• interchanging the order of the pure strategies of player i, but not j, changes

both σi and σj to their opposite, leaves p⋆
j invariant, and, obviously, changes

p⋆
i to 1 − p⋆

i .
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• In evolutionary games, the sign of σi will have a strong meaning. But this

is a symmetric game with A1 = A2, so that one can only interchange the

order of the pure strategies of both players simultaneously, thus preserving

this sign.

2.3. Taxonomy. To avoid unnecessary particular cases, we make the following

hypothesis:

Hypothesis 1.

ai 6= ci and bi 6= di .

As a consequence both p⋆
i are different from 0 and 1.

Let us list the possibilities that arise:

Theorem 1. Under hypothesis 1, occurences of Nash equilibria in 2×2 games are

as follows:

(1) Any of the σi = 0. Then, Player i has a dominating pure strategy, the game

has a single Nash equilibrium, which is pure.

(2) Both σi 6= 0, but one at least of the p⋆
i /∈ (0, 1). The corresponding

player(s) j has a dominating pure strategy. There is a unique Nash equi-

librium, which is in pure strategies.

(3) Both σi 6= 0, and both p⋆
i ∈ (0, 1). Then (p⋆

1
, p⋆

2
) is a mixed Nash equilib-

rium. Two subcases arise.

(a) σ1σ2 < 0. There is no Nash equilibrium in pure strategies. The mixed

Nash equilibrium is the only one.

(b) σ1σ2 > 0. There are two pure Nash equilibria in addition to the mixed

one. They are,

(i) if σi < 0, (0, 1) and (1, 0) (in terms of p1 and p2).

(ii) if σi > 0, (1, 1) and (0, 0). (A coordination game, e.g. Sex

War.)

Proof

(1) The case where one σi = 0 has been covered in the subsection “interpreta-

tion” above.

(2) Assume that both σi 6= 0, but that p⋆
i /∈ (0, 1). (Remember that our hypoth-

esis 1 rules out the case p⋆
i ∈ {0, 1}.) Then p⋆

i and 1 − p⋆
i have opposite

signs. Therefore, according to (1) bj − dj and aj − cj have the same sign.

Thus the first line of Aj dominates the second if that common sign is pos-

itive, and conversely if it is negative. The domination is strict because of

our hypothesis 1. Therefore, a Nash equilibrium has to be pure for player j.

But then player i must play his or her best response against that pure strat-

egy, which is pure and unique again due to hypothesis 1. (If both p⋆
i are

outside (0, 1), both players have a dominating strategy. A typical example

is Prisoner’s Dilemma.)

(3) If both p⋆
i belong to (0, 1), they constitute a pair of mutually equalizing

strategies, hence a mixed Nash equilibrium.
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(a) The only two possibilities for there being no pure Nash equilibrium,

is that, for a choice of i and j, ai > ci and di > bi while aj < cj and

dj < bj . Then, trivially σi > 0 and σj < 0.

(b) Otherwise, one of the two pairs of diagonally opposite payments are

Nash. The cases i. or ii. of the theorem can be checked by inspection.

Remark If the context allows one to number the pure strategies of both players

independently, then cases i and ii of 3b in theorem 1 above are not different, since,

according to the facts pointed out in the paragraph “invariance”, one is converted

into the other one by interchanging the numbering of the pure strategies of any one

(but one only) of the players.

3. EVOLUTIONARY AND POPULATION GAMES

3.1. Mixed strategies and dynamics. In that section, we investigate the particular

case of our simple 2×2 games, the implications of a simple idea: replace players by

populations, and probabilities in mixed strategies by proportions of the population

that use a given (pure) strategy. One can still recover a probabilistic interpretation,

in that, if an individual is chosen “at random” (with a uniform law among the

population), the probabilities that it play one or the other strategy (that it be of one

or the other phenotype) agree with population proportions. Yet, each individual

uses a unique strategy (is of a given phenotype).

On the one hand, this gives a much more concrete and convincing interpretation

of mixed strategies. On the other hand, this allows naturally for an evolution of the

mixed strategies as individuals in the population switch from one pure strategy to

another one.

In that respect, Sandholm [13] shows that at least two very natural strategy re-

vision schemes lead to the same strategy dynamics, which are those considered in

behavioural ecology if the fitness of a phenotype (the payment associated to a pure

strategy) is taken to be the growth rate of the sub-population using it.

We use that last explanation to justify the so-called “replicator equation”. We

imply that a Nash equilibrium is the credible outcome of a game if it is stable under

that dynamics. For the sake of completeness, we shall compare it with the Cournot

—or pseudo-gradient— dynamics.

3.2. Evolutionary games.

3.2.1. Taxonomy. Evolutionary games consider a competition between several (here,

two) behaviours within a single population. In our wording, this means that, on the

one hand A1 = A2 =: A, and on the other hand, p1 = p2 =: p.

In that context, two remarks are in order concerning the application of theorem

1. On the one hand, the case 3a cannot appear. On the other hand, interchanging

the numbering of the pure strategies of one player alone is not possible, hence the

two sub cases of case 3b of theorem 1 are indeed different. And the two pure Nash

equilibrium of the sub-case i being non symmetric, they are not Nash equilibria in

that context.



6 PIERRE BERNHARD AND FREDÉRIC HAMELIN

The basic concept is that of an Evolutionarily Stable Strategy (ESS) which is a

Nash equilibrium in that symmetric context, plus a second order condition, that in

the case of a mixed Nash point, strategies as good as p against p be less efficient

than p against themselves, which we state here in the simple form it takes for a

2 × 2 game

Definition 1. A symmetric strategy (p, p) of a symmetric game is called an ESS if

(1) It is a Nash equilibrium,

(2) If p /∈ {0, 1} (then it has to be p⋆ of the previous section), for any q ∈ [0, 1]
different from p,

( p − q q − p )A

(

q
1 − q

)

> 0 .

The ESS that may arise are now described by this theorem:

Corollary 1. Occurences of ESS in 2 × 2 symmetric games are as follows:

(1) σ = 0. There is a unique ESS, which is pure. (Typically, Prisoner’s

Dilemma according to [3].)

(2) σ 6= 0 but p⋆ /∈ (0, 1). There is a unique ESS, which is pure. (Typically,

Prisoner’s Dilemma, with c < a < d < b.)

(3) σ 6= 0, p⋆ ∈ (0, 1).
(i) If σ < 0, the only ESS is p⋆, (typically, Hawk and Dove),

(ii) if σ > 0, there are two pure ESS : (0, 0) and (1, 1), and no mixed ESS.

(Typically, Stag and Hare.)

Proof This is just applying theorem 1 to definition 1, except for the case p⋆ ∈ (0, 1)
which requires to sort ESS among Nash points. But only symmetric Nash points

may be ESS, and a simple calculation shows that

( p⋆ − p p − p⋆ )A

(

p
1 − p

)

= −σ(p − p⋆)2 ,

this is positive if and only if σ < 0.

Several remarks are in order. The only mixed ESS is therefore obtained when

σ < 0, p⋆ ∈ (0, 1). Imbedded into a population with that particular mix, indi-

viduals using strategy 1 and 2 fare as well. This caracterization of an equilibrium

population was first discovered by Wardrop [14].

3.2.2. Dynamics. Assume payments to pure strategies are to be understood as sub-

population growth rates. Let therefore ni be the number of individuals of type i in

the population, and p = n1/(n1 + n2). Assume furthermore that the growth rate

of each sub-population is

(2)

ṅ1

n1

= ap + b(1 − p) ,

ṅ2

n2

= cp + d(1 − p) .
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A straightforward calculation yields the replicator dynamics:

ṗ = σp(1 − p)(p − p⋆) if σ 6= 0 ,(3)

ṗ = (b − d)p(1 − p) if σ = 0 .(4)

It is straightforward to check, concerning (3), that if σ < 0, its only stable equilib-

rium is p⋆, while both 0 and 1 are stable, and not p⋆, if σ > 0. This is an instance

of the general theorem that states that ESS are (at least locally) stable points of the

replicator dynamics. The same holds for (4) which converges to 0 or 1 according

to whether b − d is negative or positive.

Stag and Hare’s paradox Stag and Hare (after J-J. Rousseau [12]) is a symmetric

game with

A =

(

D 0
1 1

)

with D > 1. This an instance of the case σ = D > 0, p⋆ = 1/D ∈ (0, 1), the

last case (3.b, ii) of theorem 1, where there are three symmetric Nash equilibria,

but only two pure ESS. Indeed, if the mixed strategy p⋆ is considered as a possible

outcome of the game, we run into a paradox: the probability of choosing strategy 1

would decrease with the payment of coordinated choices in favor of 1. The solution

is in the replicator dynamics : the interval (p⋆, 1) is the attraction basin of the ESS

(1, 1). And it is increasing with D.

3.3. Population games.

3.3.1. Equilibria and stability. We turn now to games between two different pop-

ulations, each composed of individuals of two different types. This is exactly the

framework of (non symmetric) games, but with players interpreted as populations.

The status of Nash equilibria are therefore described by theorem 1. We do not at-

tempt to define the equivalent of an ESS, but rely on the stability of the replicator

dynamics to select realistic outcomes of a game. As mentioned earlier, several nat-

ural considerations lead to this same dynamics, either in a learning paradigm (see

[13]) or, as we assume here, in an evolutionary context.

We now have two sets (ni1, ni2) of subpopulations numbers, and we extend

equations (2) to both populations, as well as the definition pi = ni1/(ni1 + ni2).
Differentiating that last expression, we get, in case both σi 6= 0, we find

(5) ṗi = σipi(1 − pi)(pj − p⋆
j ) .

These equations have (1, 1), (1, 0), (0, 1), and (0, 0) as equilibria, and if both p⋆
i ∈

(0, 1), (p⋆
1
, p⋆

2
). The stability of these equilibria are readily seen from the jacobian

J(p1, p2) =

(

−σ1(1 − 2p1) σ1p1(1 − p1)
σ2p2(1 − p2) −σ2(1 − 2p2)

)

.

We skip the discussion of the four “pure” cases. The conclusion is that the pure

Nash equilibria are stable. Let us concentrate on the phase portrait in case 3 of the

theorem. The jacobian at (p⋆
1
, p⋆

2
) is

J(p⋆
1, p

⋆
2) =

(

0 σ1p
⋆
1
(1 − p⋆

1
)

σ2p
⋆
2
(1 − p⋆

2
) 0

)

.
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Therefore two cases arise

(a) σ1σ2 < 0. The equilibrium (p⋆
1
, p⋆

2
) is a center,

(b) σ1σ2 > 0. The equilibrium (p⋆
1
, p⋆

2
) is a saddle.

Let us furthermore emphasize the following fact. Consider the functions

Ui(pi) = p⋆
i ln

p⋆
i

pi

+ (1 − p⋆
i ) ln

1 − p⋆
i

1 − pi

and

V (p1, p2) = σ2U1(p1) − σ1U2(p2) .

Lemma 1. The function V (p1, p2) is a first integral of the replicator dynamics (5).

Proof The lemma is proved by direct differentiation, checking that the lagrangian

derivatives of the Ui’s are U̇i(pi) = σi(p1 − p⋆
1
)(p2 − p⋆

2
).

3.3.2. Phase portraits. We can now give a fairly complete description of case 3.

Theorem 2. In case both σi 6= 0 and both p⋆
i ∈ (0, 1),

(a) If σ1σ2 < 0, the trajectories of the replicator dynamics are all periodic,

the center being (p⋆
1
, p⋆

2
),

(b) If σ1σ2 > 0, (p⋆
1
, p⋆

2
) is a saddle. The two pure Nash equilibria are the

stable points of the dynamics. Their attraction basins are separated by the

curve V (p1, p2) = 0.

Proof It is a classical fact that, as long as the p⋆
i ∈ (0, 1), the Ui are positive, null

in p⋆
i and strictly convex. Hence, if σ1 and σ2 are of opposite signs, V is strictly

convex or concave, with its extremum 0 in (p⋆
1
, p⋆

2
), and the trajectories, lying on

level curves of V , are periodic. Otherwise, the curve V (p1, p2) = 0 has to be a

trajectory, and as it passes through (p⋆
1
, p⋆

2
), the result follows.

Take A1 = A2 = A, with σ < 0. Remark that the stable mixed ESS of the

previous section has now turned into a saddle. The ESS dynamics was the diagonal

dynamics of the current 2D game. And indeed, in the saddle, the diagonal is the

trajectory heading towards the saddle point. But in this 2D game, it is highly

unstable. Whether the stable case can be taken as such depends on the context.

Two identical populations are not the same as a single population.

3.3.3. Wolves and Lynxes. We give here an example of population dynamics taken

from a model of intraguild predation. (This is a somewhat formal model. See

[1] for a recent review.) In the classical Hawk and Doves game, one investigates

the equilibrium between two behaviours in a population of predators competing

for preys. Here, we have two differet species of predators, say wolves and lynxes

hunting deers. “Dog does not eat dog”. In our model, the competition is extra-

specific. But we still have two possible behaviours, agressive or pacific, in each

population.

In that model, Lynxes are at a trophic level above that of wolves. In particular, if

two “pacific” individuals meet, the wolf has a smaller reward, while if two agres-

sive meet, the lynx eats the wolf. Also, we assume that against a pacific (coward)

wolf, a pacific lynx may be better off than an agressive one, because the agressive



TWO-BY-TWO STATIC, EVOLUTIONARY, AND DYNAMIC GAMES 9

individual has spent un necessary time and effort chasing a competitor who would

have left anyhow.

The result is the following bi-matrix of rewards:

L\W p a
1 − λ 1

p λ 0
0 −θ

a λ − ν 1 + µ

(All greek letters are positive coefficients less than 1.) In that game, we have

σ1 = 1 + µ + ν and σ2 = −λ − θ, p⋆
1

= θ/(λ + θ), p⋆
2

= (1 + µ)/(1 + µ + ν).

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

Série1

FIGURE 1. Population dynamics for Wolves and Lynxes, all greek

parameters set to 1/2, time span : 40 units.

A typical example of the resulting phase portrait is depicted in Figure 1, where

we have taken all “greek” parameters equal to 1/2, initial state at (0.2, 0.2). We

have integrated with an order 4 Runge Kutta scheme, with a step of 2.5 × 10−2

from t = 0 up to t = 40.

3.3.4. Cournot Dynamics. It may be worthwhile to compare the replicator dynam-

ics to the “natural” dynamics whereby the pi’s would evolve according to the gra-

dient of the rewards. (This could be considered the natural extension of Cournot

iterations, and is Rosen’s pseudo-gradient algorithm.) This leads to

ṗi = σi(pj − p⋆
j ) .
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This is either an harmonic oscillator or a diverging exponential according to the

sign of σ1σ2. It does not take into consideration the restriction p ∈ [0, 1] and does

not seem to be a good basis for Nash selection.

4. CONFLICT OVER PARENTAL CARE, A DIFFERENTIAL GAME

We turn now to an application of the theory described in [6, 7] where we show

how a mixed Nash equilibrium of a two-player non-zero-sum game where each

player has, as here, two pure strategies (two possible phenotypes), can be found

via the solution of a pair of uncoupled PDE’s, derived from Isaacs’PDE.

4.1. The parental care game. Rather than an exhaustive taxonomy, which does

not seem feasible, we investigate here a variation of a famous problem in be-

havioural ecology, the conflict over parental care. [2, 9]. We significanty improve,

we believe, our own treatment of that question in [6, 7].

Two animals, 1 and 2, have jointly given birth to an offspring. Each of the two

parents may take care of the young, but this time is taken from the time it could

spend caring for itself and thus increasing the likelihood of disseminating its genes

by other means. Or it may defect. But then the effort put into nestling and gaving

birth to he young is wasted. We allow each parent a mixed strategy, in the form of

a partial rather than full effort.

Let therefore x ∈ R be the weight increase of the young. At initial time, x = 0.

The offspring is adult and viable when x = 1. But this must happen during the

year it was born, say at or before time T . Let ui = 1 if parent i takes care full time

of the young, ui = 0 if it defects. In the “pure” dynamics ẋ is given as follows:

u1\u2 0 1
0 −δ α2

1 α1 γ

The coefficients αi, γ and δ are all assumed positive, with γ > α1 > α2. We let

β = γ − α1 − α2 be the synergy coefficient.

Allowing for “mixed strategies” or partial efforts ui ∈ [0, 1] leads to

(6) ẋ = a1u1 + a2u2 + cu1u2 − δ

ai = αi + δ , c = γ − α1 − α2 − δ.

We allow both parents to behave in closed loop, i.e. use controls of the form

ui = φi(t, x). We shall encounter only constant controls, so that existence of

solutions to our dynamic equations is not an issue.

The game ends at τ = min{t | x(t) = 1 , T} The reward of the parents are

M(x(τ)) = 1 or 0 according to whether the young has achieved viability or not,

—i.e. M(1) = 1, M(x) = 0 ∀x < 1—, decreased by the cost of caring, say

Ji(u1(·), u2(·)) = M(x(τ)) − εi

∫ τ

0

ui(t) dt .

4.2. Pure equilibria.
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4.2.1. Constant controls. We notice the following simple facts:

Lemma 2.

(1) Any effort that does not lead to x(τ) = 1 is dominated by 0.

(2) A parent who cares alone should use the pure strategy ui = 1.

(3) The best response to ui = 1 is never uj = 1 unless γT = 1.

Proof

(1) If M(x(τ)) = 0, the payoff to each parent is negative, or 0 for whichever

has used ui = 0.

(2) If a parent cares alone, to reach x(τ) = 1, it needs to achieve
∫ τ

0

(aiu(t) − δ) dt = 1 , =⇒ ai

∫ τ

0

ui(t) dt = 1 + δτ .

Hence its reward is Ji = 1 − (εi/ai)(1 + δτ) which is decreasing with τ .

Hence it should strive to minimize τ .

(3) Against uj = 1, a constant response ui yields τ = 1/[(γ − αj)ui + αj ]
which is decreasing with ui, as is Ji = 1 − εiτui. Hence if τ < T , a

ui < 1 still leads to termination before T and a higher reward.

This simple fact suffices to allow us to investigate pure Nash equilibria. Con-

sider the game space in the (t, x) plane. Draw the lines x = 1 − αi(T − t), called

Li, and x = 1− γ(T − t) called Lγ , as in figure 1. (We carry the discussion below

for x(0) = 0, and with respect to the position of 0 on the time axis. This could

easily be extended to an arbitary initial pair (t0, x0).)

-
t

6x

1

T





















Lγ

(0, 0)

#
#

#
#

#
#

#
#

##

L1

(0, 0)

����������������

L2

(1, 0)
(1, 0)
(0, 1)

FIGURE 2. The pure Nash equilibria if the εi are small.

We claim the following

Theorem 3. The following discussion provides all pure Nash equilibria with con-

stant controls

Discussion To the right of line Lγ , the child cannot be brought to adulthood

within the remaining time. Therefore, the only Nash equilibrium is (0, 0).
Assume α1 > α2. To the right of line L1, no parent can bring the child to

adulthood alone. Therefore, if the other parent plays uj = 0, the optimum is



12 PIERRE BERNHARD AND FREDÉRIC HAMELIN

ui = 0, and (0, 0) is Nash. A joint effort may drive x to 1 before time T , but,

according to the lemma, except on the line Lγ , (1, 1) cannot be a Nash equilibrium.

We shall see mixed equilibria in that region.

Between lines L1 and L2, the parent 1 can succeed alone. If its reward in so

doing is positive, it is its best response against u2 = 0. And of course u2 = 0 is

the best response to u1 = 1 since it yields a reward of 1 to parent 2. Therefore,

(1, 0) is the only Nash equilibrium if ε1 < α1. Otherwise, the same situation as to

the right of L1 prevails.

To the left of line L2, both parents are able to succeed alone. Therefore, if both

εi < αi, there are two asymmetric Nash equilibria, (1, 0) and (0, 1). If any of the

εi > αi, that parent has no incentive to breed the child alone. Therefore, its best

response to 0 is 0. Therefore if one only, say 1, is in that situation, the only Nash

equilibrium is (0, 1). If both are, again (0, 0) is a Nash equilibrium, and also (1, 1)
provided that εi < γ.

4.2.2. Synchronous on-off equilibria. If c > 0, Nash equilibria appear, where both

parents care or rest simultanesouly. The following sufficient condition has no claim

of optimality. Note that we have used α1 ≥ α2 to keep the most stringent of

symmetric conditions.

Theorem 4. Assume c > 0. Let T0 be a subset of [0, T ] with measure τ0 ≤ 1/εi,

i = 1, 2. Assume that the controls ū1(t) = ū2(t) = 1lT0
(t) generate a trajectory

x̄(t) ending at x̄(τ) = 1 before time T , and that (1, ū2) generate a trajectory

ending at τ1. Assume further that over [τ1, τ ], the trajectory x̄(t) lies below the

line of slope γ−α2 passing through its end-point. Then the pair (ū1, ū2) is a Nash

equilibrum.

Proof Fix u2 = ū2, and pick an arbitrary u1(·). If the pair (u1(·), ū2) does not lead

to termination before time T , parent 1 incurs a negative reward, while the condition

τ0 ≤ 1/ε1 insures a positive reward for the pair (ū1, ū2). Let therefore τ ′ be the

termination time on this new trajectory. Note that, necessarily, τ ′ ≥ τ1. Two cases

arise depending on whether τ ′ is less or more than τ .

If τ ′ < τ , the support of ū2 may have been curtailed by the early termination.

Let T2 be that curtailed support, and τ2 its measure. Let T1 = [0, τ ′] − T2, and let

v1 and w1 be the integrals of u1(·) respectively over T1 and T2. We have

x(τ ′) = 1 = a1(v1 + w1) + a2τ2 + cw1 − δτ ′ = x̄(τ) = (a1 + a2 + c)τ0 − δτ .

This can be rearranged in

(7) (a1 + c)(v1 + w1 − τ0) = cv1 + a2(τ0 − τ2) − δ(τ − τ ′) .

The hypothesis in the theorem can be written, using γ − α2 = a1 + c,

x̄(τ ′) = (a1 + a2 + c)τ2 − δτ ′ ≤ (a1 + a2 + c)τ0 − δτ − (a1 + c)(τ − τ ′) ,

which can be rearranged into

a2(τ0 − τ2) − δ(τ − τ ′) ≥ (a1 + c)[τ − τ ′ − (τ0 − τ2)] .
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Combining this with (7), and noting that necessarily, τ0 − τ2 ≤ τ − τ ′, we get

(a1 + c)(v1 + w1 − τ0) ≥ cv1 ≥ 0 .

Since J1(u1(·), ū2) − J1(ū1, ū2) = −ε1(v1 + w1 − τ0), we conclude that J1 has

increased in the change.

Otherwise, if τ ′ ≥ τ , then τ2 = τ0, and (7) directly yields he desired result.

4.3. Time sharing equilibria. If β < 0, that is γ < α1 + α2, i.e. if no synergy

exists between the parents, but to the contrary a law of diminishing return prevails,

another family of Nash equilibria shows up, where the parents agree to take their

turn in caring for the child. Assume that α1T > 1. Pick a time τ < T such that

α2τ < 1 < α1τ . Let

τ1 =
1 − α2τ

α1 − α2

and τ2 =
α1τ − 1

α1 − α2

.

This way, τ1 + τ2 = τ < T and α1τ1 + α2τ2 = 1. Choose a partition of [0, τ ]
into two (measurable) sets T1 and T2 of respective Lebesgue measures τ1 and τ2.

Choose ūi(t) = 1lTi
(t), i.e. 1 if t ∈ Ti, 0 elsewhere.

We claim

Theorem 5. If β < 0, and if both εiτi < 1, the pair (ū1, ū2) is a Nash equilibrium.

Proof Fix ū2, and choose an arbitrary u1(·). Let τ ′ be the time when the game

ends, T ′
2

of measure τ ′
2
≤ τ2 the support of ū2 in [0, τ ′] —it might be less than τ2

if the game ends earlier— and T ′
1

of measure τ ′
1

its complement. Let also v1 and

w1 be the integrals of u1(·) over cT ′
1

and T ′
2

respectively. Notice that v1 ≤ τ ′
1
.

If (u1(·), ū2) do not bring the state to 1 before time T , J1 is negative. Otherwise,

using v1 + w1 =
∫

u1dt,

J1(u1(·), ū2) − J1(ū1, ū2) = −ε1(v1 + w1 − τ1) .

Also, writing the dynamics in terms of the greek parameters, we have that

x(τ ′) = (α1 + δ)v1 + α2τ
′

2 + (γ − α2)w1 − δτ ′

1 = 1 = α1τ1 + α2τ2 .

Using the second and the fourth terms of this equality, we easily get that

α1(v1 + w1 − τ1) = δ(τ ′

1 − v1) − βw1 + α2(τ2 − τ ′

2) .

If β < 0, the right hand side is positive, hence the variation in J1 is negative.

Notice that, contrary to the mixed equilibrium of the next paragraph, this is a

strict Nash equilibrium, as the right hand side above can be zero only if u1 = ū1.

4.4. Mixed equilibria.

4.4.1. Time unconstrained trajectories. We now turn to mixed equilibria, using

the theory of [7]. The Isaacs equation is as follows. We let Vi(t, x) be the two

Value functions of the players. We write λi(t, x) for their derivative in x. If they

are of class C1, they satisfy

(8)
∂Vi(t, x)

∂t
+ Hi(φ

⋆
1, φ

⋆
2) = 0 , Vi(τ, x) = M(x) ,
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with

Hi(u1, u2) = λi(a1u1 + a2u2 + cu1u2 − δ) − εiui .

In these equations, (φ⋆
1
, φ⋆

2
) stands for a Nash equilibrium of the 2×2 game whose

payoffs are the Hi.

It is useful to rewrite this as

Hi(u1, u2) = ( ui 1 − ui )λiA

(

uj

1 − uj

)

−εiui = ( ui 1 − ui )Hi

(

uj

1 − uj

)

with

A =

(

γ α1

α2 −δ

)

, Hi = λiA − εi

(

1 1
0 0

)

.

As a result, the Nash point sought is that of the bi-matrix game

u1\u2 1 0
λ2γ − ε2 λ2α1

1 λ1γ − ε1 λ1α1 − ε1

λ2α2 − ε2 −λ2δ
0 λ1α2 −λ1δ

Notice that in this game, with reference to the notations of the previous sections,

(9) σi = λic , ∆i := detHi = −λ2

i (a1a2 + cδ) + λiajεi .

The Nash equilibria of the above bi-matrix game are singuar controls in the sense

of control theory. They are

(10) φ⋆
i =

εj − λjaj

λjc

We investigate a field of trajectories reaching the boundary x = 1. On such trajec-

tories, locally, the final time is unconstrained. As the rest of the formulation is time

invariant, the associated Value is stationary, and ∂Vi/∂t = 0. Placing this and (10)

in (8) yields

(11) φ⋆
i =

δ

ai

,

and therefore

(12) ẋ = δ
a1a2 + cδ

a1a2

= δ
α1α2 + γδ

(α1 + δ)(α2 + δ)
.

This slope is necessarily positive and less than γ. However, depending on c, it

may be more or less than αi.

Theorem 6. If

T >
a1a2

δ(a1a2 + cδ)
, and εi <

a1a2 + cδ

aj

,

the mixed strategies (11) are a Nash equilibrium over feedback strategies.
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Proof Using (12), the first condition in the theorem insures that τ < T , hence

M(x(τ)) = 1, and using this, the second one insures that both parents get a positive

reward. (Otherwise, ui = 0 is better.) If so, the functions

Vi(x) = 1 −
εiaj

a1a2 + cδ
(1 − x)

satisfy equations (8) in the region of the game space covered by the trajectories

(12), which includes the initial sate of interest, x(0) = 0.

4.4.2. Time constrained trajectories. We investigate now trajectories that end up

exactly at time T with x(T ) = 1, such that both parents get a positive reward. Let

ui ∈ [0, 1] be such that

(13) T [a1u1 + a2u2 + cu1u2 − δ] = 1 , T εiui < 1 .

Theorem 7. Under conditions (13) the pair of constant controls (u1, u2) is a Nash

equilibrium over feedback strategies if and only if both ui ≥ φ⋆
i as given by (11).

Proof We compare the constant control ui to any ui + vi(t), assuming that the

other parent keeps its control uj constant. Let τ be the final time on the trajectory

generated by these new controls. If τ = T and x(T ) < 1, both parents have a

negative payoff. Parent i looses in so doing. Therefore, the new control can be

better only if τ ≤ T . Let wi =
∫ τ

0
vi(t) dt .

We have

(14) τ [a1u1 + a2u2 + cu1u2 − δ] + (ai + cuj)wi = 1 ,

We assume that indeed τ ≤ T , thus that wi > 0. (Recall that ai + cuj ≥ 0, even

though c may be negative.) We have also Ji(ui + vi, uj) = 1 − εiτui − εiwi ,
Using (13) and (14) we find that

Ji(ui + vi, uj) − Ji(ui, uj) = −εiwiT (ajuj − δ) .

Therefore, if ajuj − δ < 0, the open loop control ui + vi(·) improves the reward

of player i, and (u1, u2) was not Nash. Conversely, if ajuj − δ ≥ 0, no open loop

control can improve Ji, and then no feedback strategy can either. (Just apply the

above calculation with ui + vi(t) equal to the control of player i generated by a

test closed loop strategy and uj .) Notice also that if uj = φ⋆
j , the variation in Ji is

identically 0. This is the classical equalization property of mixed Nash equilibria.

The trajectories generated by these new Nash strategies are straight lines through

the point t = T , x = 1. They fill the void between the last bi-singular trajectory

and the curve Lγ of Figure 2.

4.5. Biological implications. There are several biological considerations to be

drawn from this analysis. Let us mention just a few ones.

First, let us comment on the parameters of the game. As opposed to previous

literature, we have both a fixed level of welfare to reach and a maximum end time.

Moreover, we let welfare go down if the child is left careless. Also, we allow male

and female to be asymmetric in terms of “cost” of breeding their offspring. One of

the two, for instance, might be more prone to predation, either because it is more
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visible, or less apt to defend its life. Also, we let them differ in their efficiency at

gathering food or otherwise breeding the child.

In that respect, intuitively, if γ > α1 + α2, we may consider this as a synergetic

effect, since both parents acting together do better than the sum of their lone efforts.

But if we consider that the efficiency of a parent is in replacing a decrease rate of

δ by an increase of αi, i.e. ai = αi + δ, and similarily for the pair γ + δ, then the

measure of synergy is rather c. Both play a role in the above results.

We do not claim to have described all Nash equilibria. But they are clearly

highly non unique. More analysis in terms of biological interpretations is needed

to sort them out. We give here a few hints.

We notice that some regions of the game space have the mixed stratey as their

natural outcome. It is particularily so if T is large and the εi small enough, so

that the pure Nash are (1, 0) an (0, 1). Then, the mixed equilibrium appears as the

“fair” outcome. The link with an ESS in a population comprising both males and

females remains to be investigated further.

The peculiarity of the mixed Nash is that each parent does exactly the effort

which, if made alone, keeps ẋ = 0. The interpretation is that this is true on lo-

cally time unconstrained trajectories. Therefore the same reasoning as in [7] holds.

The fact that the available time be, globally, constrained by T is reflected, on the

one hand, through the possible overlap of the bi-singular field of trajectories with

the field (0, 0), and on the other hand, by the existence of a new field of mixed

equilibria trajectories, filling the gap between the bi-singular field and the fastest

trajectory to just-in-time completion of the breeding process.

A last point we want to raise is that of the incentive to defect. It follows from

the threshold εi < ai + cδ/aj that, if c > 0, increasing the efficiency of the

partner j will eventually lead to a choice for i to desert. An apparent paradox. The

explanation we propose is that c > 0 means a large synergetic effect. In that case,

a less efficient mate, having a lower aj , has a larger φ⋆
j = δ/aj . (The threshold is

precisely ai + cφ⋆
j .) Thus, under the mixed strategy, it will be more often present

in the nest, and through the synergetic effect, this will compensate and over for its

lower efficiency.

Is this a plausible explanation for the paradox of the handicap [5, 15, 10] in

sexual selection ?
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