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Abstract

The R package FAMT (factor analysis for multiple testing) provides a powerful method
for large-scale significance testing under dependence. It is especially designed to select
differentially expressed genes in microarray data when the correlation structure among
gene expressions is strong. Indeed, this method reduces the negative impact of dependence
on the multiple testing procedures by modeling the common information shared by all the
variables using a factor analysis structure. New test statistics for general linear contrasts
are deduced, taking advantage of the common factor structure to reduce correlation and
consequently the variance of error rates. Thus, the FAMT method shows improvements
with respect to most of the usual methods regarding the non discovery rate and the control
of the false discovery rate (FDR).

The steps of this procedure, each of them corresponding to R functions, are illustrated
in this paper by two microarray data analyses. We first present how to import the gene ex-
pression data, the covariates and gene annotations. The second step includes the choice of
the optimal number of factors, the factor model fitting, and provides a list of selected genes
according to a preset FDR control level. Finally, diagnostic plots are provided to help the
user interpret the factors using available external information on either genes or arrays.

Keywords: factor analysis, multiple testing, dependence, false discovery rate, non discovery
rate, R.

1. Introduction

Most of the existing multiple testing procedures rely on the analysis of the empirical process
of p-values associated to the individual tests, under the assumption of independence. In
practice, and especially in gene expression data for instance, unmodeled and/or uncontrolled
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factors can interfere with the true signal and then generate dependence across the measured
variables. This can be referred to as the heterogeneity of the data, as is also mentioned in
Leek and Storey (2007). This data heterogeneity violates the independence assumption and
induces instability in multiple testing, as shown in Friguet et al. (2009). Indeed, it has been
demonstrated that this dependence has a negative impact on the multiple testing procedures,
particularly on the variance of the number of false positive genes, thus on the control of the
False Discovery Proportion (Efron 2007; Kim and Van de Wiel 2008; Friguet et al. 2009). The
FAMT (factor analysis for multiple testing) procedure deals with this problem by modeling
the common information shared by all the variables using a factor analysis structure. New
test statistics for general linear contrasts are deduced, taking advantage of the common factor
structure to reduce correlation and consequently the variance of error rates. The details of
this method are given in Friguet et al. (2009).

The present paper aims at presenting the statistical handling of multiple testing dependence
as proposed in the R (R Development Core Team 2011) package FAMT (Causeur et al. 2010).
The crucial steps of the analysis correspond to core functions: as.FAMTdata to import the
data and create a single R list from multi-sourced datasets, modelFAMT to estimate the depen-
dence kernel and adjust the data from heterogeneity components and defacto to relate the
heterogeneity components to external information if provided. Moreover, additional functions
are proposed to summarize the results (summaryFAMT) and to optimize the procedure by mod-
ifying the default choices implemented in modelFAMT, such as the estimation procedure for the
proportion of true null hypotheses (pi0FAMT) or the optimal number of factors (nbfactors).

The FAMT procedure is applied to two microarray datasets, which both describe chicken
hepatic transcriptome profiles, and are provided by the Animal Genetics Laboratory (INRA-
Agrocampus Ouest, Rennes, France). The first microarray data analysis studies the relation-
ships between hepatic gene expression and abdominal fatness (Le Mignon et al. 2009; Blum
et al. 2010). The normalized microarray dataset is available in the FAMT package, and is
used here to describe the method step by step. The second microarray data analysis focuses
on the feeding-to-fasting transition in chicken liver by Désert et al. (2008).

The use of these two examples is motivated by their relevance in illustrating the two effects of
dependence. Indeed, it can be shown (Leek and Storey 2008; Friguet and Causeur 2010) that
the correlation between variables impacts the distribution under the null hypotheses of the
individual tests p-values in two ways. In both cases, it leads to strong departures from the
uniform distribution which is expected in the independent case: under dependence, the small
null p-values (resp. close-to-one p-values) can be under-represented (resp. over-represented)
as in the first example (see Figure 1). Conversely, the second example illustrates the second
situation induced by dependence, where small null p-values (resp. close-to-one p-values) are
over-represented (resp. under-represented), see Figure 7. Actually, even if the second case is
more commonplace, taking the dependence into account is recommended to improve the data
analysis in both situations. Yet, we show hereafter that the FAMT method can still be used
in both situations to give more insight into the multiple testing procedure and increase its
overall power.

2. Data manipulation

In microarray data analysis, the selection of differentially expressed genes involves at least
two datasets with different dimensions.
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First, the expression dataset is sized m × n, where m is the number of observed response
variables (gene expression in a microarray experiment) and n is the sample size (number of
arrays), and n << m. In the analysis of microarray data, a pre-processing step of normalisa-
tion is usually carried out at first. The expression data corresponds here to these normalised
data. In the following illustrative example, this dataset concerns hepatic transcriptome pro-
files for m = 9893 genes of n = 43 half sib male chickens selected for their variability on
abdominal fatness (denoted hereafter Af). The observed variable corresponds to the quan-
titative measure of the weight of abdominal fat. The data come from the Animal Genetics
Laboratory (INRA-Agrocampus Ouest, Rennes, France), and were initially generated to map
quantitative trait loci (QTL) for abdominal fatness in chickens. Animals, marker genotyp-
ing and transcriptome data acquisition and normalization are described in Le Mignon et al.
(2009).

The covariates dataset has n rows and the variables describe the experimental conditions:
the identifier of each row (arrays), which correspond to the column names of expression,
is provided together with the value of the main explanatory variable in the testing issue (Af
in the present example) and possibly some other covariates if provided in the study. This
dataset is optional: if not provided, the procedure aims at testing the significance of the
mean expressions.

Finally, the annotations dataset, with m rows, provides additional information about the
response variables that can be further used as an interpretation tool: in the example, the func-
tional characterization of each gene extracted from the Gene Ontology is useful to directly
connect the list of differentially expressed genes to biological processes. In the present exam-
ple, some other additional variables characterizing the location of the spots on the microarray
(block, row, column) are also considered. One column of this dataset must be named ID and
gives the variable (gene) identifier that will be used in the final output of the procedure. This
dataset is optional: if not provided, a basic annotations dataset is created with row indices
as variable identifiers.

The first step of the FAMT method uses the as.FAMTdata function to create a single R list
containing the multi-sourced datasets. To avoid violations of the correspondence between the
columns of the expression dataset and the rows of the covariates dataset, this function
also checks that one column in covariates, the index of which is given by the argument
idcovar, gives the individual (array) identifier, matching the column names of expression.
Some simple tests for the compatibility of the datasets’ dimensions are also performed: the
number of columns of expression must correspond to the number of rows of covariates

and furthermore, expression and annotations must have the same number of rows. The
subclass of the output is named FAMTdata and the belonging to this class is required by the
other functions of the package.

In our example, three datasets are provided:

� expression: It contains 9893 gene expressions, and 43 individuals.

� covariates: It contains 6 variables: AfClass (abdominal fatness class, with 3 levels: F
= fat, L = lean, NC = intermediate), ArrayName (identifying the arrays), Mere (dam of
the offsprings, a factor with 8 levels), Lot (hatch, a factor with 4 levels), Pds9s (body
weight, a numeric vector), and Af (abdominal fatness, a numeric vector). Af is the
experimental condition of main interest in this example.
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� annotations: It contains 6 variables: ID (gene identifier), Name (gene functional cat-
egory), Block, Column and Row (location on the microarray), Length (oligonucleotide
size).

The following code provides the FAMTdata object called chicken.

R> chicken <- as.FAMTdata(expression, covariates, annotations, idcovar = 2)

$`Rows with missing values'

integer(0)

$`Columns with missing values'

integer(0)

By default, idcovar = 1. Here, we use idcovar = 2 because the array identification is given
in the second column of covariates.

Besides, this step checks for missing data, since the FAMT method cannot be applied to
incomplete observations. The as.FAMTdata function gives the indices of the rows and columns
of expression with missing values. If needed, using na.action = TRUE, the missing values
are imputed by the nearest neighbor averaging (function impute.knn of the package impute,
Hastie et al. 2011). Here, the expression component of chicken has no missing data.

Some classical componentwise summaries can be obtained from a FAMTdata object thanks to
the summaryFAMT function which provides:

� for expression: The number of tests (which is the number of rows) and the sample size
(which is the number of columns)

� for covariates and annotations: Classical summaries as returned by the generic func-
tion summary of package base.

The code to perform the summary of a FAMTdata object is:

R> summaryFAMT(chicken)

$expression

$expression$`Number of tests'

[1] 9893

$expression$`Sample size'

[1] 43

$covariates

AfClass ArrayName Mere Lot Pds9s Af

F :18 F10 : 1 GMB05555:10 L2:16 Min. :1994 Min. :-25.5397

L :19 F11 : 1 GMB05625: 7 L3:11 1st Qu.:2284 1st Qu.: -8.0042

NC: 6 F12 : 1 GMB05562: 5 L4: 8 Median :2371 Median : 2.7166

F13 : 1 GMB05599: 5 L5: 8 Mean :2370 Mean : 0.2365
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F14 : 1 GMB05554: 4 3rd Qu.:2474 3rd Qu.: 8.6037

F15 : 1 GMB05589: 4 Max. :2618 Max. : 18.1024

(Other):37 (Other) : 8

$annotations

ID Name Block Column

RIGG00001: 1 Length:9893 23 : 237 9 : 502

RIGG00002: 1 Class :character 25 : 237 6 : 501

RIGG00003: 1 Mode :character 9 : 232 12 : 499

RIGG00005: 1 17 : 231 18 : 499

RIGG00006: 1 29 : 230 14 : 494

RIGG00007: 1 43 : 229 16 : 491

(Other) :9887 (Other):8497 (Other):6907

Row Length

20 : 500 Min. :60.00

15 : 498 1st Qu.:70.00

16 : 493 Median :70.00

8 : 483 Mean :69.57

17 : 481 3rd Qu.:70.00

9 : 468 Max. :75.00

(Other):6970

This step is especially useful to check the class of variables in covariates and annotations.
The dataset called annotation is composed of variables that will be further used to character-
ize the latent factors after model fitting, except the ID column which is only used to match the
rows of the annotation dataset with the ones of the expression dataset. Attention should
be drawn to the fact that the variable associated to the gene names must be considered as
a character variable and not as a factor, with a number of levels that would equal the
number of genes. The summaryFAMT function can help to check it before going further in the
data analysis.

3. Multiple testing

This section is dedicated to the use of the FAMT method as a classical multiple testing
procedure controlling the false discovery rate (FDR), without any modeling for the dependence
structure across the variables.

3.1. Multiple F -tests for general linear hypotheses

The scope of models for the relationship between the responses and the explanatory variable(s)
of interest is restricted to linear models. Let Y = (Y (1), . . . , Y (m))⊤ be the m-vector of
response variables and x = (x(1), . . . , x(p))⊤ the p−vector of explanatory variables. It is
assumed that:

Y (k) = β
(k)
0 + x

⊤β(k) + ε(k), (1)

where ε = (ε(1), . . . , ε(m))⊤ is a normally distributed m−vector with mean 0 and variance-
covariance Σ.



6 FAMT: Factor Analysis for Multiple Testing in R

The individual tests are the usual Fisher tests for the marginal effect of one or more explana-
tory variables of interest among x, considering the other ones as covariates. In most of the
cases, only one explanatory variable x is included in the model and the aim is then to test
the significance of the relationship between each variable and x. However, more complex
situations also occur, where the effect of this explanatory variable shall be examined after
adjustment from other effects, which have been accounted for in the experimental design.
Note also that, if no covariates dataset is provided, then model (1) is the null model and
the significance of the mean of each variable is tested.

The thresholding procedure applied on the p-values of the F -tests to control the FDR at a
given level α is the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg 1995). The
cut-off on the p-values under which the hypotheses are rejected is derived from the increasingly
ordered p-values p(k) as follows: tα = p(k∗) with k

∗ = argmaxk{mπ0p(k)/k ≤ α}, provided the
proportion of true null hypotheses π0 is known. Many multiple testing procedures assume that
the fraction of non-null hypotheses among the tests is negligible regarding the large number
of tests (π0 ≈ 1). For example, with the Benjamini-Hochberg procedure, approximating π0 by
1 leads to a FDR control at level π0α instead of α. Generally, plugging-in an estimate of π0
into the expression of the FDR corrects this for control level and results in a less conservative
procedure (see Benjamini and Hochberg 1995; Black 2004; Storey 2002, for details).

Two methods are proposed in the FAMT package to estimate π0: the first one is based on
a non-parametric estimate of the density function of the p-values by a convex curve using
the approach of Langaas et al. (2005) and the other one uses the smoothing splines approach
proposed by Storey and Tibshirani (2003).

In the following, the use of the modelFAMT function is illustrated using the chicken dataset
introduced in section 2.

3.2. Results

In the chicken example, the aim is to test the significance of the relationship between each
gene expression and the abdominal fatness variable (6th column of covariates), taking into
account the effect of the dam (3rd column of covariates). The Fisher test statistics and the
corresponding p-values are obtained using the modelFAMT function with arguments x = c(3,

6) to give the column numbers of the explanatory variables in the covariates component
of chicken and test = 6 to give the column number of the explanatory variable of interest.
Model (1) is fitted here, thus the following code also uses argument nbf = 0. The interest of
this argument is specified in the following section.

R> chicken.raw <- modelFAMT(chicken, x = c(3, 6), test = 6, nbf = 0)

R> hist(chicken.raw$pval, main = "Histogram of p-values", xlab = "p-values")

Figure 1 displays the histogram of the raw p-values, as produced by the command lines
above. The shape of the histogram clearly shows an abnormal under-representation of the
p-values in the neighborhood of 0. Indeed, if all the gene expressions were truly under the
null hypothesis, the p-values should be uniformly distributed on [0, 1] and the proportion
of observed p-values under 0.05 should be close to 0.05, provided the gene expressions are
independent. This marked departure of the empirical distribution of p-values from the density
function of a uniform distribution has been recently considered by some authors as the impact
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Figure 1: Histogram of the raw p-values for the chicken dataset.

of a high amount of dependence among tests (see Efron 2007; Leek and Storey 2007; Friguet
and Causeur 2010).

The modelFAMT function creates a R list with subclass FAMTmodel. This subclass is required
for the main input of the other functions in the package. Thus, the summaryFAMT function
can be applied to a FAMTmodel object to get the list of positive tests for a control of the FDR
at a preset level α (the default level is alpha = 0.15). Moreover, some useful information
about the positive responses is provided, using the argument info which gives the names of
columns in the annotations component of chicken. Here, the columns named ID and Name

give the gene identifier and the functional annotation of the significant genes.

R> summaryFAMT(chicken.raw, alpha = 0.05, info = c("ID", "Name"))

$nbreject

alpha Raw analysis FA analysis

1 0.05 0 0

$DE

integer(0)

$pi0

[1] 1

The nbreject component in the output of summaryFAMT is a table providing the number
of positive tests using the raw multiple testing procedure and the factor analytic approach,
for possibly different values of the FDR control level α. In this special use of summaryFAMT
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with nbf = 0, the columns named Raw analysis and FA analysis gives the same result
since they are equivalent. The result shows no positive genes for a FDR control at level 0.05.
The DE component of the output also provides the additional information on the responses
specified in the argument info.

Note that, if not explicitly provided as an input of the function summaryFAMT using argument
pi0, the proportion π0 of true null hypotheses is estimated from the histogram of p-values, by
the method proposed by Storey and Tibshirani (2003), and returned in the pi0 component of
the output. Here, π̂0 = 1 is a direct consequence of the abnormal shape of the histogram of
p-values as displayed in Figure 1. Indeed, the dependence across genes induces a bias in the
estimation of π0. Analysis of this dependence among gene expressions is addressed in section
5 but a first possible biological explanation is that all the chickens in this experiment are half
sib males, which is to say genetically very similar.

This example is a typical situation where the dependence among genes must be taken into
account to have a chance to reveal significant relationships between the hepatic transcriptome
profile and the quantity of abdominal fatness.

4. Multiple testing dependence using FAMT

4.1. Method

The details of the method are described in Friguet et al. (2009). The main innovation with
respect to most classical methods consists in capturing the components of dependence between
variables into latent factors and integrating this latent structure in the calculation of the test
statistics. It is indeed assumed that the conditional covariance matrix Σ of the responses,
given the explanatory variables is represented by a factor analysis model:

Σ = Ψ+BB
⊤, (2)

where Ψ is a diagonal m ×m matrix of uniquenesses ψ2
k and B is a m × q matrix of factor

loadings. In the above decomposition, the diagonal elements ψ2
k in Ψ are also referred to as

the specific variances of the responses. Therefore, B⊤
B appears as the shared variance in the

common factor structure.

The factor analysis representation of the covariance is equivalent to the following mixed effects
regression modeling of the data: for k = 1, . . . ,m,

Y (k) = β
(k)
0 + x

⊤β(k) + b
⊤

k Z + ε(k), (3)

where bk is the kth row of B, Z = (Z(1), . . . , Z(q)) are latent factors supposed to concen-
trate in a small dimension space the common information in the m responses, Z is normally
distributed with expectation 0 and variance Iq and ε = (ε(1), . . . , ε(m))⊤ is a normally dis-
tributed m−vector, independent of Z, with mean 0 and variance-covariance Ψ. Therefore,
factor analysis can be viewed as simultaneous mixed effects regression models sharing common
covariance components.

An expectation-maximization (EM) algorithm inspired from Rubin and Thayer (1982) is
used to estimate Ψ, B and Z (see Friguet et al. 2009 for details). Since this algorithm
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only implies inversions of q × q matrices, fitting the factor analysis (FA) model on high-
dimensional datasets is computationally much less cumbersome than more usual algorithms
such as Principal Factoring used in psychometrics. As recommended in Friguet et al. (2009),
the number of factors is chosen according to an ad-hoc procedure which consists in minimizing
the variance of the number of false discoveries. Once the factor model is estimated, the so
called factor-adjusted test statistics are derived as F -tests calculated on the adjusted response
variables Y (k) − b

⊤

k Z obtained by subtracting the dependence kernel from the data. Friguet
et al. (2009) show that the resulting test statistics are asymptotically uncorrelated, which
improves the overall power of the multiple testing procedure.

4.2. Results of the FAMT analysis

Optimal number of factors

The modelFAMT function implements the whole FAMT procedure with default options for the
estimation of π0 and the number of factors. As mentioned in the previous section, the method
proposed by Storey and Tibshirani (2003) is implemented to estimate π0.

Concerning the number of factors, the dependence in the residual correlation matrix resulting
from the k-factor analysis model fitting induces an inflation of the variance of the number of
false positives. This variance has a negative impact on the actual control of the false discovery
proportion. Hence, as explained by Friguet et al. (2009), the number of factors considered
in the model is chosen to reduce this variance. In order to avoid the overestimation of the
number of factors, the function is implemented in such a way that the optimal number of
factors corresponds to the largest number of factors for which the decrease of the variance
inflation criterion is lower than 5 % of the previous value (see the Catell scree test criterion,
Cattell 1966). Nevertheless, the optimal number of factors can also be specified by the nbf

argument in the modelFAMT function (see the second illustrative example of this paper). Once
the optimal number of factors is chosen, the model parameters are estimated using an EM
algorithm. Factor-adjusted test statistics are derived, as well as the corresponding p-values.

The testing issue is the same as in the previous section.

R> modelfinal <- modelFAMT(chicken, x = c(3, 6), test = 6)

R> modelfinal$nbf

[1] 3

A side effect of the modelFAMT function is to produce a diagnostic plot, displaying the values
of the variance inflation criterion along with the number of factors. Figure 2 shows that the
optimal number of factors obtained by the modelFAMT function, which is modelfinal$nbf =

3, also corresponds in this case to the minimum value of the variance inflation criterion. The
model parameters are estimated with this choice of a 3-factor structure and π0 is estimated
using the method by Storey and Tibshirani (2003) applied on the factor-adjusted p-values.

The number of positive tests is provided for each level of FDR control chosen by the user (in
our example below, the levels are defined by the argument alpha = seq(0, 0.3, 0.05)).
The list of positive genes (DE component) is given for the highest alpha.

R> summaryFAMT(modelfinal, alpha = seq(0, 0.3, 0.05))
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Figure 2: Variance inflation criterion for the determination of the optimal number of factors.

$nbreject

alpha Raw analysis FA analysis

1 0.00 0 0

2 0.05 0 0

3 0.10 0 2

4 0.15 0 6

5 0.20 0 6

6 0.25 0 8

7 0.30 0 11

$DE

ID

6722 RIGG05436

3885 RIGG04393

1119 RIGG15056

3484 RIGG05478

463 RIGG09893

124 RIGG12578

9859 RIGG03755

9840 RIGG04507

3925 RIGG10355

4968 RIGG05365

3855 RIGG13434
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6722 Same gene X54200

3885 Weakly similar to CAE03429 (CAE03429) OSJNBa0032F06.12 protein

1119 ENSGALT00000015290.1

3484 ...ilar to Q8IUG4 (Q8IUG4) Rho GTPase activating protein (Fragment)

463 ENSGALT00000000452.1

124 ENSGALT00000008042.1

9859 Contig Hit 348847.1

9840 ...r to Q8AWZ8 (Q8AWZ8) Voltage-gated potassium channel subunit MiR

3925 Transforming protein p54/c-ets-1. [Source:SWISSPROT

4968 Genome Hit Contig7.437

3855 Troponin T fast skeletal muscle isoforms. [Source:SWISSPROT

$pi0

[1] 0.9738531

With a FDR control at level 0.15, there is no differentially expressed gene with the raw
analysis, whereas 6 genes are differentially expressed with the FAMT analysis based on factor-
adjusted tests statistics. In order to figure out the differences between both analyses, Figure 3
compares the empirical distributions of the raw and the factor-adjusted p-values.

R> par(mfrow = c(1, 2))

R> hist(modelfinal$pval, main = "Histogram of p-values",

+ xlab = "Unadjusted p-values")

R> hist(modelfinal$adjpval, main = "Histogram of adjusted p-values",

+ xlab = "Adjusted p-values")

Factor-adjustment restores independence between test statistics, which results in a correction
of the distribution of the p-values from the concave shape observed on the left panel plot of
Figure 3. Indeed, it seems that a large amount of p-values are uniformly distributed and a
few small p-values shall correspond to significant genes.

Note that the user can choose to focus on two aspects of the multiple testing procedure,
which are the choice of the optimal number of factors with the nbfactors function and the
estimation of π0 with the pi0FAMT function.

R> nbfactors(chicken, x = c(3, 6), test = 6, diagnostic.plot = TRUE)

This function gives the optimal number of factors as obtained from the modelFAMT function
and produces the same plot as shown in Figure 2.

The pi0FAMT function provides 2 algorithms to estimate π0. The density method is based
on Langaas et al. (2005)’s approach where the density function f of the p-value distribution
is estimated assuming f is a convex function: the estimation of π0 is then f(p = 1). The
smoother method uses the smoothing spline approach proposed by Storey and Tibshirani
(2003). In most situations, these two methods give similar results but the smoother method
is numerically less time-consuming.

The following code uses the density method to estimate π0 and produces a histogram of the
p-values (Figure 4), on which the convex estimation of f is represented.
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Figure 3: Histograms of raw p-values (left) and factor-adjusted p-values (right).

R> pi0FAMT(modelfinal, method = "density", diagnostic.plot = TRUE)

The estimated value of π0 is 0.95, which is slightly less than with the smoother method
(π̂0 = 0.97).

5. Interpretation of the common factors

The defacto function helps the user to give more insight on the common factors using some
available external information on either response variables or individuals (see Blum et al.
2010). The external information is variables of covariates, which are not used in the model,
and the categorical variables of annotations. As in principal component analysis (PCA), a
transformation of the dataset allows to represent the individuals and variables graph through
the matrix of factors loadings and the matrix of estimated factors. An analysis of variance test
assesses the significance of the relationship between the factor and the external information.

The use of this function requires a FAMTmodel as returned from the function modelFAMT and
one or more explanatory variables in covariates. As the factors are designed to be indepen-
dent from the explanatory variables (the abdominal fatness and the dam in our example),
they shall be described according to the other covariates. In our example, the argument
select.covar = 4:5 gives the 2 column numbers in covariates picking two external vari-
ables: Lot and Pds9s, which are respectively the hatch and the body weight of the chickens.
Similarly, the argument select.annot = 3:6 picks 4 external variables in annotations:
Block, Column, Row and Length.
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Figure 4: Estimation of the proportion of true null hypotheses using a non-parametric estimate
of the density function of the p-values proposed by Langaas et al. (2005).

Figure 5: Loadings circle plot of the genes in the chicken example (left). Score plot of the
microarrays in the chicken example (right).

As for many implementations of PCA-like methods, two plots are provided to summarize the
relationships between the latent factors extracted from the data and the external variables.
First, if there are at least 2 common factors in the FA model, the defacto function provides a
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loadings circle plot displaying the largest loadings along with two factors, the index of which
are given by the argument axes (the default option is axes = c(1, 2)). Points are auto-
matically labelled by their identifier as given in annotations (see Figure 5, left). Moreover,
the score plot displays the coordinates of the individuals along the two factors, with different
colors according to the levels of the factors selected in covariates (their hatch in the chicken
example, see Figure 5, right).

R> chicken.defacto <- defacto(modelfinal, axes = 1:2, select.covar = 4:5,

+ select.annot = 3:6, cex = 0.6)

In addition to these plots, F -tests are provided for the significance of the linear relationship
between each component of the external information and each factor. The corresponding
p-values are given in the covariates and annotations components of the defacto function.

R> chicken.defacto$covariates

Lot Pds9s

Factor 1 0.006437319 0.27847793

Factor 2 0.258859549 0.00124608

Factor 3 0.271648846 0.96813322

R> chicken.defacto$annotations

Block Column Row

Loadings 1 8.148075e-25 0.2368072 0.21767892

Loadings 2 3.328477e-19 0.9323152 0.01889079

Loadings 3 0.000000e+00 0.1030426 0.68201616

The p-values inferior to a 5% treshold show a significant relation between the external infor-
mation and the factor. Here, Factor 1 is clearly affected by a hatch effect, and Factor 2

by a body weight effect. Thus, part of the expression heterogeneity is probably due to these
marked biological effects, which are independent of the abdominal fatness, the explanatory
variable of the main interest in this study.

Moreover, some second-order technological biases turn out to have an impact on the corre-
lation structure of the gene expressions, since the location of the spots on the microarray
(Block, Column, and Row here) appears as significantly related to the loadings. According
to Qiu et al. (2005), such kinds of effects on the correlation between gene expressions may
be induced by the normalization procedure itself. The effect of Block is captured by all the
factors, and the effect of Row by factor 2. The p-values of the effect of Column are all higher
than the 5% treshold, so none of the factors are characterized by this effect.

6. Second illustrative example

The Animal Genetics Laboratory (INRA-Agrocampus Ouest, Rennes, France) studies the
transcriptome profiling of the feeding-to-fasting transition in chicken liver. Désert et al.
(2008) show that numerous genes are altered by starvation in chickens, and the study suggests
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Figure 6: Variance inflation criterion along with the number of factors included in the model
for Désert et al. (2008) dataset.

Figure 7: Histograms of raw p-values and factor-adjusted p-values for Désert et al. (2008)
dataset.
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Figure 8: Number of significant genes with the raw method and FAMT for Désert et al. (2008)
dataset.

a global repression of cellular activity in response to this stressor. In this section, the related
gene expression data are used to illustrate that the FAMT method is still useful to increase
the power of the multiple testing procedure in a case where a large proportion of genes are
significant.

From the 20460 oligos present in the microarray data, 13057 aligning with a unique coding
region of the 2.1 Washington University assembly of the chicken sequence genome, were cho-
sen for statistical analyses. The dataset was finally restricted to 7419 genes (out of 13057)
presenting a human ortholog with a human gene ontology (HUGO) symbol allowing for the
recovery of functional annotations from these databases. 18 microarrays were analyzed: 6
corresponding to fed chickens, 5 to 16-hour fasted animals and 7 to 48-hour fasted animals.
We calculate the p-values of the classical Fisher tests. The left panel plot of Figure 7 shows
that a large number of genes have small p-values, which means that many genes are involved
in the fasting process.

Figure 6, resulting from the modelFAMT function, shows that the variance inflation criterion is
minimum for 5 factors. Yet, the modelFAMT function proposes nbf = 1 as optimal number of
factors, using the Catell scree test criterion (see the previous section). In this case, the plot
appears as a useful tool to modify, if necessary, the default number of factors resulting from
modelFAMT. We finally chose to fit the factor analysis model with 5 factors.

The following code fits the FA model with 5 factors and extracts the numbers of rejected
genes for the given FDR control levels.

R> model <- modelFAMT(Poulets, x = 2, nbf = 5)

R> rejections <- summaryFAMT(model, alpha = seq(0.001, 0.01, 0.001))$nbreject
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R> plot(rejections[, 1], rejections[, 3], type = "l", lty = 1,

+ ylab = "Number of significant genes",

+ xlab = "False Discovery Rate control level",

+ ylim = c(0, 7000))

R> lines(rejections[, 1], rejections[, 2], type = "l", lty = 2)

R> legend("topleft", c("FAMT", "Classical method"), lty = c(1, 2))

The number of significant genes for various FDR control levels are plotted in Figure 8. For
a same level of FDR control, more genes are considered as differentially expressed with the
FAMT method than using the raw p-values. This illustrates that the FAMT procedure im-
proves the power of the multiple testing procedure since, for a same FDR control level, more
genes are significant.

7. Conclusion

The R package FAMT provides a powerful method for large-scale significance testing under
dependence. It is essentially based on a factor modeling of the conditional covariance structure
of the response variables. As these factors capture the dependence, they can be used to restore
independence among tests, which results in a gain in terms of control of the false discovery
proportion and on the overall power of the multiple testing procedure.

The main functions of the package are described in the paper, and are illustrated using a gene
expression dataset available in the package. The package also offers tools to help the user
describe and interpret the factors using some external information on either genes or arrays.
The functions of the package, their arguments and values, are detailed in the help files. The
website http://famt.free.fr/ sums up the FAMT package and gives news about eventual
updates.

Forthcoming versions of the package should include currently studied procedures aiming at
inferring on the gene regulatory network using a Gaussian graphical model. Excel add-ins
should also be included in the next update in order to help non-R users to analyse microarray
data using FAMT.
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