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Abstract—Cognitive maps are powerful graphical models for
knowledge representation. They offer an easy means to express
individual’s judgments, thinking or beliefs about a given problem.
However, drawing inferences in cognitive maps, especially when
the problem is complex, may not be an easy task. The main
reason of this limitation in cognitive maps is that they do not
model uncertainty with the variables. Our contribution in this
paper is twofold : we firstly enrich the cognitive map formalism
regarding the influence relation and then we propose to built a
Bayesian causal map (BCM) from the constructed cognitive map
in order to lead reasoning on the problem. A simple application
on a real problem is given, it concerns fishing activities.

I. INTRODUCTION

To solve a given decision problem, there is often need
to firstly provide knowledge and judgment analysis of the
problem. This task is not easy, especially when the elicitation
process includes several domain experts where each one has
his own view of the problem. The difficulty appears namely in
used variables (factors, events, etc.), the type of relationships
between variables (dependencies, causality, correlation, etc.),
the nature of data (uncertain, incomplete, etc.), etc. So, it
is important to choose a model that allows to respond to
the targeted objective. Graphical Models, such as cognitive
maps (CMs) [5], Bayesian networks (BNs) [6], are powerful
models for representing domain knowledge. They have been
widely used for solving various problems [3], [2], [7].

In this paper, the studied problem concerns the analysis of
shells fishing activity in the west region of France (rade de
Brest). The objective consists to study the views of fishermen
about their activity. Namely, the goal is to determine the
variables or factors that may impact fishermen in their
activity and environment (for example, analyze the impact of
environmental conditions, material and human means in the
fishing activity). We first use a cognitive map (CM) formalism
to represent the perception of the interviewed actors. CM is a
directed graph which represents variables and causal relations
between the variables in a decision problem. They have
the advantage to describe and capture the decision makers
knowledge in a more comprehensive and less time-consuming
manner than other methods [11].
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As we mentioned above, the elicitation step is important for
solving and modeling decision problems. However, another
important step is also required. It concerns inference process
which consists in obtaining new facts or conclusions from
other information. However, drawing inferences in CMs,
especially when the problem is complex, may not be an easy
task [9]. The first reason of this limitation in CMs is that they
do not model uncertainty with the variables. In addition, the
variables in cognitive maps are represented in a static way.
Namely, the way in which the beliefs of decision-makers
about some target variables change when they learn additional
information about the concepts of the map is not represented.

In the other hand, although BNs are a well-established
method for reasoning under uncertainty and making
inferences, the elicitation of the structure and parameters
of the network in complex domains can be a tedious and
time-consuming task. Moreover, the notion of probability
is often not perceived or understood by domain experts.
The task is therefore more tedious and time-consuming for
generating conditional probabilities.

It is clear that in our problem, using the cognitive map
model is not sufficient to analyze and understand the impact of
the different variables of the problem and using the Bayesian
network (BN) for generating the conditional probabilities
from fishermen is not also an easy task. However, despite the
limitations of each model (BN and CM), combining them is
possible. The combined model is called Bayesian causal map
(BCM) [10]. To construct a BCM, the procedure consists
firstly in constructing a cognitive map and then convert it into
a Bayesian causal map. In [10], the authors use the initial
CM only to construct the structure of the BCM. They define
the parameters (local probabilities) of the BCM from experts
knowledge. This means that domain experts are in a first step
solicited for the construction of the CM and second in the
definition of the conditional probabilities.

In this paper, our proposition consists firstly in an extension
of the CM formalism by enriching the causal relation with
additional information (for example, information about the
influence of each causal concept when the premise variable



increases and decreases). Secondly, we propose to transform
the constructed CM into BCM. Concerning the structure of the
BCM, we follow the procedure described in [10]. Concerning
the parameters of the BCM, we propose to take into account
the causal values associated to the relations of the constructed
CM. Namely, the elicitation step of the BCM will be less
tedious since the structure and the parameters of the BCM
are defined from the constructed CM. Finally, we propose to
built a BCM in order to analyze the problem of shells fishing
activity. The CM is constructed from judgments and beliefs
of several actors (fishermen) and then we transform it into a
BCM following the proposed approach.

The rest of the paper is organized as follows: In section II,
we present some important issues related to BNs and CMs.
In Section III, we present the new CM formalism. Section
IV proposes a procedure to construct a Bayesian causal map.
Section V presents the studied problem with some simulation
cases. Section VI concludes the paper.

II. COGNITIVE MAPS AND BAYESIAN NETWORKS

In this section, we provide a brief description of cognitive
maps and Bayesian networks.

A. Cognitive maps

A cognitive map, also called causal map, is a directed
graph that represents the knowledge of decision makers. It
expresses individual’s judgments, thinking or beliefs about a
given problem [5], [1]. Figure 1 gives an example of a CM.

Amnesic Shellfish
Poisoning (ASF)
MHumber of
Fishermen (MF)

+2

Quantities of Shells
Fished (Q5F)

Fig. 1. A simple example of cognitive map.

We distinguish three principal components in a CM

1) Concepts: A node in a cognitive map represents a
concept which corresponds to a variable (attributes,
factors or events) of the studied problem.

2) Causal relations: An arc between two concepts in a
cognitive map represents a causal relation. It depicts
a cause-effect (or cause-consequence) relation between
two concepts. If we have a causal relation from concept
A towards a concept B, then A is called a causal concept
and B is called an effect concept. We distinguish two
forms of causal relations:

a) A positive relation between two concepts indicates
that an increase in the causal concept leads to an
increase in the effect concept.

b) A negative relation indicates that an increase in
the causal concept leads to a decrease in the effect
concept or decrease in the causal concept leads to
increase in the effect concept.

For example, in Figure 1, a causal relation between
Number of fishermen (NF) and Quantities of shells
fished (QSF) is positive which denotes that the higher
the NF, the higher will be the OSF. On the other hand,
the causal relation between the concept Importation
(Imp) and Quantities of shells fished is negative, it
establishes that the higher the Imp, the lower the OSF.

3) Causal values: Each positive or negative relation can
be associated with a numerical value, called a causal
value. It represents the strength of the causal relation.
When the continuous values of the CM are in the
interval [—1,+1], they represent fuzzy cognitive maps
[8]. In this paper, the considered causal value can be
Low (—1 or +1) (resp. Medium (—2 or +2 ), High
(—=3,43), Null (0)). These values are used in drawing
CMs since this is easier and more intuitive for elicitation.

CM allows only deductive reasoning (predicting an effect
given a cause). Thus, we can get responses about the effects of
a given cause but we can’t answer why effects are produced.

B. Bayesian Networks

Bayesian networks [6] are widely used in decision making
mainly for problems that contain uncertain information. They
are probabilistic models specified by two components:

1) A qualitative component: It represents independence
relations by a directed acyclic graph (DAG), where each
node z; represents a variable, and arcs represent the
corresponding relationships between these variables.

2) A quantitative component: It quantifies the uncertainty
of the relationships between variables. Each variable
contains the states of the event that it represents and
a conditional probability table (CPT). The CPT of a
variable contains probabilities of the variable being in
a specific state given the states of its parents. The joint
probability distribution for X = {x1, 22, ..., z,} is given
by the chain rule :

P(zy, 32, ..,vn) = [[ P(XilPai) (1)

i=1l...n

where Pa; represents the parents of z;.

In Figure 2, we have an example of a BN which contains four
variables (B, S, D and P). B has two states (No, Yes) and has
no parents. S and B are two parents of D which is a parent
of P. For each variable, there is need to specify a conditional
probability distribution table. In Figure 2, we observe these
tables: P(B), P(S), P(D | S, B) and P(P | D). In Figure 2,
there is no arc between the variables B and S, so these two
variables are independent; there is arc from B and S to D,
this denotes that D is dependent of B and S. There is also



no arc between B and P and no arc between S and P, this
means that P is conditionally independent of B and S given
D (conditional independence assumption in BNs).
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Fig. 2. An example of Bayesian Network.

Another important notion in BN is the one of probabilistic
inference. It allows to compute the probability of any variable
given some observed variables. Inference in BN is based on
the notion of propagating evidence. We can use BN to perform
abductive reasoning (diagnosing a cause given an effect) and
deductive reasoning (predicting an effect given a cause).

III. THE NEW FORMALISM OF COGNITIVE MAP

In the original cognitive map formalism, each positive or
negative relation is assigned with only one value which can
be positive or negative. The causal relation is symmetric, this
means that an increase of the causal concept has symmetric
impact on the effect concept than decreasing of the same
causal concept. For example, in case where the causal relation
between two concepts x and y is negative, if an increase of
the causal concept x causes high decreasing in the effect
concept y, then decreasing of x causes high increasing of
y. In the example of Figure 1, increasing of ASP causes
high decreasing of QSF (-3). The influence of decreasing
of ASP is supposed to be symmetric, namely it causes high
increasing of QSF (+3) which is not correspond to judgment
of fishermen. In this paper, we propose to enrich the formalism
by assigning two values to each causal relation. Namely, the
new formalism informs us about the impact of increasing
and decreasing of the causal concept which is not necessarily
symmetric. So, in the new formalism:

o Each causal relation is assigned two values represented
by [V1, Va).

o V7 represents the influence degree on the effect concept
when the causal concept increases.

o V5 represents the influence degree on the effect concept
when the causal concept decreases.

e V1 and V5 are numerical values, each one can be either
positive, negative or null. Each of V; and V5 can be Low
(=1 or +1) (resp. Medium (—2 or +2 ), High (—3,+3),
Null (0).

« V1 is positive if the increase of the causal concept causes
increasing in the effect concept.

o Vi is negative if increasing the causal concept causes
decreasing in the effect concept.
e V7 is null if increasing the causal concept has no impact
on the effect concept.
o V5 is positive if decreasing the causal concept causes
increasing in the effect concept.
o V5 is negative if decreasing the causal concept causes
decreasing in the effect concept.
o V5 is null if decreasing the causal concept has no impact
on the effect concept.
The difference between the new formalism and the original
one is that the causal relation is not necessarily symmetric in
the extended formalism. For example, in the new formalism, if
increasing the causal concept leads to increasing in the effect
concept (suppose that the impact is high), then decreasing of
the causal concept can lead to increasing or decreasing the
effect concept (the impact can be low, medium or high), the
influence on the effect concept can have also no impact on
the effect concept. An example of the new formalism is given
in Figure 3.

Amnesic Shellfish
Paoizaning (ASF)

-3

Mumber of
Fishermen {MF)

[+2-3]

Importation
drnpy

Quantities of Shells
Fished (CQ1SF)

Fig. 3. An example of the new cognitive map formalism.

The information [+2,—3] between the causal concept
Number of fishermen (INF) and the effect concept
Quantities of shells fished (QSF) means that an increase
of NF causes an increase of QSF (42) and decreasing of
NF causes a decrease of QSF (—3). The information [—3, 0]
between the causal concept ASP and the effect concept
QSF means that an increase of ASP causes a decrease
of QSF (—3) and decreasing of ASP has no impact on
QSF (0) (while in the original formalism as observed in
Figure 1 increasing of ASP causes decreasing of QSF
(—3) and decreasing of ASP causes increasing of QSF (as
the relation is symmetric, the value is by default equal to +3)).

IV. FROM A COGNITIVE MAP INTO A BAYESIAN CAUSAL
MAP

As mentioned previously, CMs have the advantage to
describe and capture the decision makers knowledge in a
comprehensive manner, hence the modeling is closer to natural
language. However their limitation is that they do not model
uncertainty with variables. So, they allow only limited forms of
causal inferences. On the other hand, defining the conditional



probabilities in BNs from experts is not an easy task, especially
when the domain of variables is large. Thus, in order to
reduce the complexity of the elicitation step to solve a decision
problem and make inferences in the model, we propose to use
the new cognitive map formalism for the elicitation step and
to transform it into a Bayesian causal map (BCM) for the
reasoning step. To construct the BCM, the procedure is the
following:

1) Derive the CM of the concerned problem. In the studied
problem, the CM is derived from the judgments and
beliefs of several actors (fishermen) following the new
formalism.

2) Construct the structure (Qualitative component) of the
BCM which should be a directed acyclic graph (DAG).
As the semantic of the arcs in the two models is
the same, the structure of the BCM is based on the
constructed cognitive map.

3) Define the associated parameters (Quantitative compo-
nent) which correspond to probability distributions. This
step requires some operations in order to capture the
semantic of causal values.

We describe the procedure to construct the structure and
parameters of the BCM in the following two subsections.

A. Construction of the structure of the BCM

The structure of the BCM describes the relationships
between the variables of the problem. It is represented by a
DAG. As we construct the BCM from a cognitive map, its
structure corresponds to the structure of the CM with some
modifications. The authors in [10] proposed a procedure to
obtain the structure of the BCM from a cognitive map. This
procedure concerns particularly the following points:

1) Conditional independencies: In a CM, the existence
of a relation between two variables induces that
these variables are dependent. However, the absence
of a relation between two variables does not imply
independence (i.e., lack of dependence) between these
two variables. In BN, the absence of a relation between
variables induces that some variables are conditionally
independent on other variables. If we have a sequence
of variables, an absence of an arrow from a variable
to its successors in the sequence implies conditional
independence between the variables. Thus, when
defining the structure of the BCM from the constructed
CM, it is important to ensure the nature of relations
between variables of the studied decision problem
because this allows to specify the relevant information
in making inferences.

2) Direct and indirect relationships: Generally, experts
draw direct links between concepts even if they are
influenced through another concept. Namely, they take
into account the fact that the concepts are linked but
not how (this is also observed in our problem where

fishermen use often direct links). In BN, a relationship
between variables is direct if they are directly linked
with an arrow and is indirect if the variables are
conditionally independent. So, distinguishing between
direct and indirect relationships is important namely
in order to determine the conditional independencies
between variables of the problem. If a given variable
affects a second variable only through a third variable,
then an arrow from the first variable to the second
is redundant and increases the complexity of the
representation.

3) Circular relations: Contrary to BNs, which are acyclic
graphs, in a CM, the relations can be circular. The
existence of circular relations can be due to two main
reasons [4], [11]. First, they may represent mistakes
that need to be corrected (in this case, users are
reasoning deductively, i.e. from causal to effect concepts
and abductively on some concepts, i.e. form effects to
causal concepts). Second, they may represent a dynamic
structure of the map. Namely, they represent dynamic
relations between variables over time. The solution in
such cases consists to separate the variables into two
different time frames. Namely, some relations in the
cycle (or loop) belong to the present time frame while
others belong to a future time frame [11].

In Section V, we give some examples concerning theses
elements when we define the structure of the BCM of the
case study.

B. Constructing the parameters of the BCM (generating CPT)

Once the structure of the BCM is defined, we have to build

the conditional probabilities tables (CPT) associated for each
variable. In [11], the authors ask experts about the elicitation
of the CPTs. They do not consider the causal values of
the CM and therefore requires another elicitation step from
experts. In this paper, we propose to take advantage of the
causal values in the CM to generate directly the probabilities
of the BCM. Avoiding a time consuming and tedious work
especially as the notion of probability may be not intuitive of
understand.
Deriving the conditional probabilities tables from causal
values requires some operations in order to keep the semantic
of these later on the one hand and to respect the conditions
of probability theory on the other hand. Assume that Z
is an effect concept and X, Y are the causes ones, i.e.,
X and Y are the parents of Z. When defining the CPT
of the BCM, the semantic of the causal values should be
preserved. For example if the positive effect of parents of
Z is greater than the negative one, this should be traduced
as P(Z =+ | X,Y)> P(Z = — | X,Y). The proposed
procedure is described in the following:

1) Associate to each variable in the BCM its
corresponding states: This consists in determining the
domain of each variable. In our case, we consider that



2)

3)

each variable has two states (Decrease (—), Increase
(+)). Theses two states allow to represent the negative
or positive causal relation given in the constructed
cognitive map. Namely, the objective in the BCM is
to compute the probability that an effect variable (or
child variable) increases or decreases given the cause
variable (or parent variable) decreases or increases.

Associate a priori probabilities to variables without
parents: If we have informations about the problem,
we can introduce them in the model and they will be
represented as probabilities. In our case, as there is
two states for each variable, the associated a priori
probability for each state is 0.5 by default (there is
no reason to specify another distribution). In addition,
although we do not associate any distribution, there
is no impact on the inference process since regarding
theses variables, we can introduce any observations.

Building CPT for variables having parents: In our
method, causal values of the cognitive map are elicited
from the experts. Thus, we directly use these values
to obtain the CPT. The procedure is described in the
following:

Let x a variable for which we compute the CPT and let
Y, the parents of x. For each configuration (for example,
the variable having 3 parents, the corresponding CPT
contains 8 configurations):

e y;_ : are parents with a negative effect. £_ corre-
sponds to the sum of the negative effects concerning
Yi—-

e Yyj+ : are parents with a positive effect. F
corresponds to the sum of positive effects
concerning ;.

To compute P(z | y;;), we define P(x = — | y;;) and
Pz =+ | yiy).

For each configuration, if |E_|>|EL| (resp. if
|E4+|>|E_]) then P(x=—|y;;) > P(x=+|y;;) (resp.
P(x=+|yi;) > P(r=—ly;;)). This means that
P(x=+y;j)=a*P(x=—ly;;) with o = |EL| / |E_|
(resp. P(x=—|y;;) = a*P(z=+|y,;) with

a=|E_| / |E4)), O<=a <=1.

Applying the condition of sum of probabilities is equal
to 1, we have: P(z=—|y;—) + P(z=+|y;1)=1.
Hence P(z=—|y;j)+a*P(z=—|y;;)=1 (resp.
P(x=+|y;;)+a*P(x=+]y;j)=1 ). Then

o P(r=—|y;;)=1/(1+a)
(resp. P(z=+y;;)=1/(1+a))
o P(x=+lyij) =1-P(x=—|yi;)
(resp. P(x=—yi;) =1—P(x=-+yi;))

Example 1: Let us consider the cognitive map of Figure
1 where the variable QSF has three parents (ASP, I'mp
and N F'). The aim is to generate CPT of Q) SF regarding
its parent variables. Namely, we have to compute the
probability that QSF increases or decreases given the
8 possible configurations of ASP, Imp, and NF (for
example, the configuration where ASP, Imp, NF all
increase or all decrease).

We illustrate the calcul with the configuration ASP,
Imp and NF' all increase. So, we have to compute
P(QSF|ASP=+, Imp=+, NF=+). Namely, we
compute P(QSF=+|ASP=+, Imp=+, NF=+) and
P(QSF=—|ASP=+, Imp=+, NF=+).

Concerning this configuration (i.e. ASP, Imp and NF
all increase), we have y;— = (ASP, IMP) and y;, =
(NF).So, E_ =-3 +2=-5and E, = +2.

We obtain | E_ | > | E; |, hence P(QSF = —
|ASP=+, Imp=+, NF=4) > P(QSF = +
|ASP=+, Imp=+, NF=+) and a = 2/5 = 0.4.

P(QSF = -| ASP = +,Imp = +,NF = +)
1/(140.4) = 0.71 and

P(QSF = + | ASP = +,Imp = +,NF = +)
1-0.71=0.29.

The results concerning the C'PT of variable QSF
concerning the 8 configurations are given in Table I

ASP | Imp | NF | P(QSF=+) | P(QSF=-)

- - - 0.4 0.6

- + 1

- + - 0 1

- + + 0.5 0.5

+ - - 0.25 0.75

+ - + 0.57 0.43

+ + - 0 1

+ + + 0.29 0. 71

TABLE 1

THE CPT OF THE VARIABLE QSF REGARDING HIS PARENTS

V. THE CASE STUDY: SHELLS FISHING PROBLEM

In this section, we apply our approach on a real problem
which concerns the shells fishing activities. We firstly
give the constructed CM and then we transform it into
a BCM following the proposed procedure.

A. A cognitive map for the shells fishing problem

In order to construct the CM, interviews are conducted
with fishermen. These latter are asked to identify the
concepts that might influence negatively or positively
the fishing activities. The CM concerning this problem
is given in Figure 4. The map contains 15 variables
representing fishing activities (Shellfish stock (QSS),
Quantities of fished shells (QSF), Hatchery Policy (HP),
Hatchery Activity (HA) which appears to be an important



Respectof
Regulation

parameter for the dredging activity, Fishing Activity
(FA)), environmental factors (Quality of Water), Fishing
Conditions (Fishing Material, Quality of relationship
between fishermen, Importation, Number of Fishermen,
Control, Respect of Regulation) and other variables as
Fraud, Selling Price and the presence of a toxin called
Amnesic Shellfish Poisoning (ASP) which influences
negatively the fishing activity in general.

Amnesic Shellfish
Poisoning (8SP)

Fishing material

F3.+2)

{ Shellfish stock

[+3:2]

[+2-3] Gty Water Hatchery_Palicy

Fig. 4. The cognitive map for the shells fishing problem.

B. Construction of the BCM for the studied problem

In order to analyze and study the impact of the variables
on the fishing activities, the original map, shown in
Figure 4, was used to construct a BCM. We first explain
how the structure (i.e., the qualitative component) of
the BCM is obtained and then we provide the final
BCM with associated conditional probabilities tables to
variables.

1) The structure of the BCM: As we observe in Figure
4, the constructed CM contains some circular relations,
direct and indirect relations, etc. In order to construct
a BCM from this CM, some relations are added and
others are removed. We give here some examples of
relations that are changed in the constructed BCM
(Figures 5 and 6).

The first example of change concerns direct and indirect
relationships between variables which implies that an
arc between two variables in the network should
represent a direct cause-effect relation only. Hence, in
the constructed BCM, we consider that the variables
Control, Fraud and Respect of Regulation do not have
a direct effect on Quantities of fished shells. We modify
this relation where Control has a direct effect on Fraud,
which affects Respect of Regulation and then Quantities

of fished shells. In the original map, Importation affects
directly Quantities of fished shells and there is also a
direct link from Selling Price to Quantities of fished
shells. In the modified cognitive map (see Figure 5), the
relation between Importation and Quantities of fished
shells is indirect since the influence is obtained through
Selling Price. Thus, the arrow from Importation to
Quantities of fished shells is removed.

The second example of change concerns conditional
independencies: in the constructed BCM (see Figures
5, 6), the arrow between Hatchery Activity and Number
of Fishermen is removed. This implies that Hatchery
Activity impacts Number of Fishermen through Shellfish
stock. Number of Fishermen is conditionally indepen-
dent on Hatchery Activity given Quantities of shells in
stock. If we have complete information about shellfish
stock, any additional information on Hatchery Activity
would be relevant in making inferences for Number of
Fishermen. We have also the same change concerning
the variable Quality of relationships where the arrow
from this variable to Fishing Activity is removed because
the influence between these two variables is presented
through Quantities of fished shells. The arrow from ASP
to Fishing Activity is also removed, they are considered
as conditionally independent variables given Quantities
of fished shells.

Another example of change concerns circular relations
where a new concept (Shellfish stock (t+1)) was added
to the constructed BCM in order to solve the problem of
circularity and represent the dynamic relations between
the variables across time frames. The dynamic relation
is represented from Shellfish stock (t) to Quantities of
fished shells and then to Shellfish stock (t+1).

As we observe in the BCM of Figure 5, some
variables are also added (Fishing conditions) in order to
simplify generating the CPTs. But we point out that this
do not change the result if these variables are not added.

Once the map is modified and re-organized, the
conditional probability tables have to be determined.
The CPT were generated using the weight (negative or
positive) of links in the CM by applying the procedure
described in Subsection IV-B. We use Netica software
[12] to construct the model, introduce the probabilities
associated with each variable and make probabilistic
inferences. Figures 5 and 6 show the constructed BCM
with different observations for each case.

C. Some scenarios analysis

The objective of building the BCM consists firstly to
evaluate the fishing activities by analyzing the state
of some variables (for example Quantities of fished
shells, Shellfish stock, Hatchery Activity) regarding



observations about some facts (for example Fishing
conditions, existence or no of ASP, Importation, Quality
of relationships between fishermen, etc.). And secondly
to diagnose causes given an effect. For example, what
are the factors that cause increase or decrease in Fishing
Activity.

First scenario: Figure 5 shows the first scenario
regarding some observations (variables on grey color).
Applying propagation in the BCM, the probabilities of
the rest of variables are updated.

Results of the first scenario show that when ASP and
Importation increase and Hatchery Policy decreases,
the probability that all the variables related to Fishing
Activity (i.e., Quantities of fished shells (QFS), Fishing
Activity (FA), Hatchery Activity (HA), shellfish stock
(OSS(t) and QSS(t+1)) decreases is more than 0.5.
Which explains the importance of these variables in
the Fishing Activity. The obtained result in the BCM
means that the impact concerning these observations
is negative on some variables (the probability of each
of the influenced variable decreases is more than 0.5)
which is also represented in the original cognitive map
(when ASP increases, the impact on some variables is
negative (—3), when I'mp increases, the impact is also
negative (—2), and when H A decreases, the impact is
also negative (—2)).

Second scenario: In the second scenario which
concerns the diagnosing case. We introduce only
one observation about the Fishing Activity where
P(Fishing Activity=Decrease)=1. The probabilities
of the rest of variables are updated (see Figure 6).

As it is shown in Figure 6, the probabilities associated
to the state (Increase) of all the variables that influence
negatively on most variables are greater than 0.5. And
the probabilities associated to the state (decrease) of all
the variables that influence positively on most variables
are greater than 0.5. For example, when ASP increases,
it influences negatively (-3) on Hatchery Activity and
Quantity of shells fishing. After introducing observation
about Fishing Activity, we obtain P(ASP = increase)
>0.5, which confirms that the higher the ASP the
lower the Quantity of fishing shells. This shows that the
constructed BCM represents the initial judgments of
the cognitive map, and it allows reasoning (diagnosis,
inference).

Introducing different observation in the model regarding
some variables as ASP, Importation, the model seems
well established. We conclude that the proposed method
is efficient, and this allows to analyze and understand
the impact of the different variables.

VI. CONCLUSION

Solving a given decision problem using the CM or
BN requires expert knowledge and judgements to
determine the variables of the problem and influences
between theses variables. However, using a CM to
construct the model seems more natural than using
BN because the modeling process consists only in
providing the list of variables and the nature of
influence (positive or negative). Using a BN requires
more efforts from experts since they should take
into account the uncertainty concerning the states of
variables and the probabilistic nature of influences.
Once the model is built even if we use the CM or
BN, the objective is reasoning about the problem. BNs
are a well established method and they offer efficient
algorithm’s for applying inferences, learning and tools
for the construction of the network. However, CMs
present some limitations since they allow only some
forms of inferences because of not modeling uncertainty.

In order to facilitate of the modeling process and
making inferences, we propose in this paper to take
advantage benefits of the two models, i.e., BNs for
the reasoning process and CMs for the elicitation
process. We propose to firstly build the CM and
then transform it into a BCM which combines causal
modeling techniques and Bayesian probability theory.
The structure of the obtained BCM corresponds to the
one of the constructed CM from experts with some
modification regarding the direct, indirect relations,
circular relation and dependency between variables.
The parameters of the BCM are obtained from the
associated causal values in the CM.

We illustrated the proposed approach on a real decision
problem which concerns the analysis of shells fishing
problem. We conclude that using cognitive map is
important because it allows to have the perception of
fishermen. However, concerning the reasoning process,
the BCM allows to analyze their perception. BCM also
allows to revise the model in terms of variables, their
influences and acquire some experience for elicitation.
A future work concerns the fusion of cognitive maps
because in our studied problem, several fishers can be
interviewed about the same problem and each one has
its own view about it.
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