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Abstract. The availability of genome-wide expression data to complement the mea-
surements of a phenotypic trait opens new opportunities for identifying biologic processes
and genes that are involved in trait expression. Usually differential analysis is a prelimi-
nary step to identify the key biological processes involved in the variability of the trait of
interest. However, this variability shall be viewed as resulting from a complex combination
of genes individual contributions. In other words, exploring the interactions between genes
viewed in a network structure which vertices are genes and edges stand for inhibition or
activation connections gives much more insight on the internal structure of expression
profiles. Many currently available solutions for network analysis have been developed but
an efficient estimation of the network from high-dimensional data is still a questioning is-
sue. Extending the idea introduced for differential analysis by Friguet et al. (2009) [1] and
Blum et al. (2010) [2], we propose to take advantage of a factor model structure to infer
gene networks. This method shows good inferential properties and also allows an efficient
testing strategy for the significance of partial correlations, which provides an interesting
tool to explore the community structure of the networks. We illustrate the performance
of our method comparing it with competitors through simulation experiments. Moreover,
we apply our method in a lipid metabolism study that aims at identifying gene networks
underlying the fatness variability in chickens.

Keywords. gene networks, high dimensions, factor model, partial correlations

1 Introduction
Inference on gene networks from high throughput expression data is one of the most

challenging issues in systems biology. Rather than uncovering single genes for complex
traits, a system-based perspective is interesting in elucidating the interactions of genes
and environment operating on a complex multicellular biological system [3]. Such a "sys-
tem" approach involves modeling the relationship among elements of the system such as
transcript levels in the form of a network.
Mathematical models for interaction graphs have recently been proposed for gene networks
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and inference procedures have been derived to estimate networks from transcription da-
tasets [4]. Linear modeling of gene regulatory networks often appears as a simple and
efficient solution, especially for inference from a large transcription profile observed on a
few number of samples. In this context, partial correlations between two gene expressions
given the remaining profile are viewed as measures of the interaction or co-expression
between those two genes. Many currently available solutions for network analysis are the-
refore based on the so-called Gaussian Graphical Model but an efficient estimation of the
network from high-dimensional data is still a questioning issue.

2 Methods
A convenient model of multivariate dependence patterns is Gaussian Graphical Mode-

ling (GGM) [5]. In this framework, a multidimensional Gaussian variable is characterized
by the so-called concentration matrix, where conditional independence between pairs of
variables is characterized by a zero entry. This matrix may be represented by an undirec-
ted graph, where each vertex represents a variable, and an edge connects two vertices if
the corresponding pair of random variables are dependent, conditional on the remaining
variables. Thus, partial correlations allow the detection of direct genes interactions only.

2.1 GGM: general settings

Let Y be the observed data matrix with n rows, corresponding to the number of
samples, and m columns, corresponding to the number of genes. Y is supposed to follow
a multivariate normal distribution Y ∼ Nm(µ,Σ) with mean vector µ = (µ1, ...., µm)� and
positive-definite covariance matrix Σ = σ(ij) with i, j ∈ [1,m].

Let Π be the partial correlation matrix and π(i, j) the correlation between two genes
i and j conditionally on all the other genes. It can be shown [6] that partial correlation
matrix Π is related to the inverse of the covariance matrix Σ as follows:

πi,j =
−ωi,j

√
ωi,iωj,j

with Σ−1 = (ωi,j)for i, j ∈ [1,m]
After a simple rescaling, the matrix Σ−1, also known as the concentration matrix, can
be interpreted as the adjacency matrix of an undirected weighted graph G representing
partial correlation structure between variables Y1, ..., Ym

A challenging issue remains with Σ−1 estimation, as in high dimensions (n << m),
the estimated covariance matrix is not positive-definite and thus not invertible.
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2.2 Existing methods based on GGM

2.2.1 Shrunk estimation of the concentration matrix

Recently, a number of methods have been introduced to address this issue. One of
them introduced by Schäfer and Strimmer (2005) [7] and very popular in the biologist
community, propose a shrinkage covariance estimator:

Σshrink. = λT + (1− λ)S

where λ ∈ [0, 1], S is the empirical covariance matrix and T a specified target matrix.
This approach allows to construct a well conditioned positive-definite matrix Σshrink.

so that the matrix has full rank and can easily be inverted. The method has been imple-
mented in an R package called GeneNet (ref).

2.2.2 Regularized regression

An alternative route is offered by using regularized regression. Considering the regres-
sion for each gene against the others:

yi =
�

j �=i

βi,jyj + �i,

the regression coefficients can be used to obtain the partial correlations as follow (ref):

πi,j = sign(βi,j)
�

βi,jβj,i

Therefore, partial correlation estimation can be convert to a regression problem.
As high dimensional problems are supposed to be intrinsically sparse, related methods

employe regularized regression techniques [8-10].
For the comparative analysis, we focus on a recent regularized regression method called
Sparse PArtial Correlation Estimation (SPACE) which uses a symmetric constraint and
an L1 penalization [9].

2.3 Our proposal: sparse factor model

2.3.1 Factor gaussian graphical model

Extending the idea introduced for differential analysis by Friguet et al. (2009) [1] and
Blum et al. (2010) [2], we propose to take advantage of a factor model structure to infer
gene networks.

The dependence within the expression profile Yi is assumed to be modeled by a latent
factor structure: there exists q, with q ≤ min(n,m), unobserved factors Zi = (Zi1, . . . , Ziq)�

independently and identically normally distributed with mean 0 and variance Iq, such that:

E(Yi | Zi) = µ+BZi and Var(Yi | Zi) = Ψ
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where B is the m × q matrix of loadings with rank q and Ψ is a diagonal matrix which
diagonal elements ψ2

j are positive. Note that the latent factors can be viewed as sources
of dependence across the expression profile in the sense that, conditionally on Zi, the
components of Yi are independent. It is straightforward checked that the above factor
model assumption leads to the following structure for Σ: Σ = Ψ+BB�, where Ψ is referred
to as the specific variance component and BB� as the common variance component. The
term BZi is also referred to as the kernel of dependence by Leek and Storey (2008) [11].

The resulting log-likelihood is therefore given by

−
n

2
log det

�
Ψ+ BB��

−
1

2

n�

i=1

(Yi − µ)�
�
Ψ+ BB��−1

(Yi − µ).

It is well-known that the above log-likelihood is maximized with respect to µ at µ̂ = Ȳ ,
for all Ψ and B. As we focus on the maximum likelihood (ML) estimation of the variance
parameters, µ will hereafter be replaced by its Ȳ in deviance model expression:

D(Ψ, B) = n log det
�
Ψ+ BB��+ n trace

�
S
�
Ψ+ BB��−1�

,

where S = (1/n)
�n

i=1(Yi−Ȳ )(Yi−Ȳ )�. Profiles Yi will hereafter be considered as centered.
Direct maximization of D(Ψ, B) is described by Jøreskog (1969) [12] and is quite

popular among users of factor analysis models. However, when the sample size n is small
regarding the size m of the expression profile, this algorithm can be numerically unstable
and cumbersome. An alternative EM algorithm is proposed by Rubin and Thayer (1982)
[13], taking advantage of the factorization of the likelihood based on the conditional
distribution of the profile given the latent factors:

D(Ψ, B;Z) = n
m�

j=1

logψ2
j +

� n�

i=1

(Yi − BZi)
�Ψ−1(Yi − BZi)

�
+

n�

i=1

Z �
iZi, (1)

= n
m�

j=1

logψ2
j − n

�
trace

�
Ψ−1S

�
− 2 trace

�
Ψ−1BS �

yz

�
+ trace

�
B�Ψ−1BSzz

��

+n trace
�
Szz

�
, (2)

where S = (1/n)
�n

i=1 YiY �
i , Syz = (1/n)

�n
i=1 YiZ �

i and Szz = (1/n)
�n

i=1 ZiZ �
i. The-

refore, the log-likelihood is a linear combination of the sufficient statistics S, Syz and
Szz.

The straightforward adaptation of the EM algorithm introduced by Dempster et al.

(1977) [14] to the present issue is obtained by considering the factors Zi as missing data.
The E step consists in calculating the conditional expectation of EyD(Ψ, B;Z) given Y
in expression (2) using the following intermediate results:
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Cyz = Ey(Syz) = S(Ψ+BB�)−1B,

Czz = Ey(Szz) = B�(Ψ+BB�)−1S(Ψ+BB�)−1B + Iq − B�(Ψ+BB�)−1B.

Thanks to the Woodbury’s identity,

(Ψ+BB�)−1 = Ψ−1
−Ψ−1BG−1B�Ψ−1,

where G = Iq +B�Ψ−1B, this step only requires the inversion of a q × q matrix.
The M-step consists in minimizing EyD(Ψ, B;Z) with respect to B and Ψ.

B̂ = CyzC
−1
zz ,

Ψ̂ = diag
�
S − CyzC

−1
zz C

�
yz

�
.

This algorithm also described by [1] is used hereafter for the partial correlation esti-
mation under the network sparsity assumption [9].

2.3.2 Partial correlation significance testing

First, lut us introduce the following new parameterization:

ϕ = Ψ− 1
2 ,

θ = Ψ− 1
2B(I +B�Ψ−1B)−

1
2 . (3)

The above parameterization is reversible:

Ψ = ϕ−2,

B = ϕ−1θ(Iq − θ�θ)−
1
2 .

It is straightforward checked that Σ−1 = ϕ(Im − θθ�)ϕ. Sparsity of Σ−1 means that
there exists pairs (i, j) such that

�
Σ−1

�
ij

= 0. For those pairs (i, j), using the above
expression of Σ−1 leads to the following orthogonality condition on the ith and jth rows
(resp. θi and θj) of θ: θ�iθj = 0.

Using the functional invariance property of the maximum likelihood, the estimators
ML ϕ̂ and θ̂ of ϕ and θ are now derived by replacing Ψ and B by Ψ̂ and B̂ respectively
using (3).
The parameters of the factor model are hereafter expressed as (vec(θ)�, diag(ϕ)�)�, where
vec(.) is the matrix operator transforming a m × q matrix into a vector of length mq
obtained by the superposition of its row vectors and diag(.) is the operator transforming
a diagonal matrix into a vector of length m of its diagonal elements.

The asymptotic variance of the ML (vec(θ)�, diag(ϕ)�)� is given in the following pro-
position:
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Proposition 1 Let H denote the m(q + 1)×m(q + 1) Fisher’s information matrix of

the factor model. Then, H can be expressed as follow:

H =

�
Hθ Hθ,ϕ

H�
θ,ϕ Hϕ

�
,

where

n−1
Hθ =

�
Im ⊙ (Iq − θ�θ)−1

�
vec(θ) vec(θ)�

�
Im ⊙ (Iq − θ�θ)−1

�
+ (Im − θθ�)−1

⊙ (Iq − θ�θ)−1

−(Im − θθ�)−1
⊙ Iq,

n−1
Hθ,ϕ = −ϕ−1D�

θ

�
Im ⊙ (Iq − θ�θ)−1 + (Im − θθ�)−1

⊙ Iq
�
,

n−1
Hϕ = 2ϕ−2 + ϕ−1D�

θ

�
Im ⊙ (Iq − θ�θ)−1

�
Dθϕ

−1
− ϕ−1D�

θ

�
(Im − θθ�)−1

⊙ Iq
�
Dθϕ

−1,

where Dθ is the following mq ×m matrix:

Dθ =





θ1 0 . . . 0
0 θ2 0
...

...
...

0 0 . . . θm





The Information matrix is now used to test the significance of partial correlation.
Indeed, it is deduced from the standard ML theory that the asymptotic distribution of
√
n(vec(θ̂) − vec(θ)) is normal with mean 0 and variance Vθ given by the mq × mq left

upper block of H−1. Standard results on inversion of partitioned matrices can be used:

Vθ = H
−1
θ +H

−1
θ Hθ,ϕ(Hϕ −H

�
θ,ϕH

−1
θ Hθ,ϕ)

−1
H

�
θ,ϕH

−1
θ .

Moreover:

H
−1
θ = Kθ −

Kθ vec(θ) vec(θ)�Kθ

1 + vec(θ)�Kθ vec(θ)
,

where Kθ = (Im − θθ�)⊙
�
(Iq − θ�θ)−1 − Iq

�−1
.

3 Simulations

3.1 Network and data generation

We generated a true partial correlation matrix Π with a density of 25% and comprised
of 5 equivalent blocks of non-zero entries representing 5 modules of genes highly connected

6



(see Figure 1). The number of variables is fixed at m = 200, and 3 different sample sizes are
considered: 200, 100 and 50. For each scenario, a total of 100 replications are performed and
for each replication, the data are drawn randomly from a multivariate normal distribution
with correlation structure derived from Π using the function ggm.simulate.data from the
GeneNet package [7].

Figure 1 – True partial correlation matrix generated

3.2 Validation

For fair comparisons, the default parameters where used for each algorithm without
additional tuning. For our method FA, we choose 10 as the default number of factors
in the factor gaussian graphical model which is consistent with previous real life studies
(ref,ref). Furthermore, for GeneNet and FA, an FDR cutoff of 5% was chosen.
Performance of methods is assessed by considering both partial correlation estimation and
edge detection accuracy. An edge detected by a method is considered as a true positive
(TP) or as a false positive (FP) depending on the presence or not of the corresponding
edge in the underlying true network, respectively. Analogously, a zero entry (no edge) is
considered as a true negative (TN) or a false negative (FN) depending on whether the
corresponding edge is present or not in the underlying true network, respectively. The
confusion matrix was calculated for each method and as in [15] we also calculated the
F -scores, which allows a compact representation of the precision (p) - recall (r) diagram.
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F -score quantity is expressed as follow:

F =
2pr

r + p

with p = TP
TP+FP and r = TP

TP+FN

4 Results
We first compare the methods in terms of partial correlation estimation. Figure 2

shows for each scenario and methods, the estimated partial correlations vs. the true par-
tial correlations. n corresponds to the number of sample and MSE to the mean squared
error. First of all, one can see that as sample size increased, the performance of the 3
methods tends to improve which is expected and consistent with previous research (ref
compa). SPACE tends to overestimate the extreme partial correlations in comparison to
GeneNet and FA method. In terms of MSE, all 3 methods show good results for sample
size 200. However, when sample size is smaller, the estimation accuracy becomes very
poor for GeneNet. For lower sample sizes, FA gives the best results in terms of partial
correlation estimation.
Concerning the edge detection performance, we report for each case and method, the
confusion matrix, the sensibility and specificity in Table 1. For GeneNet method, we
consider both significant testing with and without FDR control. Except for GeneNet wi-
thout FDR control, all other methods show an high specificity for edge detection. However
the sensibility is lower and particularly for GeneNet method with FDR control. This re-
sults is consistent with a recent study [16] showing that GeneNet and Space perform well
in identifying a few connections with high specificity. For each different sample size, the
best sensibility/specificity ratio is given by FA method. In Figure 3, we represent the
F -score boxplots. The figure shows that GeneNet without FDR control and SPACE give
comparable results. However, SPACE tends to be more affected by sample size decrease.
Interestingly, FA method gives the highest F-scores in average but with a higher degree
of dispersion for sample size 200.
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Figure 2 – Estimation of partial correlations

Table 1 - Edge detection performance
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Figure 3 – F-score boxplots

5 Application
We apply our method in a lipid metabolism study that aims at identifying biological

processes and genes involved in abdominal fatness variability in chickens [2,17] which is
an economic trait of great interest. The biological purpose is here to better characterize
a region of the genome known to controlled the abdominal fatness in chicken. Using the
transcriptome profile of 45 chickens, 59 genes were found as being controlled by this
region. Using our method, we infer the gene network of these 59 genes and highlight two
functional modules (Figure 4). Using the available annotation, one of the two modules
could be related to the lipid metabolism and more precisely to the cholesterol metabolism
as it contains the gene encoding for the last enzyme of the cholesterol synthesis process.
Thanks to the inferred gene network, we provide thus a new functional hypothesis about
one of the causal mutations that affect abdominal fatness in chickens.
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Figure 4 – Inferred gene network of the 59 genes

6 Conclusion
In this study, we investigate a new approach to infer gene networks based on a factor

model structure. This method allows an efficient testing strategy for the significance of
partial correlations. Through simulation studies, we show that our method achieves good
performance in edge detection and partial correlation estimation in comparison with 2
competitors widely used by the biologist community. Moreover, we apply our method
in a lipid metabolism and provide a new functional hypothesis about one of the causal
mutations that affect abdominal fatness in chickens.
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