N
N

N

HAL

open science

Combining multiple data sets to unravel the
spatio-temporal dynamics of a data-limited fish stock.

Cecilia Pinto, Morgane Travers-Trolet, Jed Macdonald, Etienne Rivot, Youen

Vermard

» To cite this version:

Cecilia Pinto, Morgane Travers-Trolet, Jed Macdonald, Etienne Rivot, Youen Vermard. Combining
multiple data sets to unravel the spatio-temporal dynamics of a data-limited fish stock.. Canadian
Journal of Fisheries and Aquatic Sciences, 2019, 76 (8), pp.1338-1349.

hal-01891429

HAL Id: hal-01891429
https://institut-agro-rennes-angers.hal.science /hal-01891429

Submitted on 23 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1139/cjfas-2018-0149 .


https://institut-agro-rennes-angers.hal.science/hal-01891429
https://hal.archives-ouvertes.fr

Canadian Journal of Fisheries and Aquatic Sciences
Article In Press

Acceptation date : October 2018
http://dx.doi.org/10.1139/cjfas-2018-0149
http://archimer.ifremer.fr/doc/00460/57187/

Combining multiple data sets to unravel the spatio-temporal
dynamics of a data-limited fish stock.

Pinto Cecilia "%, Travers-Trolet Morgane ?, Macdonald Jed °, Rivot Etienne *, Vermard Youen °

! European Commission Joint Research Centre Ispra Sector, 99013, D Sustainable Resources -D.02
Water and Marine Resources, Via Enrico Fermi 2749, Ispra, Italy

2 IFREMER, 150, quai Gambetta, BP 699, F-62321 Boulogne-sur-Mer, cedex, France

3 University of Iceland, Faculty of Life and Environmental Sciences, Reykjavik, Iceland

4 Agrocampus Ouest, UMR 0985 INRA / Agrocampus Ouest ESE, Agrocampus, Ecologie Halieutique,
65, rue de St Brieuc, Rennes, France

® IFREMER, Unité EMH, Rue de lile d'Yeu, Nantes, France

* Corresponding author : Cecilia Pinto, email addresses : cecilia.pinto@ec.europa.eu ;
pntccl@gmail.com

Abstract :

The biological status of many commercially-exploited fishes remains unknown, mostly due to a lack of
data necessary for their assessment. Investigating the spatio-temporal dynamics of such species can
lead to new insights into population processes, and foster a path towards improved spatial management
decisions. Here, we focused on striped red mullet (Mullus surmuletus), a widespread, yet data-limited
species of high commercial importance. Aiming to quantify range dynamics in this data-poor scenario,
we combined fishery-dependent and -independent datasets through a series of Bayesian mixed-effects
models designed to capture monthly and seasonal occurrence patterns near the species’ northern
range limit across 20 years. Combining multiple datasets allowed us to cover the entire distribution of
the northern population of Mullus surmuletus, exploring dynamics at different spatio-temporal scales,
and identifying key environmental drivers (i.e. sea surface temperature, salinity) that shape occurrence
patterns. Our results demonstrate that even when process and/or observation uncertainty is high, or
when data is sparse, by combining multiple datasets within a hierarchical modelling framework accurate
and useful spatial predictions can still be made.
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Introduction

Long-term time series are a valuable resource for testing hypotheses on how temporal
variability in recruitment or abundance, or patterns of range expansion or distributional shift
may relate to climatic and anthropogenic events (Doney et al. 2012; Hawkins et al. 2013). This
is a prerequisite to forecast the response of populations under future scenarios of environmental
change and additional anthropogenic pressures, such as fishing pressure (Szuwalski and Punt

2015).

Many fish stocks targeted by fisheries are not subjected to standardized assessment methods
(Costello et al. 2012), meaning that both their exploitation level and their resilience to
exploitation are uncertain. Non-assessed stocks not only comprise species of low commercial
importance; some highly exploited species also fall outside the assessment process. This
situation is often due to data scarcity, driven either by a lack of government investment in the
fisheries management process, or through the history of the data collection itself (Hilborn and

Ovando 2014).

Stock assessment methods for so-called data limited stocks (DLS) have received considerable
interest in recent years, with the development of new methods based on life history traits (e.g.
body-size frequencies), or trends in abundance and fleets (ICES 2017; Kokkalis et al. 2017).
However, data are still missing for many species, or have only been monitored over short time
scales. This critically hampers any evaluation process, and potentially reduces viability of fish

populations and associated fisheries (Costello et al. 2012).

When data collection on a species is sparse or limited, combining multiple data sources within
a single analysis can help to overcome the limitation of single data sets considered separately.
According to their respective spatio-temporal coverage, combining data sets it allows for

extending the time series, widening the area covered, and ultimately improving the power of
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the analysis and our understanding of population dynamics. The development of integrated
analysis (as defined in Maunder and Punt (2013)) as a tool to combine different data sources
arising from different sampling methods (with their own spatial and temporal heterogeneity)
within a single framework has received attention in the statistical ecology literature (McGeoch
and Gaston 2002) and in fisheries sciences (Maunder and Punt 2013 and references therein).
Hierarchical modelling approaches explicitly separate out process models from observation
models, and therefore offer an efficient framework for combining multiple datasets. The process
equations allow for modelling multiple dependencies and stochasticity in a hierarchy of scales
suitable to depict the spatial and temporal variability present within the data through latent
parameters, whilst the set of observation equations define how the data relate to the state
variables of the model (Gelfand 2012; Parent and Rivot 2013; Kéry and Royle 2016). This class
of models is also particularly well suited to capturing residual correlation patterns through
inclusion of spatial (or temporal) correlation structure in the latent variables (Legendre 1993;
Elith and Leathwick 2009; Thorson and Minto 2015). Bayesian inferences on hierarchical
models offer additional technical convenience, and provide inferences in a probabilistic
rationale that fully propagates uncertainty (Punt and Hilborn 1997; Harwood and Stockes

2003).

In this paper, we combine four fishery-dependent and fishery-independent datasets, spanning a
20-year period, within a single hierarchical model to explore monthly and seasonal occurrence
patterns of striped red mullet (Mullus surmuletus, Linnaeus, 1758), a demersal Mullid of high
commercial importance. We focus on the “northern subpopulation” that resides in the North
Sea and Eastern English Channel, and shows little mixing with the “southern subpopulation”
(Bay of Biscay) (Mah¢ et al. 2014) and the “mixing zone subpopulation” (Celtic Sea and the
Western English Channel) (Benzinou et al. 2013). Despite being commercially targeted across

much of its range, information on the sensitivity of this species to changing environmental
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conditions is scarce. The hypothesized role of dynamic gradients (e.g. sea surface temperature)
in shaping the migration and distribution patterns of the northern subpopulation (Beare et al.
2005; Engelhard et al. 2011) needs further enquiry using data covering the full geographic range
of the subpopulation, over several years. This northern subpopulation is also characterized by
strong oscillations in abundance between consecutive years (Mahé et al. 2005). During the last
five years, fluctuations have increased in magnitude, concurrently with the loss of the oldest
and most efficient spawners from the population (ICES 2015). These indices suggest an effect
of overexploitation (Iglésias et al. 2010) and are an alarm bell for future (and perhaps
prolonged) depletion. Implementation of restrictive management options are currently debated,
such as implementation of quota sharing within the total allowable catch (TAC) for the
subpopulation, as already established in a multilateral context for other species in the North Sea

(Hannesson 2013).

Indications of a depleted population state, high abundance variability and high uncertainty
regarding spatial distribution drivers constitute strong motivations to fill in the gaps in
biological and ecological knowledge for this species, and eventually provide more reliable
scientific advice for fisheries management. More specifically, the objectives of our study are
twofold: 1) to clarify the role of environmental factors on shaping occurrence patterns across
the full distributional range of the northern subpopulation of striped red mullet; and 2) to gain
insight into the mechanisms underpinning the marked inter-annual fluctuations and seasonal

migrations that characterize its spatio-temporal dynamics.

Materials and Methods

Presence / absence data

Our data are derived from three scientific bottom-trawl surveys and one set of commercial

fishery catch records. The scientific surveys were the winter and summer International Bottom
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Trawl Survey (IBTS) (ICES 2012) and the Channel Ground Fish Survey (CGFS) (Coppin and
Travers-Trolet 1989). The IBTS surveys take place over one month across January and
February (winter survey, IBTS-Q1), and one month across August and September (summer
survey, IBTS-Q3) and cover the whole of the North Sea. Since 2007, the winter survey has been
expanded into the Eastern English Channel. The CGFS takes place over one month in October,
and has covered the Eastern English Channel since 1990. As the North Sea was not
systematically sampled twice a year prior to 1995, only survey data from 1995 to 2015 are
considered here. The commercial data come from the OBSMER French program (Cornou et al.
2016) which aims to collect data on landings and discards through onboard observers at sea.
Catch data were collected throughout the year (for every fishing operation on each sampled

trip) from 2003 to 2015.

The four initial datasets were first reclassified into two new datasets based on their spatial and
temporal coverage. Dataset A (n=8391) comprises observations from IBTS-Q1, IBTS-Q3,
CGFS and OBSMER covering the Eastern English Channel and the southern North Sea (Fig.
1) and spanning 1995 to 2015 at a monthly resolution. Dataset B (n=13853) has the same
temporal coverage (1995-2015) and covers a larger spatial area than Dataset A as it includes
the whole of the North Sea, but at the cost of making use of fishery-independent records only
(i.e. IBTS-QI, IBTS-Q3 and CGFS) and with a seasonal (i.e. winter, summer and autumn)
resolution (Fig. 1). The number of records available from each data source is presented in Table

S1.

For both datasets A and B, georeferenced point records describing the catches of striped red
mullet captured at a particular location S, and time t, were transformed to presence/absence
records. This is a critical simplification to limit the effect of heterogeneity in fishing effort and
catchability among the various data sets, and allows us to consider that all sampling methods

are equivalently informative relative to the presence/absence of the species. To further limit
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heterogeneity in the catchability and avoid “false zeros” due to low catchability (Martin et al.
2005) when using OBSMER data, only records from bottom-trawlers using a mesh size between
70-90mm were extracted for the analysis, as larger mesh sizes are typically used by boats

targeting other species (e.g. Pollachius virens).

Environmental covariates

Presence/absence records were correlated with a set of environmental covariates thought to
influence the occurrence of striped red mullet: depth at seabed, sediment type, sea surface
temperature (SST) and sea surface salinity (SSS). Depth at seabed was extracted from the
NORWegian ECOlogical Model system (NORWECOM) database
(http://www.imr.no/~morten/wgoofe/). SSS was extracted at a monthly resolution from the
NORWECOM website for the time interval from 1990 to 2008, while data for 2009-2015 were
obtained by contacting the author of the model system directly. The SST data were obtained
from satellite observations at a daily resolution, but for the purposes of this study a monthly
mean was computed. Data for 1990-2008 was extracted from the AVHRR Pathfinder Version
5.2 (PFVS5.2) dataset, provided by the US National Oceanographic Data Center and GHRSST

(http://pathfinder.nodc.noaa.gov) (Casey et al. 2010), while the 2009-2015 SST data was

extracted from the ODYSSEA processing chain operated within the ESA/MEDSPIRATION
project (Gohin et al. 2010). Seabed sediment types were adapted from Larsonneur et al. (1982)
and Schluter and Jerosch (2008), and reclassified into five broad categories: mud, fine sand,
coarse sand, gravel and pebbles. To test for collinearity among covariates, we used the ‘vif.mer’
function (VIF threshold set to 10) on a model object fitted using the ‘Ime4’ package (Bates et
al. 2015) in R version 3.3.0 (R Core Team 2016), to calculate variance inflation factors for each
predictor (R code available here: https://github.com/aufrank/R-hacks/blob/master/mer-utils.R
). As no collinearity among variables was detected, variance inflation factor values are not

shown in the results.
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Modelling striped red mullet occurrence

Dataset A and Dataset B were analysed independently but using the same modelling approach.

Models were built in a hierarchical Bayesian framework using the SPDE (Stochastic Partial

differential Equations) approach in the ‘R-INLA’ package (http://www.r-inla.org) (Rue et al.

2009; Lindgren et al. 2011; Lindgren and Rue 2015) in R. This approach provides direct
inference on the spatial and temporal dependencies in the data. The process equation models
the probability, pi(S), of striped red mullet presence at time-step t (i.e. either month or season)

and location S, as a random field on the logit scale:

(1) logit(pt(s)) = X¢(s) X B+ 6.(s)

where Xi(S) represents a vector of covariates (depth at seabed, sediment, SST, SSS) at time-step
t and at location S, f represents a vector of coefficients (fixed effects) to be estimated, and 6+(S)
is a spatio-temporal random effect to account for variation not explicitly explained by
covariates. Random effects are defined by a Gaussian random field that is spatially
autoregressive (depending on the distance between locations) and temporally uncorrelated (for
details see Cameletti et al., 2013). To avoid computational costs that rapidly arise in continuous
space (the so called big-n problem (Lasinio et al. 2013)), the spatial covariation is modelled
within a Gaussian Markov random field (GMRF) on a discrete mesh, that defines the area of
interest (Krainski et al. 2016) (see Fig. S2). This way the influence of spatial covariance at any

point S is reduced to a set of neighbours (Cameletti et al. 2013).

Given the latent field of presence probability pi(S) at any time t and location S, presence/absence

data yi(S) are modelled as mutually independent and identically distributed Bernoulli variables

(2) yi(S) ~ Bernoulli(p«(s))
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The full likelihood equation for the model then arises from the product of Bernoulli for all raw
data (eq. 2). Because all data sources are considered as presence/absence, the strength of the
hierarchical structure is that different data sources are integrated within a single analysis to infer
a unique random field model for the probability of presence that captures the spatio-temporal

covariations as defined in eq. (1).

Within the SPDE approach, eq. 1 can be rewritten as:

(3) logit(pt(s)) = X¢(8)B + A(s)6,

where observation matrix A;(s) is directly related to the space discretizing mesh (Fig. S2) as it
extracts the values of the spatio-temporal random field at each location S and at each time-step
t. The realization of the random field can be represented through its mean density distribution
and standard deviation which in turn can be translated as the level of uncertainty at a certain
location depending on the availability of data points (Cameletti et al. 2013). The quantification
of such uncertainty, through the realization of the random field, allowed us to account for the
heterogeneity across time and space of the sampling design, originating from the integration of

different datasets.

Different mesh designs were compared visually and the sensitivity of parameter estimation to
the different designs assessed (Cosandey-Godin et al. 2015). The best mesh designs for each
dataset (see Fig. S1) includes an outer extension to avoid a “boundary effect” (Lindgren and
Rue 2015) and regularly-shaped triangles, both in the inner and in the outer extension, and at
the border between the two extensions (Krainski et al. 2016). Once the best mesh was selected,
parameters values defining it were kept constant across models (i.e. at the same spatial

resolution).
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The simplified Laplace method was used to approximate the posterior marginal distributions
(for details see Martins et al. 2013). We built and compared models of increasing complexity,
from the null model including no covariates to the full model including all covariates and
random effects. Models were compared through deviance information criterion (DIC), the log
marginal likelihood and by estimating the variance contribution of random effects against that
of fixed effects. To evaluate out-of-sample predictive capacity for each fitted model, we derived
the conditional predictive ordinate (CPO), defined as the cross-validated (cv) predictive density
at observation yt(S) with that observation removed (Roos and Held 2011). We used the CPO
values to compute the cv logarithmic score (Gneiting and Raftery 2007), a measure of predictive
quality, and the cv Brier score (i.e. mean prediction error) for each model. This latter score
evaluates the correspondence between fitted probabilities and observed binary outcomes
(Schmid and Griffith 2005, Roos and Held 2011). Lower values on both scores reflect better
predictions, with the Brier score interpreted relative to a reference value equal to sampling
prevalence. The probability of presence was predicted across the whole area covered by each
dataset, but here we limit our spatial predictions to the areas where the standard deviation of
the response was smaller than its mean value, also corresponding to the end of the asymptotic
phase of its distribution (Fig. S3). Following Ward et al. (2015), we also estimated the
predictive accuracy of the best model through the area under the receiver operating

characteristic curve (AUC) using the ‘ROCR’ package (Sing et al. 2005).

Priors

We used the default priors for the fixed effects and hyperparameters as implemented in R-INLA
(described in Lindgren and Rue 2015). Hyperparameters currently constitute an active area of

research for the R-INLA team (see R-INLA documentation available at http://www.r-inla.org/).

The latent field parameters 01 and 02 were defined by a multivariate normal distribution which
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is a combination of 0:1=N(0,10), 02-N(0,10). All fixed parameter priors were defined by a

N(0,1000) except the intercept that has a prior distribution N(0,0).

Results

Model selection

Models with a month within year structure (for dataset A) and season within year (for dataset
B) structure for the random effect were always preferred based on DIC. Models including all
environmental covariates were selected as the best models on the balance of the DIC, the log
marginal likelihood estimates, the reduced variance contribution of the spatial effect and
predictive quality (CVLS and Brier score) (Table 1). The spatial correlation range (nominal
range) of the best model for dataset A was 2.66 decimal degrees, and 8.51 for dataset B (Table

1). The AUC estimated for the best model for dataset A was 0.61, and 0.69 for dataset B.

Environmental parameters

SST and SSS were both found to be positively correlated with the presence of striped red mullet
for dataset A while for dataset B only SST was significant (Table 2), suggesting that this species
has a preference for areas where waters are warmer and more saline. Sediment types were not
correlated with the presence of striped red mullet at the monthly time scale for dataset A or at
a seasonal scale for dataset B (Table 2). Finally, depth at seabed had no effect on the distribution

of striped red mullet at both resolutions.

Spatial latent field

Posterior estimates of the spatial random effects inform about the spatio-temporal variability
that is not captured by the effects of covariates in the model. Results are presented from 2009
onwards to allow direct comparison between datasets, as data for all months and seasons are

available since 2009 only.
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For dataset A, posterior estimates of the spatial random effect revealed that the northern
subpopulation of striped red mullet changed its distribution month by month, moving into and
out of the Eastern English Channel (Fig. 2). Due to the high variation of the monthly
distributional pattern among years, it is difficult to identify a consistent monthly movement
trend across areas. For dataset B in which sampling is consistent between winter and summer,
results revealed a seasonal migration of the population moving from the north-east in the winter
to the south in the summer, but with higher uncertainty during autumn, as data are available
only for the Eastern English Channel (Fig. 3). Random effects are estimated with higher
uncertainty for dataset A than for data set B (Fig. 3, 4), as a consequence of the higher spatial
variability inherent in commercial sampling and fewer observations per month, as compared

with the more spatially-consistent survey observations in dataset B.

Predicted probability of presence

Our modelling framework also allows for predicting the probability of presence at any point in
the area provided that covariates are available. Figure 5 reports the predicted probability of
presence of striped red mullet in the area covered by dataset A, only in areas where the results
are more reliable. These reliable areas were defined as the ones displaying a low standard
deviation, i.e. low uncertainty, using a cutoff of 13.23 (the mean of the standard deviation also
corresponding to the upper limit of the distribution where the standard deviation is more or less
constant) (see also Fig. S3). Beyond the inter-annual and seasonal variability in the probability
of striped red mullet presence, recurrent patterns can be detected. Results highlight a strong
seasonal difference, with high predicted probability of presence (>70%) from July to October
when the surface waters are warmer and lower probability of presence (<50%) predicted for
colder months (late winter) (Fig. 5 and Fig. S4A). We also detected changes across years linked
to SST; during the coldest springs of the series (2010 and 2013) (Fig. S4B), the probability of

presence was lower for these seasons (Fig. 5 and Fig. S4A). Predictions also suggest large scale
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seasonal movements of the striped red mullet across the study area. The striped red mullet seems
to spend the winter in the English Channel, before leaving this area in March and reaching the
Dover Strait by April, although this pattern varies across years. We note also that in 2015, the
probability of presence remains high in the English Channel throughout the year but on average,

there are no strong variations in the registered SSTs compared to the previous years (Fig. S4A).

Predictions obtained from dataset B (Fig. 6) seem contradictory as they show a much higher
probability of presence of striped red mullet during the winter, specifically in the north west of
the North Sea and the Eastern English Channel. Whilst in the summer and the autumn, the
probability of presence increased only in the Eastern English Channel, and, across all grid cells,

was 20% lower than the winter period.

Discussion

This study provides the first spatially-explicit analysis of how environmental parameters may
shape the distribution of striped red mullet near its northern range boundary. All available
information on this data-limited species was integrated into a single analysis that directly
accounts for correlation structures in the data, and the sources of uncertainty in data and process.
The results provide a substantive contribution to our understanding of the spatio-temporal

dynamics of this data-limited stock.

Our findings suggest that the occurrence of the northern subpopulation is positively correlated
with water salinity and temperature. Results for the latter covariate match suggestions by Beare
et al. (2005), who hypothesized that the presence of striped red mullet in northern waters in
winter was related to increasing surface water temperatures. Moreover, our predictions show
that certain years are characterized by larger occupied areas (e.g. 2011 and 2015) interspersed
with years of very low and/or scattered concentrations (e.g. 2013) (see Fig. 5 and 6). This

complements previous descriptions of the strong interannual fluctuations in abundance within
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this subpopulation (Mahé et al. 2005, Carpentier et al. 2009). Whether range expansion is linked
to population size in this species (see Fisher and Frank 2004) remains an open question. Yet,
despite marked inter-annual variability in the distributional range, we detected patterns of
seasonal migrations starting in both the north-east of the North Sea and the English Channel in
winter, moving to the south of the North Sea in spring/summer and entering the Eastern English
Channel in autumn. Previous work has often focused on the effect of water temperature (and
other environmental parameters) on population abundances. For instance, striped red mullet has
increased in abundance by 30% over the last two decades in the English Channel, concomitantly
with a shift towards a warmer phase of the Atlantic Multidecadal Oscillation index (Auber et
al. 2015). Cheung et al. (2013) predicted that species preferring warmer waters will increase in
abundance and dominate fisheries catches in northern latitudes, as appears to be occurring in
species such as Atlantic mackerel (Scomber scombrus) and hake (Merluccius merluccius)

(Jansen 2014; Baudron and Fernandes 2015; Hughes et al. 2015).

However abundances are not necessarily correlated to distribution extensions. Therefore, when
developing spatial management frameworks to improve fisheries management, coupling the
dynamics of both abundance and spatial distribution will likely prove productive to move
forward. That said, presence-absence data are often more easily obtained and more widely
available than abundance data, and modelling presence-absence can make the integration of
data obtained from heterogeneous surveys simpler. Indeed, provided that detectability of the
survey method(s) is considered to be 100%, meaning that at least one individual will be captured
if the species is in fact present, presence-absence models allow us to largely ignore variation in

catchability among different survey methods and sampling gears.

Although results from both datasets identify a positive effect of SST on the presence of striped
red mullet, when looking at predictions we find that the highest probability of presence (both

in terms of area and absolute values) is predicted in the summer months for dataset A but not
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for dataset B. Such discrepancy between the models built from the two datasets may result from
several (non-mutually exclusive) hypotheses: 1) The effect of temperature on the population
could be stronger in the winter than in the summer, causing the SST coefficients to vary
throughout the seasons; 2) Gradients in environmental factors could be steeper in dataset B than
in dataset A, as a direct function of the larger area covered by dataset B. This would be
consistent with the fact that the relative variation in DIC when including covariates in the model
is sharper in dataset B than in dataset A, suggesting that these have a stronger explanatory power
than in dataset A. This is confirmed also by the consistent contribution of the spatial variance
and by the increased autocorrelation range, which are not affected by the addition of covariates
in dataset A. 3) Last, the difference observed in model predictions between datasets could also
result from an effect of sampling bias. Dataset B is derived mainly from IBTS data that are
consistently sampled every winter and every summer. Dataset A also contains data from the
IBTS surveys, but is complemented by the OBSMER data. Though incorporating true absences,
this commercial dataset is still potentially biased by variation in nominal and spatial commercial
fishing effort that shifts not only between months but also between years (Fig. S6). Although
we cannot completely rule out seasonally-variable fishing effort as contributing to our spatial
predictions for dataset A, we suggest that any effects are relatively minor given our use of
presence-absence data as previously discussed. Building two different models based on the two
different datasets allows us to glean the maximum possible information from both, and improve
our understanding of the species’ dynamics at different spatial and temporal scales. Dataset A
provides insight into the spatio-temporal dynamics of the northern population of striped red
mullet at a monthly level that could be missed using only dataset B, which instead exposes the
seasonal dynamics at a larger spatial scale, using spatially-consistent survey information.

Importantly, the lower level of sampling heterogeneity in dataset B suggests where, spatially,
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the predictions from dataset A may be less reliable due to the high uncertainty given by non-

consistent sampling.

Integrating multiple surveys in a single dataset (either within A or B) allowed us to increase
both the number of observations and our capacity to detect statistical flukes (Maunder and Punt
2013). Moreover, comparing the results from the separate analyses of datasets A and B allowed
us to expand the geographical area (Eastern English Channel and Southern North Sea for dataset
A, whole North Sea for dataset B) and explore the consistency of our inferences across two
different spatial scales and at two different temporal resolutions (monthly for A, and seasonal
for B). As noted by Maunder and Punt (2013), when integrating multiple data sources, a trade
off should be found to maximize the scientific reward of integrated modelling. Integrating
various sources of data in the same analysis does not necessarily give rise to improved
understanding of the target system, as it may lead to conflicts in what the datasets tell us, in
addition to increasing statistical complexity and computational costs. Separating the dataset
built by integrating the IBTS-Q1, IBTS-Q3, CGFS and OBSMER data into two subsets which
differed in spatial and temporal resolution was our trade-off. Analysing dataset A alone allowed
us to obtain inferences at a monthly level instead of just at a seasonal level. Additionally, a
separate analysis of dataset A and B provided insights on the effects of environmental

parameters at different spatial scales.

The major source of uncertainty in the data came from the lack of commercial data for single
months in years prior to 2003 (the time series is complete for each month only from 2009
onwards). Confidence surrounding the estimates on this subpopulation during this time period
is therefore relatively low, and further efforts are needed to improve data quality. A substantial
impediment to progress on this front relates to the difficulties in accessing commercial catch
data coming from observer programs that operate in countries bordering the North Sea. The

advantages of having observer data from foreign fisheries targeting local stocks was
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demonstrated in the Alaskan fisheries (French et al. 1982) and stands in stark contrast to the
situation in the Eastern English Channel and North Sea area, where multiple countries similarly
share the quota on several harvested stocks. Hannesson et al. (2013) showed that cooperation
always brings in more advantages than competition when stock harvesting is shared among
parties. Hence, strong incentive exists to integrate all the available data — both fishery dependent
and independent (e.g. national on board observer programs) — to maximize coverage of spatio-

temporal information in commercial stocks.

Species which are commercially exploited though not formally managed, are particularly
vulnerable to overexploitation as their population dynamics’ are often not monitored, with no
limits set on landings or minimum sizes. Using striped red mullet for illustration, our results
have demonstrated some advantages of data integration and explicitly accounting for
uncertainty under data limitation; however, it is important to note that these steps alone are not
the silver bullet for successful fisheries management. Instead, we hope this work inspires future
sampling designs, data collection and multilateral data-sharing programs that in conjunction
with appropriate modelling approaches can lead to better adaptive management decisions for

data-limited populations (Walters 2007; Maunder and Punt 2013).
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534 TABLES

535 Table 1 Models’ DIC and log marginal likelihood, estimated spatial autocorrelation range ( o

536 ), variance contribution of the spatial effect to the total variance (o), cross-validated

537  logarithmic score (CVLS) and Brier score. Best models for each dataset are highlighted in grey.

BRIER
LOG MARGINAL p SPATIAL 0% SPATIAL CVLS
SCORE
DATASET A DIC LIK EFFECT EFFECT
SED+DEP+SSS+SST | 7529 -4204 2.656599 4.604428 0.4468516 | 0.07572407
SED+DEP+SSS 7556 -4222 2.768245 4.856019 0.4482658 0.1461075
SED+DEP 7558 -4219 2.726399 4.836133 0.4483667 0.1460957
SED 7557 -4210 2.770354 4.879648 0.4483378 0.1460749
SSS+SST 7541 -4221 2.431589 5.182673 0.4471932 0.1457849
NO COVS 7569 -4237 2.553919 5.495750 0.4486286 0146228
LOG MARGINAL p SPATIAL o2 SPATIAL BRIER
CVLS
DATASET B DIC LIK EFFECT EFFECT SCORE
SED+DEP+SSS+SST | 6881 -3841 8.509531 6.554891 0.2532677 | 0.07857798
SED+DEP+SSS 6894 -3854 8.01782 6.658798 0.2536428 | 0.07861613
SED+DEP 6895 -3848 8.000895 6.626146 0.2536606 | 0.07861056
SED 6900 -3839 7.889699 6.483401 0.2538337 0.0786736
SSS+SST 7672 -4257 7.474648 6.46565 02467375 | 0.05887704
NO COVS 7021 -3907 7.213805 6.803004 0.2583787 | 0.08070601
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Table 2 Estimated coefficients for the best models of dataset A and dataset B. Values are

posterior means and intervals (CI) are 95% Bayesian Credibility Intervals. Intervals not

containing 0 are highlighted in bold.

Dataset A

Mean (95% CI)

Dataset B

Mean (95% CI)

Mud

-4.4276 (-30.0362 ; +21.0294)

-0.7849 (-26.1550; +24.4351)

Fine sand

-4.5374 (-30.1481;+ 20.9218)

-0.8095 (-26.1797; +24.4106)

Gravels

-4.0908 (-29.7055;+ 21.3721)

-0.6337 (-26.0048; +24.5872)

Pebbles

-5.0858 (-30.6998; +20.3766)

-1.7490 (-27.1200; +23.4718)

Coarse sand

-3.8629 (-29.4751; +21.5977)

0.3191 (-25.0513; +25.5395)

SST 0.2079 (0.1506; 0.2656) 0.2680 (0.1805 ; 0.3560)
SSS 0.6516 (0.0340; 1.2665) | -0.0629 (-0.1820; +0.0558)
Depth -0.0054 (-0.0136; +0.0027) | 0.0022 (-0.0015; +0.0058)




542

543

544

545

546

547

FIGURES

Figure 1 Spatial coverage of the two datasets, A and B.
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548  Figure 2 Posterior mean of the spatial random effect for dataset A — positive values indicate a
549  high density of presence data while negative values indicate a high density of absence data.
550  The months of January, February and August, September were grouped together in order to
551  combine the parts of the IBTS survey that straddled months.
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555  Figure 3 Mean (left-hand side) and standard deviation (right-hand side) of the spatial random
556  effect at a seasonal resolution for dataset B — Positive values of the mean indicate a high
557  density of presence data while negative values indicate a high density of absence data. The

558  standard deviation increases with distance from the data points.
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Figure 4 Standard deviation of the spatial random effect for dataset A. The months of January

and February and August and September were grouped together in order to combine the parts

of the IBTS survey that straddled months.
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567  Figure 5 Spatial predictions of the probability of presence of striped red mullet in the Eastern English Channel and southern North Sea at a
568  monthly resolution from 2009 (top) to 2015 (bottom), as output from the best model for dataset A. White areas represent grid cells in which the

569  standard deviation was higher than the mean standard deviation (on a logit scale) (see Fig. S2).
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571  Figure 6 Spatial predictions of the probability of presence of striped red mullet in the Eastern
572 English Channel and the North Sea at a seasonal resolution from 2009 (left) to 2015 (right), as

573  output from the best model for dataset B.
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Appendix A

Notes on the modelling approach

The mixed effects models we fit in this paper fall broadly within the class of ‘empirical’ statistical
models as defined by Levins (1966). These types of models are in essence correlative, although
they may have mechanistic underpinnings related to the fundaments of Grinnellian and Eltonian
niches (Hutchinson 1957; Soberon 2007; Beale et al. 2014). In lieu of the oft-lacking, detailed
physiological knowledge needed for parameterization of an exciting new family of process-based
models (e.g., Freitas et al. 2010; Jorgensen et al. 2012; Teal et al. 2012; see Peck et al. 2018 for a
review), correlative models, which tend to compromise generality for realism and precision
(Levins 1966; Dickey-Collas et al. 2014), remain widely used in ecology to explore the nature of
relationships between species’ distributions and biotic and abiotic factors, to build hypotheses and
to guide management decisions (Guisan and Thuiller 2005; Elith and Leathwick 2009; Robinson

et al. 2011).

Our models were fitted in a Bayesian framework in R-INLA, using the SPDE approach to capture
spatial and temporal dependence in the data (Rue et al. 2009; Lindgren et al. 2011). The merits of
the Bayesian approach for this type of hierarchical model are many (Gelfand et al. 2006; Gelman
and Hill 2007; Royle et al. 2007). Without reviewing these exhaustively here (see Elderd and
Miller 2016 for a comprehensive appraisal), we highlight the inherent way in which random effects
are handled as parameters of interest, resulting in fully specified probability distributions from

which information on the intensity and uncertainty of the effects can be drawn; the option to
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incorporate prior knowledge based on empirical data or theory; and the ability to robustly quantify
and propagate uncertainty through all modelling stages. Model fitting using INLA is
computationally efficient, and provides accurate approximations of the posterior marginal
distributions of model parameters that show high concordance with MCMC simulations (Rue and
Martino 2007; Rue et al. 2009; Held et al. 2010). Since Lindgren and colleagues proved that a
continuously indexed Gaussian field described by a Matérn covariance function can be represented
as a discretely indexed GMRF (Rue and Held 2005; Lindgren et al. 2011), rapid development of
the SPDE approach within R-INLA has facilitated fitting of an expanding suite of hierarchical
spatial and spatiotemporal models to spatial point patterns (Krainski et al. 2016). This approach
has recently proven useful in analyses of georeferenced fisheries datasets, which are often data-
rich and where inference at the scale of point locations, rather than grids, is required (e.g.,

Cosandey-Godin et al. 2015; Ono et al. 2016; Ward et al. 2015).

One of the well-noted criticisms of correlative species distribution models (Elith and Leathwick
2009 for a review of different methods) has been their inability to adequately account for residual
autocorrelation in space and/or time. This situation that can violate independence assumptions in
regression models, leading to inference errors and/or misrepresentation of covariate importance
(Legendre 1993; Dormann 2007; Beale et al. 2010). The SPDE approach considers these
correlation structures directly, and allows great flexibility in their specification (e.g., Cosandey-
Godin et al. 2015). We specified temporally-independent realizations of the spatially-structured

error terms, but temporal dependence can easily be coded (e.g. Macdonald et al. 2018).
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Our models were specific to striped red mullet in the North Sea and English Channel. However,
the approach used is easily adaptable to other stocks and species for which questions on the drivers
of distribution shifts remain open. The 20-year dataset we analyzed represents a substantial
compilation of georeferenced records on the environmental conditions experienced by M.
surmuletus across a substantial part of its range. The model outputs therefore provide a basis for
identifying physiological thresholds that can be used to develop more informative priors in future
regression models (Simpson et al. 2015), or to guide parameterization of mechanistic models (Teal
et al. 2018). We agree with Rochette et al. (2013) who advocate a hierarchical Bayesian framework
as an appealing platform upon which to meld different types of data and models together, making
it possible to assimilate the processes acting on different life-history phases within the one ‘full
life cycle’ model. We see potential for the types of models developed here to contribute to the

development of such a model for M. surmuletus.
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