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Abstract : 
 

All around the world, an increasing proportion of estuarine systems are facing massive proliferations of 
green macroalgae, called green tides, in response to nutrient enrichment. The consequences of this 
perturbation for ichthyofauna that use estuarine systems as essential fish habitats remain understudied. 
To estimate these consequences, we combined outputs of both macroalgae proliferation and fish 
community surveys conducted for the European Water Framework Directive in thirteen estuaries in 
northwestern France, a region where green tides are of great concern. The approach revealed the 
influence of green tides on estuarine fish communities. The response of each community to the green 
tides differed according to their functional guild composition. Benthic and marine juvenile guilds were 
negatively impacted, while demersal and pelagic fish guilds appeared to be more resilient. Green tides, 
which significantly affect the suitability of fish habitat, change the composition of the fish community and 
may hinder the future recruitment of marine fish species that rely on estuaries during the juvenile stage. 
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25 1 Introduction 

26 Estuarine systems host a variety of habitats  that are associated with high food availability and 
 

27 represent essential habitats for ichthyofauna (Blaber and Blaber, 1980; Elliott and Dewailly, 
 

28 1995; Peterson, 2003; Nicolas et al., 2010). These ecosystems provide major ecological 
 

29 services to fish communities, such as nursery grounds for juveniles, foraging areas for adult 
 

30 marine  fish,  permanent  habitats  for  many  resident  species,  and  migration  corridors  for 
 

31 amphidromous fish (Seitz et al., 2014). Habitat quality and associated ecological services play 
 

32 a key role in the sustainability and renewal of a large number of estuarine-dependent fish that 
 

33 rely on estuaries during at least one stage of their life cycle. 
 

34 However, these essential habitats are facing high and increasing anthropogenic disturbances 
 

35 (Beck and Airoldi, 2007; Brown et al., in press). The excessive input of organic matter and 
 

36 inorganic nutrients derived from anthropogenic watershed activities represents one of these 
 

37 disturbances (Diaz and Rosenberg, 2008; Liu et al., 2013; Lyons et al., 2014). The increase in 
 

38 nitrogen inputs beyond the level of an estuary’s self-regulatory capacity (i.e., eutrophication) 
 

39 often leads to the increased development of a few taxa of fast-growing green macroalgae 
 

40 (Nixon, 1995; Valiela et al., 1997; Anderson et al., 2015), which causes green tides (GTs). In 
 

41 recent decades, the abundance and duration of GT events have increased worldwide (Hodgkin 
 

42 and Birch, 1986; Pihl et al., 1995; Fletcher, 1996; Lehvo and Bäck, 2001, Ye et al., 2011; 
 

43 Smetacek and Zingone, 2013). While the drivers and processes of these proliferations are 
 

44 known, their effects on ecosystems have been sparsely described (Lyons et al., 2014). During 
 

45 a GT, major changes occur in the habitat conditions (Fletcher, 1996). Biogeochemical cycles 
 

46 (Sfriso and Pavoni, 1994) and habitat structure modifications (Isaksson et al., 1994; Sundbäck 
 

47 et al., 1996) have been reported to impact invertebrate communities (Quillien et al., 2015) and 
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48 trophic webs (Raffaelli et al., 1998). However, only a few studies have considered the fish 
 

49 community, especially in estuarine systems (Raffaelli et al., 1998; Lyons et al., 2014). 
 

50 During recent decades, the intensity of GTs and the number of impacted sites have increased 
 

51 in northwestern France, with high levels of proliferation observed from mid spring to the end 
 

52 of summer (Ménesguen and Piriou, 1995). Locally, a small-scale analysis of shallow intertidal 
 

53 beaches and estuarine mudflats revealed differences in the fish communities between control 
 

54 and impacted sites during green algae proliferation. Negative impacts for benthic and marine 
 

55 juvenile fish species begin at a low proliferation rates, and green tides significantly decrease 
 

56 fish species diversity and overall fish density until the complete disappearance of fish at a 
 

57 high level of GT (Le Luherne et al., 2016). Proliferations of green macroalgae and fish 
 

58 communities are both monitored in this region to assess the ecological quality of estuarine 
 

59 systems and to achieve a status that is compliant with the goals of the European Water 
 

60 Framework Directive (WFD). Complementing the previous local small-scale approach (Le 
 

61 Luherne et al., 2016), this study provides a quantitative evaluation of the effects of contrasting 
 

62 levels of GT proliferation on fish communities in estuaries over a much larger geographic 
 

63 area. The effects of GTs on fish communities were examined through the analysis of fish 
 

64 density and species richness collected from thirteen estuaries to explore the following 
 

65 questions: 
 

66 - Is there a significant difference between the fish communities in affected and non-affected 
 

67 estuaries? 
 

68 - At what scale can we detect GT impacts on estuarine fish communities? 
 

69 - Do functional groups of fish respond differently to GTs? 
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70 2 Materials and methods 

71 2.1 General approach 
 

72 To study the effects of green tides on estuarine fish, a generalized linear model (GLM) 
 

73 approach was applied (2.5.). We used several survey-based (2.2.) descriptors of the fish 
 

74 community (2.3). The “natural” environmental variability of fish in estuaries was integrated 
 

75 by using four major environmental variables that control fish assemblage (i.e., ecoregion, 
 

76 season, depth, and salinity; Courrat et al., 2009; 2.3.). Then, we tested separately the GT 
 

77 effect using four descriptors, from a large scale to a local scale (2.4.). 
 

78 2.2 Study area and fish sampling 
 

79 We investigated the effect of GT in thirteen estuaries located in northwestern France (Fig. 1). 
 

80 The selection of these study sites allowed the coupling of fish survey and green tide indicator 
 

81 data. Furthermore, the pressure represented by GTs differed among these estuaries (e.g., from 
 

82 non-affected to moderately affected. These estuaries qualities were evaluated by ELFI, which 
 

83 is an indicator of estuarine quality based on the fish metrics (Table 1). 
 

84 From 2008 to 2014, fish were sampled in thirteen estuaries as part of a monitoring program 
 

85 that evaluates the ecological status of transitional waters in relation to the WFD (Delpech et 
 

86 al., 2010). Standardized fish surveys were conducted in spring (between April and June) and 
 

87 autumn (between September and November) for each site and sampling year (Delpech et al., 
 

88 2010). Each survey used a beam trawl with an opening of 1.5 m wide and 0.5 m high and with 
 

89 a 8-mm stretched mesh in the cod-end (Delpech et al., 2010). The beam trawl was hauled in a 
 

90 counter-current direction for 15 min at a standard speed of 1.5-3 knots (Delpech et al., 2010). 
 

91 An average bottom surface of 1100 m² was swept during each haul. Salinity and depth were 
 

92 recorded for each beam trawl haul, the depth ranged between 0.75 and 23 m, and the salinity 
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93 ranged  between  2.5  and  35.1. From 2008 to 2014, 1348 beam trawl hauls have been 
 

94 conducted, and 85 fish species and 79,125 individuals have been sampled. 
 

95 2.3 Fish community metrics and environmental variables 
 

96 Fish density and species richness were selected as indicators of the fish community status 
 

97 because they are assumed to decrease with an increase in habitat disturbances (Gibson, 1994; 
 

98 Delpech et al., 2010). Species richness was estimated based on the number of species captured 
 

99 in each trawl haul, and the total density was defined as the number of individuals captured per 
 

100 hectare. In addition, to evaluate the impact of GTs on the use of fish habitat, each species was 
 

101 classified into functional guilds, including: 3 vertical distribution guilds (i.e., pelagic, 
 

102 demersal and benthic) and 2 ecological guilds (i.e., marine juvenile and resident) (Franco et 
 

103 al., 2008; Potter et al., 2015). Vertical distribution guilds describe the spatial distribution of 
 

104 fish in the water column and illustrate the dependence of the organism on the substratum 
 

105 (Table 2). Ecological guilds describe the use of estuaries during the species’ life cycle (Table 
 

106 2). Other ecological fish guilds, such as amphidromous or marine adventive species (Elliott 
 

107 and Quintino, 2007), were not well sampled in the beam trawl surveys; thus, our approach did 
 

108 not account for these guilds. The fish densities for each of these five guilds were calculated 
 

109 for each trawl haul. 
 

110 Because estuaries are exposed to strong environmental gradients, it was necessary to consider 
 

111 the natural source of environmental variability (Elliott and Quintino, 2007; Courrat et al., 
 

112 2009; Nicolas et al., 2010) before providing a reliable assessment of the green tide impacts on 
 

113 estuarine fish communities. Four main environmental variables were considered: the sampling 
 

114 season of the survey, the ecoregion where the estuary is located, the salinity and the depth 
 

115 during the trawl haul. Preliminary tests have shown that these four sources of environmental 
 

116 variability were not correlated. 
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117 - Fish communities change dramatically between spring and autumn (Elliott and Quintino, 
 

118 2007). The most marked shift was observed for marine juveniles, whose density decreased 
 

119 drastically from spring to autumn, revealing a high mortality rate after settlement (Courrat et 
 

120 al., 2009; Le Pape and Bonhommeau, 2015). These density variations and the seasonality of 
 

121 GT proliferations led us to separate spring and autumn analyses. 
 

122 - A biogeographic classification based on the Marine Ecoregions of the World (Spalding et 
 

123 al., 2007) was used to separate the thirteen estuaries into two ecoregions: “North Brittany” 
 

124 and “South Brittany” (Fig. 1). 
 

125 - Salinity and depth, which are among the main drivers structuring fish communities in 
 

126 estuaries, were (Courrat et al., 2009) also considered. 
 

127 2.4 Green tide monitoring in WFD and GT index computation 
 

128 To quantify the intensity of the GTs, we used four indicators provided by the Center for Study 
 

129 and Promotion of Algae (CEVA, France) and the WFD (Table 3). Three of these indicators 
 

130 (GT1, GT2 and GT3) were based on quantitative maps of GT, and the last indicators (GT4) 
 

131 was based on a WFD indicators (Table 3). The quantitative maps were obtained by 
 

132 combination of orthophotographies and field monitoring. Orthophotographies were obtained 
 

133 from an aircraft during low tide, and field monitoring was performed to determine the 
 

134 associated density of macroalgae. The quantitative maps represented the macroalgal 
 

135 proliferation as a percentage of algal cover. The first three indicators of GTs were derived 
 

136 from these maps at different spatio-temporal scales (Table 3): 
 

137 - At a large scale (i.e., the estuary scale), the ecological quality ratios (EQRs) were used 
 

138 (GT1). The EQR index is a validated indicator of estuarine quality in terms of macroalgal 
 

139 proliferation that is applied in the WFD (Wilkes et al., 2014). The EQR index is composed of 
 

140 four scores: poor, moderate, good and high. Inside each of the thirteen estuaries, a low 
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141 variability of the EQR was observed over the period of 2008-2014 (Supp. Fig. 1.1). Among 
 

142 the thirteen estuaries, some were almost clear of green macroalgae (high), while others were 
 

143 impacted by GTs (moderate, Table 1). No poor EQR were recorded within the studied 
 

144 estuarine. 
 

145 - At a local scale (i.e., the trawl haul scale), we used two indicators based on the same data 
 

146 (Table 3): (i) the macroalgal mat surface ratio within the trawl hauls (GT2), and (ii) the 
 

147 macroalgal mat surface ratio near the trawl hauls (GT3). The macroalgal mat surface ratio 
 

148 within the trawl hauls (GT2) was computed using QGis software by combining the 
 

149 quantitative maps of macroalgal proliferation with the trawling location from 2008 to 2014 
 

150 (which was the same period as the fish trawl surveys). Preliminary analysis and expert 
 

151 knowledge validated the inter-annual steadiness of this distribution. The macroalgal mat 
 

152 surface ratio near the trawl samples (GT3) was also computed by combining the quantitative 
 

153 maps of macroalgal proliferation with the trawl haul location. To achieve this, a surface buffer 
 

154 was calculated around each beam trawl haul (Supp. Fig. 2.1). Several surface buffers were 
 

155 calculated to compute the index of the macroalgal surface ratio near the trawl hauls with 
 

156 different buffer distances (i.e., from 100 to 1000 m). Inside each buffer, the proportion of sea 
 

157 surface (excluding land cover) covered by green macroalgae was calculated up to a certain 
 

158 threshold (i.e., >25%, >50% and >75%) (Supp. Fig. 2.1). The influence of the buffer distances 
 

159 and thresholds was assessed in preliminary analysis before the GT3 was integrated as 
 

160 explaining covariates in the models of fish metrics. We screened the correlation levels 
 

161 between the GT index in the vicinity of trawl hauls according to the different buffer distances 
 

162 that were defined around the beam trawl hauls (ranging from 100 to 1000 m) and the different 
 

163 algal cover thresholds ( > 25%; > 50% and > 75%). 
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164 In addition, at a local scale, we tested a fourth GT descriptor on a restricted dataset. The Ulva 
 

165 spp. density per beam trawl (GT4) was estimated from an additional protocol added to the 
 

166 WFD trawl surveys in 2013 and 2014 (Table 3). These data were available for 227 beam trawl 
 

167 hauls and were collected using a WFD standardized protocol (Scanlan et al., 2007) 
 

168 The influence of each of these four indicators on fish metrics was tested separately to 
 

169 determine the most appropriate scale for assessing the effect of GTs on estuarine fish. 
 

170 2.5 Modelling the effect of GTs on the fish community 
 

171 The multi-scalar approach used for the GT indicators allowed us to explore the appropriate 
 

172 scale for detecting the impacts of GTs on fish communities. Because there is no optimal scale 
 

173 to describe an ecological phenomenon (Levin, 1992; Wheatley and Johnson, 2009), we chose 
 

174 to compare the response of the fish community  to these four GT indexes in separate analyses. 
 

175 The modelling approach integrated the response of fish to the natural variability and the four 
 

176 GT indexes used in four separate models (Eq. 1): 
 

177 Fish metrics ~ environmental variables + GT* (Eq. 1) 

178 where the environmental variables represent the four natural drivers (i.e. ecoregion + salinity 
 

179 + depth), and “GT*” corresponds to one of the four GT metrics (Table 3). 
 

180 2.5.1 Species richness 
 

181 The species richness was modelled using GLM with a Poisson distribution (Eq. 2). This 
 

182 distribution is most commonly used for analysing count data in trawl surveys (Courrat et al., 
 

183 2009). 
 

184 Species richness ~ (environmental variables) + (GT*) + ε   (link function = log) (Eq. 2) 
 

185 where the environmental variables represent the four natural drivers, and “GT*” corresponds 
 

186 to one of the four GT metrics (Table 3). 
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187 2.5.2 Fish density 
 

188 The fish survey data were characterized by a large proportion of zeros (Supp. Fig. 1.2.a). 
 

189 According to this zero-inflated distribution, we used a delta distribution (Aitchison and 
 

190 Brown, 1957). This approach is appropriate for the analysis of fish survey data (Stefansson, 
 

191 1996; Le Pape et al., 2003). The delta model (Aitchison, 1955; Pennington, 1983) combines 
 

192 two distinct GLMs: one sub-model for fish presence and absence (Eq. 3), and one sub-model 
 

193 for positive density (Eq. 4). 

 

194 - Binomial sub-models for fish presence 

 

195 Y (1/0) ~ (environmental variables) + (GT*) + ε (link function = logistic) (Eq. 3) 

 

196 where Y (1/0) represents the presence or absence of fish (i.e., 1 or 0). The area under the curve 
 

197 (ROC) was used as a criterion to validate the goodness-of-fit of each sub-model (Manel et al., 
 

198 2002; Vasconcelos et al., 2013). 

 

199 - Sub-models for positive fish density 

 

200 Log (Y (>0)) ~ (environmental variables) + (GT*) + ε (link function = identity) (Eq. 4) 

 

201 where Y (>0) is the density of fish when at least one fish was caught. The log-transformed 
 

202 positive  densities  satisfy  the  conditions  of  a  linear  distribution  and  the  homogeneity  of 
 

203 variance for these sub-models (Supp. Fig. 3.1.). The value of the actual data vs. the predicted 
 

204 relationship was used as a criterion to validate the goodness-of-fit of these sub-models (Manel 
 

205 et al., 2002; Vasconcelos et al., 2013). 

 

206 - Coupling 

 

207 The two sub-models (Eqs. 3 and 4) were coupled (Eq. 5) to estimate fish density (Stefansson, 
 

208 1996). A correction was applied to the positive sub-models to obtain unbiased estimations 
 

209 from log-transformed data (Laurent, 1963). 
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210 (Eq. 5) 

 

211 where Ŷ is the fish density estimated by the delta model; Y (1/0) is the probability of the 

 

212 presence of fish provided by the binomial model; Y (>0) is the logarithmic density of fish 

 

213 provided by the log-normal model; and α²(ln(Y (>0)) is the standard error associated with the 
 

214 log-normal model. 
 

215 To quantify the uncertainty that accounts for the combination of the two sub-models’ errors, 
 

216 we used a random sampling approach. We predicted the presence of fish on 5,000 subsamples 
 

217 that were randomly generated with the binomial model, and we log-transformed the densities 
 

218 of 5,000 subsamples that were generated with the GLM model using positive density values. 
 

219 Then, these predictions were coupled, and we computed the 10%, 50% and 90% quantiles of 
 

220 the 5,000 predictions (Courrat et al., 2009). 
 

221 2.5.3 Preliminary analysis and modelling options 
 

222 There was a single exception to the use of the delta model, and it concerned the pelagic fish 
 

223 guild. The proportion of non-null observations of pelagic fish was too low to allow for fitting 
 

224 a positive sub-model. As a result, a single binomial model (Eq. 3) was developed for this 
 

225 guild (Table 4). 
 

226 The GLM approach requires linearity in the relations between the response variable and the 
 

227 covariates. This assumption was preliminarily tested before the integration of the 2 
 

228 environmental variables (e.g., depth and salinity, and ecoregion was a class factor) as linear 
 

229 factors in the GLM. For depths down to 16 m, we observed atypical observations and non-linear 
 

230 effects on fish metrics. Thus, to account for the linear effect of depth, we removed trawl samples 
 

231 that were deeper than 16 m. By doing so, we narrowed the data set by less than 1% of the survey 
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232 data. In a few other cases where we found non-linear patterns, we integrated the 
 

233 environmental variable as a class factor in the GLMs (see pelagic fish in Table 4). 
 

234 The models were run using R software (R Core Team 2016). For both sub-models, the 
 

235 selected level of statistical significance of the four environmental variables and the GT 
 

236 indexes of the GLM was 5% (i.e., only the environmental variables that were significant at the 
 

237 5% level were retained, and the same was applied to GT*). Both the explained percentage of 
 

238 deviance and the Akaike information criterion (AIC) were used to assess the effects of the 
 

239 environmental variables and the GTs on the fish metrics. 
 

 

240 3 Results 

241 3.1 Fish community and its environmental variables 
 

242 The majority of fish caught belonged to the demersal (71.5%) and benthic (26.6%) guilds, 
 

243 while a minority of fish were pelagic (1.9%). For the ecological guilds, the residents were the 
 

244 most frequently caught species (70%), followed by the marine juveniles (13%). Other 
 

245 ecological guilds were poorly represented and were, thus, not included. Globally, the 
 

246 statistical significance of depth and ecoregion were high in the models, and the salinity 
 

247 appeared to be a structuring factor for the density of the benthic and marine juvenile guilds in 
 

248 spring (Table 4). Selected models had satisfying goodness-of-fit values (Supp. Table 3.1; 
 

249 Supp. Fig. 3.1). 
 

250 3.2 GT index computation 

251 The study revealed that few beam trawls were conducted within the algal mat: 54 trawl hauls 
 

252 occurred in spring and 71 hauls occurred in autumn (i.e., 9% of the fish community data). 
 

253 Furthermore, the macroalgal mat surface ratio (GT2) was very low at these 125 beam trawl 
 

254 hauls. Accordingly, the green macroalgae density accumulated per beam trawl haul, which 
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255 was available in 2013 and 2014 (GT4), was very low (mean biomass = 0.0035 kg/m2, Supp. 
 

256 Fig. 1.2.b). 
 

257 The  macroalgal  mat  surface  ratio  near  the  beam  trawl  haul  (GT3)  differed  among  the 
 

258 threshold and buffer combinations. For identical buffer distances, the different algal cover 
 

259 thresholds were correlated (more than 80%; Supp. Fig. 2.2.). In the radius range of 300-800 
 

260 m, the levels of correlation were also high between the GT indexes for the different buffer 
 

261 sizes and the algal cover thresholds (Supp. Fig. 2.2.). We selected a single combination of 
 

262 buffer distance and algal cover to compute the macroalgal mat surface ratio near the beam 
 

263 trawl hauls (GT3): the 25% threshold of algal cover within the 500 m buffer. 
 

264 3.3 Large-scale effect of GTs 
 

265 Accounting  for  the  statistical  significance  of  the  environmental  variables  (Table  4),  the 
 

266 significant effects of the EQR (GT1) were detected for 13 of the 14 models in spring and for 
 

267 11 of the 14 models in autumn (Table 4). However, a single fish metric – the density of 
 

268 benthic fish in spring – had a monotonous relationship with GT1 (i.e., a continually 
 

269 decreasing density associated with a decreasing gradient of the EQR). Moreover, the deviance 
 

270 explained by GT1 for the density of benthic fish was the highest (32% for the presence- 
 

271 absence model and 2% for the positive density model). Furthermore, the confidence bands 
 

272 around the prediction associated with the average and high EQR scores did not overlap, and 
 

273 there was a distinguishable difference in density (Fig. 2). GTs negatively impacted the benthic 
 

274 guild  in  spring.  The  deviance  explained  for  the  other  fish  metrics  was  less  than  10%. 
 

275 According  to  this  low  signal  at  the  estuarine  scale,  there  was  no  significant correlation 
 

276 between GT1 and ELFI. 



13  

277 3.4 Local-scale effect of GT 

278 Accounting for the statistical significance of the environmental variables, the two indexes of 
 

279 proliferation at beam trawl locations (GT2 and GT4) were not statistically significant for 
 

280 either the spring or autumn surveys. 
 

281 Conversely, statistically significant effects (Table 4) were observed for the algal cover near 
 

282 the beam trawl haul (GT3). In spring, the probability of the presence of the resident guild 
 

283 responded to GTs positively. In autumn, statistical significance was detected for 6 of the 12 
 

284 models. Positive effects of the GTs were observed on total fish density, demersal fish density, 
 

285 and resident fish density. In contrast, GTs had a negative effect on the benthic and marine 
 

286 juvenile fish densities. The density of marine juveniles was halved when 20% of the surface at 
 

287 an area less than 500 m from a beam trawl haul had a green macroalgae cover greater than 
 

288 25% (Fig. 3). 
 

 

289 4 Discussion 

290 This study provided evidence on the effects of GTs on estuarine fish communities, and it 
 

291 focused on thirteen estuarine systems with contrasting levels of GTs. It appeared that GTs had 
 

292 both negative and positive effects on the fish communities. Benthic fish were especially 
 

293 sensitive and negatively impacted, and marine juveniles appeared to be dramatically more 
 

294 sensitive than were resident fish. This confirmed previous findings from coastal areas (Howell 
 

295 et al., 1999; Jokinen et al., 2015; Le Luherne et al., 2016), and enabled us to extend these 
 

296 conclusions to estuaries. 
 

297 4.1 Can we consider correlations to GT indexes as causal links to GTs? 

298 Fish that inhabit estuaries have adapted to strong environmental gradients (e.g., “estuarine 
 

299 quality paradox” theory; Elliott and Quintino, 2007). Thus, it was critical to consider the 
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300 environmental constraints before providing a reliable assessment of the impacts of GTs on the 
 

301 estuarine fish communities (Nicolas et al., 2010). Accounting for these “natural” factors that 
 

302 structure fish communities at different scales (time: seasonal patterns; space: ecoregion at a 
 

303 mesoscale, depth and salinity at a local scale) allowed us to account for a part of the “natural” 
 

304 variability and autocorrelations in the fish survey data, which enabled a reliable assessment of 
 

305 the effects of GTs. 
 

306 In addition, the potential effects of the other anthropogenic pressures potentially combined 
 

307 with the effects of GTs were not considered. The lack of an exhaustive assessment of the 
 

308 ecological status of these thirteen estuaries in the WFD, e.g., with regard to the concentration 
 

309 of  xenobiotics,  prevents  the  present  approach  from  accounting  for  them.  These potential 
 

310 confounding factors smooth the strength of the conclusions based on analysis at the estuarine 
 

311 scale. However,  the use  of  local-scale GT indexes,  especially GT3,  allows  for a  thin-scale 
 

312 analysis of the link between GTs and fish metrics, with a dramatically less probable  influence 
 

313 of potential confounding factors. 
 

314 4.2 Large-scale impacts of GT 
 

315 At the large scale, a single negative effect of GTs was revealed on the benthic guild. It was 
 

316 previously demonstrated that this guild was the most sensitive to green macroalgae 
 

317 proliferation (Bowen and Valiela, 2001; Bricker et al., 2008; Le Luherne et al., 2016, 2017). 
 

318 However, there was no further signal of change in the fish community in relation to GT1. The 
 

319 relatively low intensity of GTs in these estuaries, the minimum score of EQR encountered in 
 

320 this survey was a moderate status of estuarine quality in terms of macroalgal proliferation, 
 

321 prevents dramatic changes in the fish communities at the global scale of estuaries. 
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322 4.3 Local-scale impacts of GT 

323 First, we analysed the effects of GTs directly at the trawling location using two indicators 
 

324 (i.e., macroalgal mat surface ratio on beam trawl hauls, GT2, and Ulva spp. density per beam 
 

325 trawl haul, GT4). From previous restricted small-scale analysis, these two indicators of the 
 

326 local intensities of GTs were expected to have significant effects on the fish community. 
 

327 However, none of the fish metrics presented a significant response to the GT descriptors at the 
 

328 trawling locations. This lack of response was explained by the fish sampling protocol. Indeed, 
 

329 during the WFD survey, trawl hauls were conducted beside the algal mats to avoid the 
 

330 clogging of the net. Consequently, the surfaces and biomasses of algae were low at the 
 

331 trawling locations. The maximum Ulva spp. density per beam trawl haul recorded was 0.05 
 

332 kg/m² in spring and 0.18 kg/m² in autumn. These low algal densities explain the absence of 
 

333 significant effects on fish metrics. Indeed, Le Luherne et al. (2016) observed a minimum algal 
 

334 density threshold of 0.30 kg/m² from which the fish community was significantly impacted by 
 

335 expanded blade green macroalgae. The under-sampling of the algal mats during the surveys 
 

336 explained the inability to provide a clear-cut assessment of the impacts of GTs on fish at the 
 

337 trawling positions. To improve this assessment, the impacts of the GTs should be analysed 
 

338 using a dedicated protocol that has been fitted for a before-after control-impact analysis (Le 
 

339 Luherne et al., 2016). 
 

340 To cope with the under-sampling of the algal mats during the fish surveys, we computed the 
 

341 macroalgal mat surface ratio near the beam trawl hauls to test the effect of the spread of the 
 

342 GTs beyond the algal mats. This local descriptor succeeded in detecting the effect of GTs on 
 

343 estuarine fish. 
 

344 A single significant and positive effect of GTs on resident fish was observed in spring based 
 

345 on the GT index near the beam trawl hauls. This moderate effect may be caused by the very 
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346 limited biomass and cover of algae before the proliferation season begins (Adams, 2005; 
 

347 Andrades et al., 2014). Proliferation occurs between May and September (Merceron et al., 
 

348 2007). As a result, a potential scale mismatch between the GT indicator and the fish surveys 
 

349 may have occurred during the spring campaigns of certain years. 
 

350 Conversely, half of the functional guilds presented a significant response to GT3 in autumn. 
 

351 Resident and demersal fish responded positively to moderate algal cover in their vicinity 
 

352 (Adams, 2005; Andrades et al., 2014). However, benthic and marine juvenile fish were 
 

353 negatively impacted. This sensitivity of benthic and marine juvenile fish was already observed 
 

354 during GTs, with a dramatic decrease in their density even during moderate proliferation (Pihl 
 

355 et al., 2005; Le Luherne et al., 2016), as well as a decrease in individual performance (Le 
 

356 Luherne et al., 2017). 
 

357 4.4 Generalization on the impact of GTs on fish 
 

358 The density of benthic fish responded negatively to the GT1 and GT3 indicators of 
 

359 proliferation, with strong evidence supporting the sensitivity of this guild to GTs. This 
 

360 sensitivity may be explained by the GT pattern of proliferation. GTs generate physical, 
 

361 chemical and trophic perturbations that affect the fish community within a small area 
 

362 (Nordström et al., 2007; Luherne et al., 2016). Physical stress is linked to the degradation of 
 

363 the physical structure of the habitat. GTs first colonize the estuarine floor, modifying the 
 

364 structure of the substratum (Solidoro et al., 1997), and then the water column is colonized (Le 
 

365 Luherne et al., 2016). This modification of the bottom habitat by GTs mainly affects 
 

366 macrobenthic communities (Quillien et al., 2015), including benthic fish (Le Luherne et al., 
 

367 2016, 2017). Trophic perturbations are linked to a decrease in fish foraging efficiency within 
 

368 the mats of Ulva spp (Nordström et al., 2007; Luherne et al., 2016). Finally, chemical 
 

369 perturbations could occur with anoxic events within the sediment or at the sediment-water 
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370 interface below the mats of Ulva spp. (Baden, 1990; Sundbäck et al., 1996). Therefore, the 
 

371 benthic fish are the first to be impacted due to the degradation of their habitat (Wennhage, 
 

372 2002; Wennhage and Pihl, 2007). 
 

373 Following the rapid impact on benthic fish, shifts from a benthic to a pelagic community 
 

374 could be observed after GT events (Bowen and Valiela, 2001). In the Baltic Sea, a massive 
 

375 change in fish composition was associated with a decrease in the foraging efficiency of 
 

376 predatory fish, and this change was induced by a GT (Pihl et al., 2005; Österblom et al., 
 

377 2007). In fish survey data from the thirteen studied estuaries, the proportion of pelagic fish 
 

378 was low (<2%) with regard to previous estimations of European estuarine fish assemblages 
 

379 (25%; Elliott and Dewailly, 1995). This result revealed that the fish community was not fully 
 

380 represented in the French WFD surveys. Indeed, the beam trawl is well adapted to sample the 
 

381 benthic and demersal communities, but this method is inadequate for sampling pelagic fish 
 

382 (Courrat et al., 2009; Delpech et al., 2010). GTs mainly disturb benthic and demersal species 
 

383 (Le Luherne et al., 2016, and the present study); thus, the sampling bias did not compromise 
 

384 the validity of the present approach for these fish guilds. Moreover, the effects of GTs on 
 

385 pelagic fish occurred at a high level of GT proliferation, which was not observed in the 
 

386 present data set in the sampled areas. However, potential shifts from a benthic to a pelagic 
 

387 community after GT events (Bowen and Valiela, 2001) could not be assessed with this 
 

388 sampling protocol. This type of assessment requires a dedicated protocol to investigate 
 

389 massive algal mats and sample the whole fish community (Le Luherne et al., 2016). 
 

390 Concerning the ecological guilds, in spite of the moderate level of GTs investigated, the 
 

391 present approach provided evidence that GTs had negative consequences on marine juvenile 
 

392 fish. The local productivity of several coastal and estuarine nursery-dependent marine fish 
 

393 will be reduced with the proliferation of green macroalgae in coastal (Pihl et al., 2005, Brown 
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394 et al., 2017) and estuarine areas (Peterson et al., 2000; Stoner et al., 2001). The juvenile stage 
 

395 is a key life stage for fish population size (Stoner et al., 2001; Le Pape and Bonhommeau, 
 

396 2015), and marine populations of species that are dependent on coastal and estuarine nursery 
 

397 grounds and the related fisheries could be impacted by GTs, as observed in the Baltic Sea 
 

398 (Baden, 1990; Jokinen et al., 2015). 
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615 Figure captions 
 

616 Figure 1: a) Locations (in WGS84 coordinates) of the studied estuaries in northwestern France 617 

split into two ecoregions: north and south. The spatial protocol for the fish survey is provided 618   as 

an example for 2 of the thirteen estuaries studied, in (b) the Morlaix  Estuary and (c) the    619 Aulne 

Estuary. Lines: the locations of beam trawls; hatched grid: mats of green macroalgae. 

620 
 

621 Figure 2: GLM prediction (with the 10-90% confidence intervals) of the estuarine benthic fish 622 

density (number/ha) according to the salinity and the two scores of the ecological quality ratio 623 

(moderate in grey and high in black) in an estuary located in South Brittany that was sampled 624 in 

spring. 

625 
 

626    Figure 3: GLM prediction (with the 10-90% confidence intervals) of the estuarine marine     627   

juvenile density (number/ha) according to the percentage of the surface that had more than    628      25% 

algal cover and was within 500 m, in an estuary located in South Brittany that was      629 sampled in 

autumn. 
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FIGURE 2 
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FIGURE 3 
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639 

640 Table 1:  Total  estuary area and intertidal area  (ha) (Teichert et  al,  2018), mean  ecological  641    

quality ratio (EQR) and the Estuarine and Lagoon Fish Index (ELFI, Delpech et al. 2010,     642 Lepage 

et al. 2016) and the associated scores for the thirteen studied estuaries. 
 

 

Estuary 
Total area 

(ha) 

Intertidal area 

(ha) 

EQR 

(mean) 

EQR 

score 

ELFI 

(mean) 

ELFI 

(Score) 

Aber Wrach 699 594 0.60 Good 0.46 Moderate 

Aulne 1831 973 0.60 Good 0.59 Moderate 

Aven 166 116 0.74 Good 0.88 Good 

Belon 183 128 0.96 High 0.88 High 

Blavet-Scorff 1531 863 0.47-0.8  0.67 High 

Elorn 631 324 0.66 Good 0.96 Good 

Goyen 155 111 0.93 High 0.65 Moderate 

Laita 247 125 1.00 High 0.77 Good 

Morlaix river 1361 1146 0.48 Moderate 0.44 Good 

Odet 900 529 0.82 High 0.21 Good 

Pont l'Abbe 646 545 0.43 Moderate 0.67 High 

Trieux 777 478 0.55 Moderate 0.67 Bad 

643 
 

644 

645   Table 2: Definition of the three vertical distribution guilds and the two  selected ecological    646 

guilds (based on Franco et al., 2008; Potter et al., 2015). 

 

Guild Criterion Definition 

 

Pelagic 
Vertical 

distribution 

 

Species living in the water column 

 

Demersal 
Vertical 

distribution 

 

Species living in the water layer just above the bottom 

 

Benthic 
Vertical 

distribution 

 

Species living on the substratum 

 

Marine juvenile 

 

Ecology 
Species using the shallow coastal waters and estuaries primarily as 

nursery grounds 

 

Resident 
 

Ecology 
Species spending their whole life cycle in shallow coastal waters and 

estuaries 

647 
 

648 
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650 
 

651 
 

652 

Table 3: Description of the four indicators of green tide proliferation. 
 

 
Indicator 

 
Spatial scale 

 
Variable 

 
Green tide indicator 

Available 

data 

 
GT1 

 
Large scale 

 
Factor 

 
Ecological quality ratio (EQR) 

 
2008-2014 

 
GT2 

 
Local scale 

 
Continuous 

 

Macroalgal mat surface ratio on the 

trawl haul (percentage) 

 
2008-2014 

 
GT3 

 
Local scale 

 
Continuous 

Macroalgal mat surface ratio near 

beam trawl hauls (percentage) 

 
2008-2014 

 
GT4 

 
Local scale 

 
Continuous 

Ulva spp. density per beam trawl 

haul (kg.m-²) 

 
2013-2014 



658  

 

653  Table 4: Statistical significance of the generalized linear models of the fish metrics for the probability of presence, the positive densities and the  654   

species richness, and  for the two GT indicators  (large scales:  GT1  and  local scale:  GT3). NS:  nonsignificant; p-value:  *≤5%, **≤1% and    655 

***≤0.1%. 
 

   
Spring 

   
Autumn 

  

Fish metrics Model Environmental drivers + 
Large-scale 

effect (GT1) 

Or 
+ 

Local-scale 

effect (GT3) 
Environmental drivers + 

Large-scale 

effect (GT1) 

Or 
+ 

Local-scale 

effect (GT3) 

Density Pres-abs Depth (***) + Ecoregion (***)  *  NS Depth (***)  NS  NS 

 >0 Depth (***) + Ecoregion (**)  *  NS Depth (***)  ***  * 

Species 
richness 

Depth (***) + Ecoregion (**) 
 

*** 
 

NS 
Ecoregion (***) + Depth 
(*) 

 
*** 

 
NS 

Benthic guild 
density 

Pres-abs 
Ecoregion (***) + Salinity 
(***) 

 
*** 

 
NS Ecoregion (***) 

 
* 

 
NS 

 
>0 

Ecoregion (***) + Salinity 

(***) 
 

** 
 

NS Ecoregion (***) 
 

*** 
 

* 

Demersal 

guild density 
Pres-abs None 

 
*** 

 
NS Depth (***) 

 
NS 

 
NS 

 >0 None  ***  NS Depth (***)  ***  *** 

Pelagic guild 
density 

Pres-abs 
Class of salinity (***) + depth 
(**) 

 
*** 

 
NS None 

 
*** 

 
NS 

Resident 

guild density 
Pres-abs Depth (***) 

 
*** 

 
* Depth (***) 

 
** 

 
NS 

 >0 Depth (***)  ***  NS Depth (***)  ***  *** 

MJ guild 

density 
Pres-abs Salinity (***) + Ecoregion (**) 

 
*** 

 
NS None 

 
** 

 
*** 

 
>0 

Ecoregion (***) + Salinity 
(***) 

 
** 

 
NS None 

 
*** 

 
** 
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Aber_Wrach Aulne Aven Belon Blavet Elorn Goyen Laita Morlaix Odet  Pont_lAbbe  Scorff Trieux 

 

Supp. Fig. 1.1 Ecological quality ratios of the thirteen estuaries from 2008 to 2014 

(boxplots: thick line: median; box: from the 0.25 quartile to the 0.75 quartile; whiskers: 

1.5 times the distance between the quartiles; circles: outlier values). 

E
c
o

lo
g

ic
a
l.
Q

u
a

lit
y
.R

a
ti
o
s
 



2  

 

672 

 

 
673 
674 

 

675 

 
Supp. Fig. 1.2. (a) Spring distribution of the log-transformed total density of fish 

from the entire sampling of the thirteen estuaries; (b) distribution of Ulva spp. 

density (kg/m²) caught per beam trawl in 2013 and 2014. 

 

676 Appendix 2 – Sensibility analysis for the proximity index 
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676 

677 
 

678 
 

679 

Supp. Fig. 2.2. Correlation matrix between the radius areas and the different algal 

density thresholds. The size and the color of circles represent the different levels of 

correlation. 
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680 Appendix 3 – Validation of the GLM models on positive density 

 

 
681 

 

682 Supp. Table 3.1. Goodness-of-fit for the Binomial sub-models. AUC values and the p- 

683 values associated. 
 
 

 
Area under 

curve 

spring  

p 

 

value 

 
Area under 

curve 

autumn  

p 

 

value 

Presence of fish 0.79 *** 0.67 *** 

Presence of the benthic guild 0.84 *** 0.70 *** 

Presence of the demersal guild NA NA 0.67 *** 

Presence of the pelagic guild 0.67 *** NA NA 

Presence of the resident guild 0.61 *** 0.62 *** 

Presence of the marine juvenile 0.76 *** NA NA 

 
684 

685 

686 

Residuals vs fitted Normal QQ plot Residuals vs fitted Normal QQ plot 

Supp. Fig. 3.1. Validation of the GLMs on the positive density for the total density of 

fish (log scale) in: (a) autumn, (b) spring. 


