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Highlights 

* We use adaptive dynamics theory to study the evolution of plant-virus symbioses 

* Ecological bistability in a discrete-time model with frequency-dependent transmission 

* Darwinian extinction can occur under optimizing selection 

* Evolutionary branching of parasitic and mutualistic viral symbioses 

* Mutualism can outcompete parasitism in the long-run 
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Abstract8

Virus-plant interactions range from parasitism to mutualism. Viruses have been shown to in-

crease fecundity of infected plants in comparison with uninfected plants under certain environ-10

mental conditions. Increased fecundity of infected plants may benefit both the plant and the virus

as seed transmission is one of the main virus transmission pathways, in addition to vector trans-12

mission. Trade-offs between vertical (seed) and horizontal (vector) transmission pathways may

involve virulence, defined here as decreased fecundity in infected plants. To better understand14

plant-virus symbiosis evolution, we explore the ecological and evolutionary interplay of virus

transmission modes when infection can lead to an increase in plant fecundity. We consider two16

possible trade-offs: vertical seed transmission vs infected plant fecundity, and horizontal vector

transmission vs infected plant fecundity (virulence). Through mathematical models and numer-18

ical simulations, we show 1) that a trade-off between virulence and vertical transmission can

lead to virus extinction during the course of evolution, 2) that evolutionary branching can occur20

with subsequent coexistence of mutualistic and parasitic virus strains, and 3) that mutualism can

out-compete parasitism in the long-run. In passing, we show that ecological bi-stability is possi-22

ble in a very simple discrete-time epidemic model. Possible extensions of this study include the

evolution of conditional (environment-dependent) mutualism in plant viruses.24
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1 Introduction

Plant viruses exhibit the full symbiont spectrum and thus can have a range of effects on plants26

(Roossinck, 2011; Bao and Roossinck, 2013; Fraile and Garcı́a-Arenal, 2016). Plant viruses

can confer herbivore resistance (Gibbs, 1980), pathogen resistance (Shapiro et al., 2012), and28

drought tolerance (Xu et al., 2008; Davis et al., 2015). Differential effects of viruses on plants

occur due to variation in environment and genetics of plants and viruses (Johansen et al., 1994,30

1996; Domier et al., 2007, 2011; van Mölken and Stuefer, 2011; Davis et al., 2015; Hily et al.,

2016). Some viruses have neutral or positive effects on plants by not affecting or increasing32

components of fitness, respectively (van Mölken and Stuefer, 2011; Davis et al., 2015; Hily et al.,

2016). These recent works contradict decades of extensive research on plant viruses elucidating34

the negative effects of viruses in agronomic systems. Results from these previous works have led

to the convention of virologists referring to viruses as pathogens. In light of recent findings, it is36

clear that plant viruses do not always lead to disease and therefore by definition are not always

pathogens (Pagán et al., 2014; Fraile and Garcı́a-Arenal, 2016).38

Virus-plant interactions are obligate, symbiotic interactions that exist along a spectrum from

parasitism to commensalism to mutualism. Parasitic associations occur when one species exists40

at a cost to the other, which follows the convention of virus-plant interactions. Commensalism

occurs when one species profits from the interaction, but has no effect on the other species.42

The plant benefits the virus by promoting virus transmission. In the common bean (Phaseolus

vulgaris) seed number and weight were not affected by Phaseolus vulgaris endornavirus 1 and 244

(R. A. Valverde pers. comm.). In a mutualistic relationship net effects are positive with enhanced

survival and/or reproduction for both the plant and virus, thus as with all mutualisms the benefits46

outweigh the costs of the relationship. Cucumber mosaic virus (CMV) benefits Arabidopsis

thaliana by increasing seed production in comparison to plants without virus though this effect48

3
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depends upon environmental conditions (Hily et al., 2016). CMV alters volatiles in Solanum

lycopersicum making it more attractive to pollinators (Groen et al., 2016), which may enhance50

virus transmission by seed.

Plant viruses have evolved various modes of transmission resulting in genetic variation within52

and among virus species to interact with the genetic variation within and among plant species

(Johansen et al., 1994, 1996; Domier et al., 2007, 2011). Some viruses are integrated into the54

plant genome and thus are persistent (Harper et al., 2002). Certain virus species can circulate

within an insect vector or propagate within an insect vector resulting in persistent virus trans-56

mission to plants, while other vector-transmitted viruses are transferred in a semi-persistent to

non-persistent manner (intermediate to short timeframe). Most viruses depend upon more than58

one mode of natural transmission by pollen, seed, and vector (reviewed in Hamelin et al. 2016)

though having a suite of transmission modes can lead to trade-offs among modes of transmission.60

Trade-offs between seed and vector transmission may occur when vector transmission is

positively correlated with virulence, defined here as reduced fecundity in infected plants, as62

opposed to increased mortality in infected plants (Doumayrou et al., 2013). Serial passage of the

Barley stripe mosaic virus in Hordeum vulgare through vectors resulted in an increase in vector64

transmission rate and virulence (reduced seed production), whereas serial passage through seed

led to an increase in seed transmission and a decrease in virulence (increased seed production)66

(Stewart et al., 2005). Likewise, serial passage of Cucumber mosaic virus (CMV) by seed of

Arabidopsis thaliana led to an increase in seed transmission rate, decline in CMV virulence68

(increased total seed weight) and reduction in virus accumulation (Pagán et al., 2014). A trade-

off between virulence and vector transmission in a parasitic virus can lead to the emergence70

and coexistence of virulent vector-borne strains and less virulent, non-vector borne strains of

virus (Hamelin et al., 2016). Futhermore, trade-offs between modes of transmission can result72

in the coexistence of different modes of virus transmission within a plant population that is

4
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evolutionarily stable (Hamelin et al., 2016).74

To better understand plant-virus symbiosis evolution, we explore the ecological and evolu-

tionary interplay of virus transmission modes between seeds and vectors when infection can76

lead to an increase in plant fecundity, which was not addressed by (Hamelin et al., 2016). We

consider two possible trade-offs: vertical seed transmission vs infected plant fecundity, and hor-78

izontal vector transmission vs infected plant fecundity (virulence). We use mathematical models

and numerical simulations to address three questions: 1) Can a trade-off between virulence and80

vertical transmission lead to virus extinction in evolutionary time? 2) As a virus evolves, can evo-

lutionary branching occur with subsequent coexistence of mutualistic and parasitic virus strains?82

3) Can mutualism outcompete parastism in the long-run?

2 Ecological model84

2.1 Discrete-time model

The model includes two methods for viral transmission to a host plant: (1) infected vectors and

(2) infected seeds. A discrete-time model is formulated since each of the transmission events

occur at different time periods during the year. Therefore, the year is divided into two periods,

corresponding to vector and seed transmission, denoted as V and S, respectively:

t →︸︷︷︸
V

t ′ →︸︷︷︸
S

t +1 .

During the time interval [t, t ′], the newly developed plants are colonized by vectors. Virus trans-86

mission from the vector to the host plant occurs during this first time interval. During the second

time interval [t ′, t + 1], seeds drop to the ground and those that survive, either uninfected or in-88

fected seeds, germinate and produce new uninfected or infected plants, respectively. We assume

5
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there is no seed bank. At the beginning of the next year, t + 1, seeds have germinated and pro-90

duced new plants. The annual cycle repeats.

To keep the model simple, there are no explicit vector dynamics. The acquisition of the virus92

by non-viruliferous vectors, and inoculation of the host plant by viruliferous vectors are modeled

implicitly. Only the dynamics of the host plant are modeled. Two variables account for the94

plant dynamics during each of these two stages. The two variables are H and I, the density of

uninfected and infected plants, respectively. The total density of uninfected and infected plants96

is denoted as T = H + I. The plant dynamics are observed each year at time t, t = 0,1,2, . . . after

seed transmission and before vector transmission.98

During the vector stage V , the Poisson distribution is used to model virus transmission be-

tween the vector and the host plant. Let ΛV denote the parameter in the Poisson distribution: it100

is the average number of viruliferous vector visits per plant per year that result in subsequent in-

oculation of an uninfected plant. Horizontal transmission parameter β relates this number to the102

infection prevalence at the beginning of the vector stage. Virus transmission through vectors is

assumed to depend on the frequency of infected plants, I/T , rather than on their density I (Ross,104

1911; Hamelin et al., 2016). Then

ΛV = β
I(t)
T (t)

Hence, the probability of no successful virus transmission from vectors to a given host plant is106

exp(−ΛV ) and the probability of successful transmission is 1−exp(−ΛV ). Therefore, at time t ′,

the model takes the form:108

H(t ′) = H(t)e−ΛV = H(t)exp
(
−β

I(t)
T (t)

)
,

I(t ′) = I(t)+H(t)[1− e−ΛV ] = I(t)+H(t)
[

1− exp
(
−β

I(t)
T (t)

)]
.

(1)

6
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Notice that at low infected plant density (I(t)� H(t)≈ T (t)),

I(t ′)≈ I(t)+H(t)β
I(t)
T (t)

≈ I(t)(1+β ) , (2)

i.e., β is like a multiplication factor of infected plants associated with vector transmission.110

For the second transmission stage S, we assume competition and overcrowding between

neighboring plants reduces the number of seeds per plant (Watkinson and Harper, 1978; Pacala112

and Silander Jr, 1985). Density-dependent effects apply equally to uninfected and infected plants.

Let bH and bI denote the effective number of seeds produced per uninfected or infected plant,114

respectively, at low plant density. We assume that the virus infects both the maternal plant and

the seeds. Thus, only infected plants produce infected seeds. At low plant density, more than one116

effective seed is produced per uninfected plant,

bH > 1. (3)

The seeds that survive germinate into either uninfected or infected plants. If vertical transmission118

is full, all seeds produced by an infected plant are infected but if not, only a proportion p produced

is infected and the remaining proportion q = 1− p is not infected.120

We apply a well-known form for plant density-dependence due to de Wit (1960) (also known

as Beverton-Holt density-dependence in animal populations). The model in the second stage is122

H(t +1) =
bHH(t ′)+qbII(t ′)

1+λT (t ′)
,

I(t +1) =
pbII(t ′)

1+λT (t ′)
,

(4)

where T (t) = H(t)+ I(t) and λ describes density-dependent competition between plants.

The full vector-seed transmission model consists of the preceding models for the two stages124

7
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Table 1: Model parameters and variables.

Notation Definition Unit

t time in years, t = 0,1,2, . . . time
T (t) total plant density at time t per area
H(t) uninfected plant density at time t per area
I(t) infected plant density at time t per area

bH effective number of seeds per uninfected plant none
bI effective number of seeds per infected plant none
p = 1−q infected seed transmission probability none
β vector transmission parameter none
λ plant competition parameter area

V and S, equations (1)–(4). Combining these two pairs of difference equations, the model can be

expressed as a first-order difference equation for uninfected and infected plants, i.e.,126

H(t +1) =
bHH(t)P(t)+qbI (I(t)+H(t)(1−P(t)))

1+λT (t)
,

I(t +1) =
pbI (I(t)+H(t)(1−P(t)))

1+λT (t)
,

(5)

where

P(t) = exp
(
−β

I(t)
T (t)

)

is the probability an uninfected plant escapes infection during year t. Table 1 lists all model128

variables and parameters with their definition.

2.2 Basic reproductive number130

At virus-free equilibrium (VFE), the density of infected plants is zero and the density of unin-

fected plants is132

H̄ =
bH−1

λ
.

8
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The basic reproductive number for model (5) is computed from linearization of the difference

equation for the infected host I about the VFE:134

R0 =
pbI

bH
(1+β ). (6)

If the reproductive number is greater than one, then our annual plant model shows that these two

transmission mechanisms may be able to maintain the virus within the host population. If viral136

transmission is purely vertical, limited only to seed transmission (β = 0), then R0 > 1 if and

only if pbI > bH , which requires bI > bH . That is, this simple model shows that purely vertical138

transmission of a virus through the seed cannot maintain the virus in the host population unless

infected plants have greater fecundity than uninfected plants (Fine, 1975; Hamelin et al., 2016).140

Note that the ratio bI/bH represents the extent to which host fecundity is reduced/increased by

virus infection. If reduced, then the ratio is a measure of the virulence of the virus (virus-induced142

loss of fitness).

In the mathematical analysis (Appendix A), we focused on the case p = 1 (full vertical trans-

mission), while simulations were additionally performed for p < 1 (partial vertical transmission;

Figure 1). For the case p = 1, a second basic reproductive number for invasion of uninfected

plants into an entirely infected plant population is derived. The equilibrium where the entire plant

population is infected is referred to as the susceptible-free equilibrium (SFE). A new threshold

value for the SFE is defined as

R0 =
bH

bI
exp(−β ).

If R0 < 1, then the SFE is stable and if R0 > 1 then the SFE is unstable (Appendix A.2). It144

appears that p < 1 is required for stable coexistence of both uninfected and infected plants to

occur (Appendix A). Figure 1-B shows that for bI > 1 and p < 1, the dynamics indeed converge146

9
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to an endemic equilibrium where uninfected and infected plants coexist.

2.3 Parameterization148

The uninfected plant fecundity parameter bH can be estimated from plant population dynamics.

For instance, bH ranges between 1.6 and 3.3 for the sand dune annual Vulpia fasciculata (Watkin-150

son and Harper, 1978; Watkinson, 1980). By contrast, bH is approximately 85 in Kherson oat

(Montgomery, 1912; de Wit, 1960). Thus, bH may range from 1 to 100, depending on the plant152

species considered. In this paper, infected plants may have greater fitness than uninfected plants,

so bI may range from 0 to 100 as well. Throughout the paper, we scale the plant densities by154

assuming a spatial unit such that λ = 1, without loss of generality.

In our model, β is a multiplication factor (Eq. 2) comparable to the basic reproductive number156

but restricted to the vector transmission period V (Eq. 6). Basic reproductive numbers are gaining

increasing attention in the plant virus literature (Froissart et al., 2010; Péréfarres et al., 2014), yet158

few studies provide estimated values for this quantity. Reasonable values of β may range from 0

to 10 (Holt et al., 1997; Madden et al., 2000; Jeger et al., 2004), even though larger values might160

also be relevant (Escriu et al., 2003; Madden et al., 2007).

3 Evolutionary analysis162

We follow an adaptive dynamics approach (Metz et al. 1992; Dieckmann and Law 1996; Geritz

et al. 1998; Diekmann 2004). To address the evolution of mutualistic viral symbioses, the single-164

strain model (5) is first extended to n virus strains which differ in their abilities to be seed-

transmitted (bI, p) or vector-transmitted (β ). We then consider a plant population infected with166

n = 2 virus strains, Ii, i = 1,2, which differ in their phenotypes. To simplify the notations, we

drop the subscript I in bI to replace it by the strain index i. Let x1 = (β1,b1, p1) be the resident168

10
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Figure 1: Virus and plant host population dynamics in the phase plane (H, I). Each panel shows
a set of possible orbits. Ecological bi-stability occurs for these parameter values (R0 < 1 and,
for p = 1, R0 < 1). Depending on initial conditions, the dynamics converge to the virus-free
equilibrium (black curves) or to an alternative equilibrium (grey curves): (A) virus fixation in the
plant population, (B) coexistence of uninfected and infected plants, (C-D) complete extinction of
the plant host population. Parameter values: (A-B) bH = 3, bI = 2, λ = 1, (A) β = 0.45, p = 1,
(B) β = 0.57, p = 0.95, (C-D) bH = 2, bI = 0.5, λ = 1 (C) β = 2, p = 1, (D) β = 2, p = 0.95.
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phenotype and let x2 = (β2,b2, p2) be the mutant phenotype. We assume the mutant initially

represents a relatively small subpopulation as compared to the resident. That is, I2� I1.170

3.1 Multi-strain dynamics

A natural extension of the single-strain model (5) to n virus strains, Ii, i = 1, . . . ,n, with traits172

(βi,bi, pi) is

H(t +1) =
bHH(t)P(t)+∑

n
k=1(1− pk)bk

(
Ik(t)+H(t)(1−P(t)) βkIk(t)

∑
n
j=1 β jI j(t)

)
1+λT (t)

,

Ii(t +1) =
pibi

(
Ii(t)+H(t)(1−P(t)) βiIi(t)

∑
n
j=1 β jI j(t)

)
1+λT (t)

, (7)

where T (t) = H(t)+∑
n
j=1 I j(t). The probability uninfected plants escape vector infection be-174

comes

P(t) = exp

(
−

n

∑
j=1

β j
I j(t)
T (t)

)
, (8)

whereas the expression (1−P(t)) is the probability of vector infection from some strain (Hamelin176

et al., 2011).

3.2 Evolutionary invasion analysis178

Following Metz et al. (1992), we are interested in testing whether the mutant can invade. In

particular, if180

lim
t→∞

1
t

log
(

I2(t)
I2(0)

)
< 0 , (9)

the mutant cannot invade the resident. For simplicity, we assume that the resident population with

phenotype x1 is at ecological equilibrium, i.e., I1(0)≈ i(x1) = i1 > 0 and H(0) = h(x1) = h1 > 0.182

Thus, the resident population is at an equilibrium corresponding to coexistence of uninfected and

12
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infected plants. We therefore define an evolutionary invasion condition as184

log
(

I2(1)
I2(0)

)
> 0. (10)

From the assumptions I2� I1 and the resident population at ecological equilibrium, it follows

from model (7) with n = 2 strains that the evolutionary invasion condition (10) can be expressed186

as

I2(1)
I2(0)

≈
p2b2

(
1+h1 (1−P1)

β2
β1i1

)
1+λ (h1 + i1)

> 0 , (11)

with188

P1 = exp
(
−β1

i1
h1 + i1

)
,

where P1 is the probability that uninfected plants escape vector infection at the ecological equi-

librium corresponding to the resident phenotype x1. Using the fact that the resident population I1190

is at ecological equilibrium,

I1(1)
I1(0)

≈
p1b1

(
1+h1 (1−P1)

β1
β1i1

)
1+λ (h1 + i1)

= 1 ,

simplifies the evolutionary invasion condition to192

p2b2

(
1+h1 (1−P1)

β2
β1i1

)
p1b1

(
1+h1 (1−P1)

β1
β1i1

) > 1 . (12)

Let F1 be the number of vector-borne infections per year relative to the force of infection of the

resident population, i.e.,194

F1 =
h1(1−P1)

β1i1
. (13)

13
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The evolutionary invasion condition (12) can equivalently be expressed as

(p2b2− p1b1)︸ ︷︷ ︸
seed-only

transmission

+(β2 p2b2−β1 p1b1)F1︸ ︷︷ ︸
vector-seed
transmission

> 0 . (14)

The expression on the left side of (14) is an invasion fitness proxy function, s(x1,x2), sign-196

equivalent to the invasion fitness function in (10). The dynamics of s(x1,x2) as a function of the

mutant phenotype x2 determine the evolutionary trajectories.198

In this paper, virulence is defined as the negative impact of the virus on host fitness, i.e.,

bH/bI . The remainder of the analysis is restricted to the case of bipartite transmission-virulence200

trade-offs with negative correlations between bI and p (vertical transmission), and bI and β

(horizontal transmission).202

3.3 Trade-off between vertical transmission and virulence

To consider a trade-off between seed transmission and virulence, we assume vector transmission204

is constant, βi = β , i = 1,2, then the invasion condition (14) reads

(p2b2− p1b1)(1+βF1)> 0 .

Since F1 ≥ 0, the preceding inequality is equivalent to206

p2b2− p1b1 > 0 .

Next, assume there is a trade-off between virulence and seed transmission, i.e., pi = g(bi), i =

1,2, with g′(bi) < 0. Then the invasion fitness proxy function depends only on b1 and b2. That208
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is,

s(b1,b2) = g(b2)b2−g(b1)b1 . (15)

The dynamics of s(b1,b2) as a function of b2 determine the evolutionary trajectory. In this210

case, b evolves so as to maximize the product g(b)b (Gyllenberg et al., 2011). This result was

confirmed by numerical simulations (Figure 2 A-B; Appendix B). However, it may be that212

the value of b that maximizes g(b)b is such that b ≤ 1 (Figure 2 C-D). In this case, evolution

drives the virus population to extinction (see also Figure 1). Such a phenomenon has recently214

been found to occur in a similar but continuous-time model with frequency-dependent horizontal

transmission (Boldin and Kisdi, 2016). Darwinian extinction under optimizing selection can also216

occur through a catastrophic bifurcation (Parvinen and Dieckmann, 2013).

3.4 Trade-off between horizontal transmission and virulence218

The trade-off between vector transmission and virulence yields a different evolutionary outcome

than the trade-off between seed transmission and virulence. Assume seed transmission is con-220

stant, pi = p > 0, i = 1,2. The invasion condition (14) is equivalent to

(b2−b1)+(β2b2−β1b1)F1 > 0 .

Let βi = f (bi), i = 1,2, with f ′(bi)< 0. Then an invasion fitness proxy function is222

s(b1,b2) = (b2−b1)+( f (b2)b2−b1 f (b1))F1(b1). (16)

In this case, there may exist an evolutionary singular point, b?, if the selection gradient is zero,

G(b?) =
∂ s

∂b2
(b?,b?) = 1+

(
f (b?)+b? f ′(b?)

)
F1(b?) = 0 . (17)
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Figure 2: Evolutionary dynamics along a trade-off between infected plant fecundity (bI) and
seed transmission rate (p). The straight lines correspond to linear trade-off functions, i.e.,
p = g(bI) = 1−bI/B, with (A-B) B = 3, (C-D) B = 1.8. The dashed curves correspond to the as-
sociated functions g(bI)bI . The dots denote trait values maximizing g(bI)bI . The arrows denote
the direction of evolution. The light gray regions correspond to R0 ≤ 1 (virus unable to invade).
The darker gray regions correspond to bI ≤ 1, which leads to virus extinction (Fig. 1). The
thick curves correspond to numerical simulations of the evolutionary dynamics (Appendix B):
(B) starting from bI ≈ 2.4, evolution selects for decreasing bI values until reaching an evolution-
ary endpoint (bI = 1.5) corresponding to the maximum of g(bI)bI , (D) starting from bI ≈ 1.4,
evolution selects for decreasing bI values until reaching bI = 1 where the virus population goes
extinct. Other parameter values: bH = 3, λ = 1, β = 10.
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Whether b? is evolutionarily stable is determined by the sign of the second derivative of s with224

respect to b2, evaluated at b1 = b2 = b?. The stability condition is

∂ 2s
∂b2

2
(b?,b?) =

(
2 f ′(b?)+b? f ′′(b?)

)
F1(b?)< 0 . (18)

Since F1(b?) > 0 and f ′(b?) < 0, b?, if it exists, is evolutionarily stable for concave or linear226

trade-off functions ( f ′′(b?)≤ 0). For convex trade-off functions ( f ′′(b?)> 0), b? may be unsta-

ble.228

The singular point b? is evolutionarily attractive if the derivative of the selection gradient G

in (17) at b? is negative, i.e.,230

G′(b?) = ( f (b?)+b f ′(b?))F ′1(b
?)+(2 f ′(b?)+b f ′′(b?))F1(b?)< 0 . (19)

Unfortunately, we have no explicit expression of F1, which makes conditions (18) and (19) in-

tractable to analysis. Therefore, the trade-off between virulence and vector transmission is ex-232

plored through numerical simulations.

To perform the numerical computations, we considered the trade-off form:234

β = f (b) = βmax exp(−k(b−bmin)) .

This exponential form is convex and its curvature increases with k ( f ′′(b) = k2 f (b) > 0). Also,

this exponential form allows us to check the stability of a singular point as in this special case,236

the stability condition (18) becomes:

∂ 2s
∂b2

2
(b?,b?) = (2− kb?) f ′(b?)F1(b?)< 0 .
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Figure 3: Evolutionary branching of parasitic and mutualistic viral symbioses and their long-run
coexistence. We assumed a trade-off between transmission and virulence of the form: β =
f (b) = βmax exp(−k(b− bmin)). Parameter values: bH = 20, λ = 1, bmin = 10, bmax = 30,
p = 0.5, βmax = 10, k = 0.1.

Since f ′(b?)< 0, the evolutionary stability of a singular point b? requires238

2− kb? > 0 .

For the parameter set corresponding to Figures 3 and 4, including bH = 20 and k = 0.1, the crit-

ical value (indeterminate stability) is bc = 2/k = 20. In our simulations, b? seems to be slightly240

above bc, thus branching occurs after a relatively long period of apparent stability. Extensive

numerical simulations indicate that evolutionary branching is the rule rather than the exception242

in this model. However the fact that b? approximately coincides with both bc and bH is a coin-

cidence used for illustrative purposes only. For instance, for bH = 15 and the other parameters244

unchanged, b? ≈ 21 is clearly greater than bc = 20 and bH = 15 (not shown).

Figures 3 and 4 show that it is possible for a mutualistic symbiosis to evolve (bI/bH > 1)246
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Figure 4: Evolutionary branching of parasitic and mutualistic viral symbioses and the eventual
exclusion of parasitism by mutualism. We assumed a trade-off between transmission and vir-
ulence of the form: β = f (b) = βmax exp(−k(b− bmin)). Parameter values: bH = 20, λ = 1,
bmin = 10, bmax = 80, p = 0.5, βmax = 10, k = 0.1.

(or not) from a parasitic symbiosis (bI/bH < 1) (Fig. 3), or conversely for a parasitic symbiosis

to evolve (or not) from an initial mutualistic symbiosis (Fig. 4). Starting from a monomorphic248

virus population, evolutionary dynamics may converge towards commensalism and split into two

branches: parasitism and mutualism (bI/bH < 1 and bI/bH > 1, respectively). The evolutionary250

outcome depends on the biologically feasible maximum plant host fecundity value: if it is large

then mutualism may exclude parasitism in the long-run (Fig. 4), otherwise both parasitic and252

mutualistic variants may coexist in the long-run (Fig. 3).
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4 Discussion254

4.1 Findings

4.1.1 Ecological model256

The discrete-time ecological model of an annual plant virus we developed included two modes of

transmission: vector and seed. Key parameters include vector transmissibility β , uninfected and258

infected plant fecundities bH and bI , resp., and seed transmissibility p ≤ 1. We can summarize

our findings in terms of these parameters and the basic reproductive number R0 that defines a260

threshold for successful invasion of infected plants. The main conclusions concern the type of

virus–plant interaction, coexistence of infected and uninfected plants, and ecological bistability.262

First, if there is only seed transmission, i.e., β = 0, then R0 = pbI/bH indicating that purely

vertical transmission through seed cannot maintain the virus in the host population unless the264

plant–virus symbiosis is mutualistic (bI > bH). If, however, vector transmission is included

with seed transmission (β > 0) then a parasitic virus (bI < bH) may be maintained in the host266

population.

Second, we checked conditions for the coexistence of uninfected and infected plants in spe-268

cific models. In the case of full vertical transmission (p = 1), there is a susceptible-free equi-

librium corresponding to virus fixation. It is stable if the threshold R0 for successful invasion270

of uninfected plants is below one. However, numerical simulations indicate that a stable coex-

istence state between uninfected and infected plants does not exist for full vertical transmission.272

Instead, simulations suggest that stable coexistence requires partial seed transmission (p < 1).

Third, we have found bistability in this model. That is, the dynamic behavior and the long-274

term solutions in particular depend on the initial conditions. There are three different types of

bistability.276
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(i) There is bistability between the virus-free and susceptible-free equilibria, i.e., either in-

fected or uninfected plants go extinct but not both. This occurs if p = 1, bI > 1, R0 < 1278

and R0 < 1. It is remarkable because the virus can infect the entire plant population even

though R0 < 1. However, virus fixation in this case requires that healthy host plants have280

not reached their carrying capacity and the initial density of infected plants is sufficiently

large, see the example in Figure 1A.282

(ii) There is bistability between an endemic coexistence equilibrium and the virus-free equilib-

rium, i.e., either both uninfected and infected plants coexist or infected plants go extinct.284

This has been observed for p < 1, bI > 1, and R0 < 1. The virus persists in the population

in coexistence with uninfected plants, provided the latter are away from the uninfected car-286

rying capacity state and the density of infected plants is sufficiently large, see the example

in Figure 1B. That is, the infection can establish itself in the host population even though288

R0 < 1.

(iii) There is bistability between the virus-free equilibrium and extinction, i.e., either the virus290

infects all plants or drives the entire plant population to extinction. This has been observed

for both full and partial vertical transmission, R0 < 1, R0 < 1 and bI < 1. The latter292

condition means that infected plants cannot persist on their own. If the virus is introduced in

sufficiently large density of plants that have not reached their uninfected carrying capacity294

state, the virus drives the entire plant population extinct, see the examples in Figure 1C,D.

Disease-induced host extinction is well-known to occur in time-continuous models with296

frequency-dependent horizontal transmission for the case R0 > 1 (e.g. Getz and Pickering,

1983; Busenberg and van den Driessche, 1990), as virus transmission is ongoing even when298

the population density is close to zero. In discrete-time models, host extinction caused by

disease-related mortality seems to have been less investigated (but see Franke and Yakubu,300
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2008, who also consider R0 > 1). Here, we have shown that disease-induced host extinction

can occur even if R0 < 1.302

The occurrence of ecological bistability in an epidemiological model as simple as the one

considered here is remarkable for three reasons. First, infection can persist in the population304

even if R0 < 1. This can be particularly important if control measures to combat virus infec-

tions are aimed at reducing the basic reproduction number below one, because this will not be306

sufficient and a higher level of control will be necessary. The reason for this apparent ‘failure’ of

the basic reproduction number is its derivation from the assumption that the system is at virus-308

free equilibrium. However, this of course not always the case, and one may even argue that this

assumption rarely holds true considering the plethora of perturbations in variable and stochastic310

environments. That is, if the densities of infected and uninfected plants are far from this equilib-

rium, the basic reproduction number does not apply anymore and may grossly underestimate the312

possibility of virus invasion. In particular, we have shown that if the density of infected plants is

high or the density of uninfected plants low, the virus is likely to invade the population or even314

drive it extinct even if R0 < 1. Similar observations have been made in epidemiological models

with backward bifurcations (e.g. Dushoff et al., 1998). In fact, numerical simulations (not shown316

here) suggest that our model exhibits a backward bifurcation as well.

Second, short-term dynamics can become particularly important if the system is bistable.318

Figure 5A shows the long-term total plant density as a function of vector transmissibility β . For

an intermediate parameter range (0.29 < β < 0.33) there is bistability between the susceptible-320

free and virus-free equilibrium. However, if we consider the plant densities after short-term

(Fig. 5B), they show a range of values between the two equilibrium values. This is because the322

system dynamics becomes very slow for some initial plant densities such that they take very

long to approach the equilibrium (there is an unstable coexistence state which slows down the324
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dynamics in its vicinity; cf. Appendix A.1). Transients are therefore important if the system is

bistable, as they ‘diversify’ the values taken by the plant densities. Moreover, due to this effect,326

the bistability region has effectively ‘expanded’ to neighboring parameter regions.

Third, there is no bistability in similar (and even more general) continuous-time models pos-328

sible (Zhou and Hethcote, 1994). The simplest model with frequency-dependent transmission

that we know of and leads to bistability is of SEI type, i.e., has an extra compartment of latent330

infections (Gao et al., 1995). In this model, bistability is possible for complete disease-induced

sterilization of the host population (Gao et al., 1995, Sect. 5), i.e., in terms of our model param-332

eters bI = 0. Considering that a latent infection compartment introduces a form of time delay in

the disease and host reproduction dynamics, it may not be too surprising that our discrete-time334

SI model and the continuous-time SEI model show similar behavior.

4.1.2 Evolutionary analysis336

The ecological model was used to explore the evolution of the plant-virus symbiosis (parasitic or

mutualistic). The main conclusions from the evolutionary analysis are summarized below:338

(i) Vertical (seed) transmission (p) versus virulence (defined as bH/bI): evolution maximizes

the product pbI , i.e., maximizes transmission relative to virulence. Interestingly, such a340

trade-off can lead to virus extinction in evolutionary time.

(ii) Horizontal (vector) transmission (β ) versus virulence: evolutionary branching and the sub-342

sequent coexistence of parasitic and mutualistic symbioses is possible, as well as the ex-

tinction of the parasitic branch.344

In the evolutionary simulations of vector transmission versus virulence, we assumed a simple

exponential trade-off function. Its convex shape allows for richer evolutionary dynamics than346

linear or concave trade-off forms. Consideration of other trade-off shapes (e.g. linear) indicated
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Figure 5: Total plant population density as a function of vector transmission parameter β . (A)
Long-term dynamics, approximated after 10,000 years, (B) short-term dynamics after 100 years.
The threshold criteria R0 = 1 and R0 = 1 correspond to β ≈ 0.33 and β ≈ 0.29, respectively.
In between these parameter values, the system tends to either the virus-free equilibrium with
T = (bH −1)/λ = 1 or the susceptible-free equilibrium with T = (bI−1)/λ = 0.5, depending
on initial conditions. The color coding indicates the infection prevalence. For each value of β ,
100 initial conditions were drawn from a pseudo-uniform random distribution. Parameter values:
bH = 2, bI = 1.5, λ = 1, p = 1.
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that other outcomes are theoretically possible, such as directional selection and convergence to a348

stable monomorphic evolutionary endpoint (as expected from the mathematical analysis). How-

ever, we never observed parasitism excluding mutualism after evolutionary branching occurred.350

This might be because seed production is a necessary condition for virus year-to-year persistence

in our annual plant model.352

4.2 Limits and prospects

In this study, we focused on unconditional mutualism, i.e., when infected plant fecundity is354

always greater than uninfected plant fecundity. However, conditional mutualism occurs when in-

fected plants have lower fecundity than uninfected plants under favorable conditions, and higher356

fecundity than uninfected plants under unfavorable conditions such as water stress (Hily et al.,

2016). Our model may be extended to address the evolution of conditional mutualism. A pos-358

sibility would be to consider that bH is a random variable that can take two values bmin
H and

bmax
H , corresponding to unfavorable and favorable conditions, respectively, with mean b̄H . One360

may then let bI = b̄H + c(bH − b̄H)− v, where v (for virulence) is the possible loss of fecundity

due to infection, and c ∈ [0,1] is a coefficient buffering the variations of fecundity in infected362

plants, subject to selection (if c = 0, the variance is zero). For instance, c = 0 implies infected

plants have constant fecundity regardless of environmental variability. Whether and how such364

conditional mutualism would evolve is left for future research.
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A Additional analyses

A.1 Full vertical transmission484

Focusing on the case p = 1 (full vertical transmission), model (5) reads:

H(t +1) =
bHH(t)P(t)
1+λT (t)

,

I(t +1) =
bI (I(t)+H(t)(1−P(t)))

1+λT (t)
.

(20)

If bI > 1, there exists a “susceptible-free” equilibrium (SFE) which is found by setting H = 0486

and solving for I. The SFE value for I is

Ī =
bI−1

λ
.

Linearizing the difference equation for the uninfected host H about the SFE, we obtain the basic488

reproductive number of an uninfected host introduced into a fully infected population:

R0 =
bH

bI
exp(−β ) .

The notation R0 stands for the dual of R0 (Hamelin et al., 2016). If R0 > 1 then the SFE is490
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unstable. If both R0 > 1 and R0 > 1, then infected and uninfected plants can invade each other

when rare, so coexistence of uninfected and infected plants is protected (Kisdi and Geritz, 2003).492

It appears that there is no stable coexistence equilibrium with both uninfected and infected

plants. The ecologically relevant results are summarized for bI > 1 and bI < 1.494

In the case bI > 1, there exist both a VFE and a SFE. The two reproductive numbers equal

R0 =
bI

bH
(1+β ) and R0 =

bH

bI
exp(−β ) ,

respectively. It follows that496

R0R0 < 1 .

Therefore, R0 > 1 and R0 > 1 is impossible; coexistence of uninfected and infected plants is

not protected. Moreover, in Section A.1.1 it is shown that there exists an endemic equilibrium498

(EE) such that H, I > 0 if and only if R0 < 1 and R0 < 1 but it does not appear to be stable. In

addition, it is shown that if R0 < 1, then the SFE is locally stable. Both reproductive numbers500

less than 1 leads to ecological bi-stability. The three ecologically relevant cases are summarized

below (see also Figure 6).502

1: If R0 < 1 and R0 > 1, then the VFE is globally stable.

2: If R0 < 1 and R0 < 1, then there is bi-stability of the VFE and the SFE (either infected or504

uninfected plants go extinct but not both).

3: If R0 > 1 and R0 < 1, then the SFE is globally stable.506

For the case bI < 1, there is no SFE, only the VFE. The numerical results indicate that there

are only two ecologically relevant cases.508

4: If R0 < 1, then there is bi-stability of the VFE and the extinction “equilibrium” (either
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Figure 6: The three ecologically relevant cases for p = 1 and bI > 1, with R0 = (bI/bH)(1+β )
and R0 = (bH/bI)exp(−β ) (see text). The range of β values for which ecological bistability
occurs increases with bH/bI (virulence).

infected plants go extinct or there is complete population extinction).510

5: If R0 > 1, then the VFE is globally stable.

Simulations performed for q = 1− p� 1 (slightly partial vertical transmission) showed sim-512

ilar results to the case p = 1 with the exception that the SFE becomes an endemic equilibrium

(for which we have no explicit expression). Therefore, coexistence of uninfected and infected514

plants is possible in this model.
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A.1.1 Existence conditions of an endemic equilibrium516

Model (5) has the following form:

H(t +1) =

bHH(t)exp
(
−β I(t)

T (t)

)
+qbI

[
I(t)+H(t)

[
1− exp

(
−β I(t)

T (t)

)]]
1+λT (t)

I(t +1) =

pbI

[
I(t)+H(t)

[
1− exp

(
−β I(t)

T (t)

)]]
1+λT (t)

.

We focus on the case p = 1−q = 1 (full vertical transmission). Let518

H∗ =
H
H̄

, I∗ =
I
H̄
.

The dimensionless model (asterisk notation has been dropped) simplifies to

H(t +1) =

bHH(t)exp
(
− β I(t)

H(t)+ I(t)

)
1+(bH−1)(H(t)+ I(t))

(21)

I(t +1) =

bI

[
I(t)+H(t)

[
1− exp

(
− β I(t)

H(t)+ I(t)

)]]
1+(bH−1)(H(t)+ I(t))

. (22)

There exist at most three equilibria:520

(1,0),
(

0,
bI−1
bH−1

)
, and (h, i).

Consider the proportions î = i/(h+ i) and ĥ = h/(h+ i). Then î+ ĥ = 1. If bI ≥ 1, then the

total plant population is bounded below by a positive constant (Appendix A.2). If the population

does not go extinct, then existence of a unique î, 0< î< 1 implies existence of a unique (h, i). We

derive conditions for existence of a unique î, 0 < î < 1. Using the notation h, i and î in Eq. (21),

it follows that 1+(bH−1)(h+ i) = bHe−β î. Substituting this latter expression into Eq. (22), we
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obtain an implicit expression for î:

î =
bI(1− (1− î)e−β î)

bHe−β î

which can be expressed as

î
(

bH

bI
−1
)
+1 = eβ î. (23)

The two curves f1(î) = î
(

bH

bI
−1
)
+1 and f2(î) = eβ î intersect at î = 0 so that a unique positive

solution exists î, 0 < î < 1, if and only if the following conditions hold:

bH

eβ
< bI <

bH

1+β

( f ′1(0)> f ′2(0) and f1(1)< f2(1)). The left side of the inequality is equivalent to R0 < 1 and the522

right side is equivalent to R0 < 1.

A.2 Plant population is bounded524

For model (1)–(4), it is shown that the total plant population is bounded and if the average number

of seeds per infected plant is greater than one, bI > 1, then the plant population always persists.526

The total plant population, T (t) = H(t)+ I(t) is bounded below by zero; H(t) and I(t) are

nonnegative. In addition, we show that the total population is bounded above and for the case528

bI > 1, the total population is bounded below by a positive constant. The total plant population

satisfies the inequality530

T (t +1)≤ bHT (t)
1+λT (t)

= fH(T (t)),

since bH > bI . Comparing the solution T (t) with the solution of the difference equation, x(t +

1) = fH(x(t)), where x(0) = T (0) > 0, it follows that T (1) ≤ fH(T (0)) = fH(x(0)) = x(1).532
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Since fH(x) is monotone increasing for x ∈ [0,∞), fH(T (1)) ≤ fH(x(1)), leads to T (2) ≤ x(2)

and in general, from induction it follows that T (t)≤ x(t) for t ∈ {0,1,2,3, . . .}. The fact that x(t)534

approaches H̄ = (bH−1)/λ monotonically implies T (t)≤max{T (0), H̄}.

A similar argument applies in the case bI > 1 to show that the total plant population is536

bounded below by a positive constant, e.g., uniform persistence. The inequality bH > bI leads to

the reverse inequality for the total plant population:538

T (t +1)≥ bIT (t)
1+λT (t)

= fI(T (t)).

Comparing the solution of T (t) with the solution of y(t + 1) = fI(y(t)), T (0) = y(0), leads to

T (t) ≥ y(t) for t ∈ {0,1,2, . . .}. Since bI > 1, the solution y(t) converges monotonically to540

Ī = (bI−1)/λ > 0 which implies T (t)≥min{T (0), Ī}.

A.3 Absence of vector transmission542

Focusing on the case β = 0 (no vector transmission), model (5) reads:

H(t +1) =
bHH(t)+(1− p)bII(t)

1+λT (t)
,

I(t +1) =
pbII(t)

1+λT (t)
,

(24)

where T (t) = H(t)+ I(t). There exist at most three equilibria:544

(0,0) ,
(

bH−1
λ

,0
)
,

(
h =

bI(1− p)(1− pbI)

λ (bH−bI)
, i =

(pbI−bH)(1− pbI)

λ (bH−bI)

)
.

If bH > bI , then h > 0 implies pbI < 1, and i > 0 thus implies pbI > bH which is impossible since

bH > 1. If bI > bH then h > 0 implies pbI > 1 and i > 0 thus implies pbI > bH > 1. Therefore,546

the endemic equilibrium (h, i) existence requires pbI > bH .
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B Evolutionary simulations548

Evolutionary computations in Figures 2, 3 and 4 were realized from the multi-strain model (7)

using the following algorithm. The evolving phenotype b ranges from bmin to bmax, the biolog-550

ically feasible minimum and maximum plant host fecundity values. The interval [bmin,bmax] is

divided into a finite number of subintervals (here 100), each with length ∆b. The evolutionary552

dynamics are governed by the following iteration scheme. The scheme is initiated with a given

value of b equal to one of the endpoints of the subintervals. Next, the ecological equilibrium is554

computed from the multi-strain model (here after a fixed time horizon of 1,000 years), then a

small mutation ±∆b occurs in b with equal likelihood of being smaller or larger than b. Time556

is advanced by one unit in evolutionary time (1,000 years) and b is changed to either b+∆b or

b−∆b. The evolutionary process continues with this new b value.558
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