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Recensements, enquêtes ou encore sources administratives, peu importe l'origine des données, elles sont toutes susceptibles de présenter des données manquantes. Le traitement de la non-réponse est d'un intérêt pratique très important étant donnée la baisse constante du taux de réponse aux enquêtes depuis plusieurs décennies. Nous considérons le problème de l'estimation des probabilités de réponse dans un contexte de pondération pour correction de la non réponse totale. Les probabilités de réponse peuvent être estimées par des méthodes paramétriques ou non paramétriques.

.

13 es Journées de méthodologie statistique de l'Insee (JMS) / 12-14 juin 2018 / PARIS revue très complète des méthodes d'apprentissage. Pour chaque méthode, ce sont les performances de l'estimateur par expansion et de l'estimateur de Hajek d'un total qui sont mesurées en termes de biais relatif et d'ecacité relative.

La classe des méthodes non paramétriques comprend notamment la régression par polynômes locaux [START_REF] Da Silva | Nonparametric propensity weighting for survey nonresponse through local polynomial regression[END_REF], la pondération de classes formées sur la base d'une estimation préliminaire des probabilités de réponse [START_REF] Little | Survey Nonresponse Adjustments for Estimates of Means[END_REF][START_REF] Eltinge | Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey[END_REF][START_REF] Haziza | On the construction of imputation classes in surveys[END_REF], l'algorithme CHi square Automatic Interaction Detection (CHAID de [START_REF] Kass | An exploratory technique for investigating large quantities of categorical data[END_REF], Classication andRegression Trees (CART Breiman et al., 1984, Phipps et Toth, 2012), Conditional inference trees (Ctree) pour des cibles simples ou multiples [START_REF] Hothorn | Unbiased Recursive Partitioning : A Conditional Inference Framework[END_REF].

Nous présentons une vaste étude par simulation pour comparer un grand nombre de méthodes d'estimation des probabilités de réponse par apprentissage supervisé, dans un cadre de population nie. Nous couvrons un large champ de méthodes paramétriques ou non, avec des règles de décisions simples ou agrégées telles que Bagging, Random Forests (Breiman, 1996), Boosting (Freund et Shapire, 1996[START_REF] Friedman | Additive logistic regression : a statistical view of Boosting[END_REF] ; voir également [START_REF] Hastie | The Elements of Statistical Learning : Data Mining, Inference, and Prediction[END_REF] pour une Introduction National statistical oces like Insee in France, Statistics Canada or Eurostat at an international level, aim at providing solid foundations for good informed decisions by elected representatives, rms, unions, non-prot organizations, as well as individual citizens. In order to better understand demography, society and economy, analysts and researchers implement statistic methods to analyse data. The latter can be provided by censuses, surveys and administrative sources. Regardless of the type of data, it is virtually certain one will face the problem of missing values. Survey sampling theory meets new elds of research in association with machine learning and big data handling.

Surveys statisticians distinguish unit nonresponse from item nonresponse. The former occurs when no usable information is available on a sample unit, whereas the latter occurs when some variables (but not all) are recorded. Nonresponse may aect the quality of the estimates when the respondents and the nonrespondents exhibit dierent characteristics with respect to the survey variables. The main eects of nonresponse consist in : (i) bias of point estimators, (ii) increase of the variance of point estimators (due to the fact that the observed sample has a smaller size than the one initially planned), and (iii) bias of the complete data variance estimators [START_REF] Haziza | Imputation and inference in the presence of missing data[END_REF]. Unit nonresponse is usually handled through weight adjustment procedures (Groves et al. 2001, andSärndal andLundström 2005), whereas item nonresponse is treated by some form of imputation (Brick and Kalton 1996). These approaches (weight adjustment or imputation) share the same goals : reduce the nonresponse bias and, possibly, control the nonresponse variance.

Turning to weighting adjustment procedures for handling unit non-response, two types of weighting procedures are commonly used (e.g., Särndal, 2007 and[START_REF] Haziza | Imputation and inference in the presence of missing data[END_REF][START_REF] Haziza | A discussion of weighting procedures for unit nonresponse[END_REF] : in the rst, the basic weights are multiplied by the inverse of the estimated response probabilities, whereas the second uses some form of calibration, that includes post-stratication and raking as special cases, for adjusting the basic weights. In this work, we focus on weight adjustment by the inverse of the estimated response probabilities. To protect against a possible model misspecication, it is customary to form weighting classes (also called response homogeneous groups) so that within a class the sample units have similar response probabilities [START_REF] Little | Survey Nonresponse Adjustments for Estimates of Means[END_REF][START_REF] Eltinge | Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey[END_REF][START_REF] Haziza | On the construction of imputation classes in surveys[END_REF].

The response probabilities may be estimated using either parametric or nonparametric methods. The class of parametric models includes logistic regression as a special case. There are several issues associated with the use of a parametric model : (i) they are not robust to the misspecication of the form of the model ; (ii) they are not robust to the non-inclusion of interactions or predictors that account for curvature (e.g., quadratic terms), both of which may not have been detected during model selection ; (iii) they may yield very small estimated response probabilities, resulting in very large nonresponse adjustment factors, ultimately leading to potentially unstable estimates ; e.g., [START_REF] Little | Does weighting for nonresponse increase the variance of survey means ?[END_REF] and [START_REF] Beaumont | Calibrated imputation in surveys under a quasi-model-assisted approach[END_REF]. In practice, nonparametric methods are usually preferred because, unlike parametric methods, they protect against the misspecication of the nonresponse model. The class of nonparametric methods include kernel regression [START_REF] Giommi | On the estimation of the probability of response in nite population sampling (Italian, Societa Italiana di Statistica[END_REF], Giommi 1987[START_REF] Da Silva | A kernel smoothing method of adjusting for unit nonresponse in sample surveys[END_REF], local polynomial regression [START_REF] Da Silva | Nonparametric propensity weighting for survey nonresponse through local polynomial regression[END_REF], weighting classes formed on the basis of preliminary estimated response probabilities [START_REF] Little | Survey Nonresponse Adjustments for Estimates of Means[END_REF][START_REF] Eltinge | Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey[END_REF][START_REF] Haziza | On the construction of imputation classes in surveys[END_REF], the CHi square Automatic Interaction Detection (CHAID) algorithm [START_REF] Kass | An exploratory technique for investigating large quantities of categorical data[END_REF], Classication and regression trees (Breiman et al., 1984, Phipps and[START_REF] Phipps | Analyzing establishment nonresponse using an interpretable regression tree model with linked administrative data[END_REF], Conditional inference trees (Ctree) for simple and multiple targets trees [START_REF] Hothorn | Unbiased Recursive Partitioning : A Conditional Inference Framework[END_REF]). To estimate the response probabilities in a nite population setting, we cover a wide range of (parametric and nonparametric) "simple" methods as well as aggregation methods like Bagging, Random Forests (Breiman, 1996), Boosting [START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF]Shapire, 1996 and[START_REF] Friedman | Additive logistic regression : a statistical view of Boosting[END_REF] ; see also [START_REF] Hastie | The Elements of Statistical Learning : Data Mining, Inference, and Prediction[END_REF] for a comprehensive overview of machine learning methods. For each method, we assessed the performance of the propensity score estimator and the Hajek estimator in terms of relative bias and relative eciency.

1 Theoretical set up Let U = {1, 2, ..., N } be a nite population of size N . In most surveys conducted by statistical agencies, information is collected on a potentially large number of survey variables and the aim is to estimate many population parameters. This type of surveys is often referred to as multipurpose surveys. Let y be a generic survey variable. We are interested in estimating the nite population total, t y = i∈U y i , of the y-values. We select a sample S, of size n, according to a sampling design p(S) with rst-order inclusion probabilities π i , i = 1, • • • , N. In the absence of nonresponse, a design-unbiased estimator of t y is the following expansion estimator :

t y,π = i∈s w i y i , (1) 
where w i = 1/π i denotes the basic weight attached to unit i.

In the presence of unit nonresponse, the survey variables are recorded for a subset S r of the original sample S. This subset is often referred to as the set of respondents. Let r i be a response indicator such that r i = 1 if unit i is a respondent and r i = 0, otherwise. We assume that the true probability of response associated with unit i is related to a certain vector of variables x i ; that is, p i = P (r i = 1 | S, x i ). We assume that 0 < p i ≤ 1 and that the response indicators are mutually independent. The latter assumption is generally not realistic in the context of multistage sampling designs because sample units within the same cluster (e.g., household) may not respond independently of one another ; see [START_REF] Skinner | Inverse probability weighting for clustered nonresponse[END_REF] and [START_REF] Kim | Calibrated propensity score method for survey nonresponse in cluster sampling[END_REF] for a discussion of estimation procedures accounting for the possible intra-cluster correlation. If the vector x i contains fully observed variables only, then the data are said to be Missing At Random (MAR). However, if the vector x i includes variables that are subject to missingness, then the data are Not Missing At Random (NMAR) ; see [START_REF] Rubin | Inference and Missing Data[END_REF]. In practice, it is not possible to determine whether or not the MAR assumption holds. However, the MAR assumption can be made more plausible by conditioning on fully observed variables that are related to both the probability of response and the survey variables ; e.g., [START_REF] Little | Does weighting for nonresponse increase the variance of survey means ?[END_REF].

If the response probabilities p i were known, an unbiased estimator of t y would be the double expansion estimator [START_REF] Särndal | Model Assisted Survey Sampling[END_REF] :

t y,DE = i∈Sr w i p i y i . (2) 
In practice, the response probabilities p i are not known and need to be estimated. To that end, a model for the response indicators r i , called a nonresponse model, is assumed and the estimated probabilities p i are obtained using the assumed model (e.g., [START_REF] Särndal | A general view of estimation for two-phases of selection with applications to two-phase sampling and non-response[END_REF][START_REF] Ekholm | Weighting via response modeling in the Finnish Household Budget Survey[END_REF]. This leads to the Propensity Score Adjusted (PSA) estimator :

t y,P SA = i∈Sr w i p i y i , (3) 
where p i is an estimate of p i . An alternative estimator of t y is the so-called Hajek estimator :

t y,HAJ = N N i∈Sr w i p i y i , (4) 
where N = i∈Sr w i p i is an estimate of the population size N based on the respondents.

The estimated response probabilities in (3) or (4) may be obtained through parametric or nonparametric methods. In the context of parametric estimation, we assume that

p i = f (x i , α), (5) 
for some function f (x i , .), where α is a vector of unknown parameters. The estimated response probabilities are given by

p i = f (x i , α),
where α is a suitable estimator (e.g., maximum likelihood estimator) of α. The class of parametric models (5) includes the popular linear logistic regression model as a special case. It is given by

p i = exp(x i α) 1 + exp(1 + x i α)
.

There are several issues associated with the use of a parametric model : (i) they are not robust to the misspecication of the form of f (x i , .) ; (ii) they can fail to account properly on local violations of the parametric assumption such as nonlinearities or interaction eects, both of which may not have been detected during model selection ; (iii) they may yield very small estimated response probabilities, resulting in very large nonresponse adjustment factors p -1 i , ultimately leading to potentially unstable estimates ; e.g., [START_REF] Little | Does weighting for nonresponse increase the variance of survey means ?[END_REF] and [START_REF] Beaumont | Calibrated imputation in surveys under a quasi-model-assisted approach[END_REF].

In practice, nonparametric methods are usually preferred essentially because, unlike parametric methods, they protect against the misspecication of the nonresponse model. The class of nonparametric methods include kernel regression [START_REF] Giommi | On the estimation of the probability of response in nite population sampling (Italian, Societa Italiana di Statistica[END_REF]Da Silva and[START_REF] Da Silva | A kernel smoothing method of adjusting for unit nonresponse in sample surveys[END_REF], local polynomial regression [START_REF] Da Silva | Nonparametric propensity weighting for survey nonresponse through local polynomial regression[END_REF], weighting classes formed on the basis of preliminary estimated response probabilities [START_REF] Little | Survey Nonresponse Adjustments for Estimates of Means[END_REF][START_REF] Eltinge | Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey[END_REF][START_REF] Eltinge | Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey[END_REF][START_REF] Haziza | Imputation and inference in the presence of missing data[END_REF][START_REF] Haziza | On the construction of imputation classes in surveys[END_REF], the CHi square Automatic Interaction Detection (CHAID) algorithm [START_REF] Kass | An exploratory technique for investigating large quantities of categorical data[END_REF] and regression trees [START_REF] Phipps | Analyzing establishment nonresponse using an interpretable regression tree model with linked administrative data[END_REF].

In this work, we conduct an extensive simulation study to compare several methods for estimating the response probabilities in a nite population setting. For each method, we assess the performance of the propensity score estimator (3) and the Hajek estimator (4) in terms of relative bias and relative eciency. In our study, we attempted to cover a wide range of (parametric and nonparametric) methods ; see [START_REF] Hastie | The Elements of Statistical Learning : Data Mining, Inference, and Prediction[END_REF] for a comprehensive overview of machine learning methods.

Nonresponse modeling

Estimating the response probabilities is typically a supervised classication issue, in which the response variable is the two-class categorical response indicator r. However, whereas machine learning methods designed to address classication issues usually focus on optimizing prediction performance, we will less ambitiously restrict our attention to the estimation of the posterior class probabilities. For that issue, in some of the statistical learning methods presented below in the present section, it will be considered as a regression issue in which r = 0, 1 is treated as a numeric variable.

Nonparametric Discriminant analysis

Linear logistic regression is often compared to two-class Linear Discriminant Analysis (LDA) since they can both be thought of as dierent estimations of the same logit-linear regression model, either using maximum-likelihood for linear logistic regression or moment estimation for LDA. LDA originally relies on the assumption that the within-class distributions of the prole x of explanatory variable is normal with equal variance matrices. Extending LDA to the case of dierent within-class variance matrices leads to the Quadratic Discriminant Analysis (QDA, see [START_REF] Mclachlan | Discriminant Analysis and Statistical Pattern Recognition[END_REF]. More generally, if f r (.) stands for the density function of the distribution of x with class r, for r = 0, 1, then it is deduced from Bayes' rule that :

p i = f 1 (x i )P (r i = 1) f (x i ) ,
where f (x) = (1-P (r i = 1))f 0 (x)+P (r i = 1)f 1 (x i ) is the density function of the two-component mixture model with mixing coecients 1 -P (r i = 1) and P (r i = 1).

In a classication perspective, once the within-class distributions are estimated, the predicted class is 1 if the corresponding estimation of p i exceeds a threshold which is chosen to guarantee a low misclassication rate or a good compromise between true positive and true negative rates. Nonparametric discriminant analysis relies on a nonparametric estimation of group-specic probability densities. Either a kernel method or the k-nearest-neighbor method can be used to generate those nonparametric density estimates. Kernel density estimators were rst introduced in the scientic literature for univariate data in the 1950s and 1960s [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF][START_REF] Parzen | On estimation of a probability density function and mode[END_REF]) and multivariate kernel density estimation appeared in the 1990s [START_REF] Simono | Smoothing Methods in Statistics[END_REF]. We used a kernel density estimation procedure with normal kernel function, which is the most widely used due to its convenient mathematical properties.

K r (x i ) = 1 (2π) J/2 d J |V r | 1/2 exp(- 1 2d 2 x i V -1 r x i )
where J is the number of explanatory variables, d is a xed radius and V k the within-group covariance matrix of group r, for r = 0 or 1.

Classication and Regression Tree (CART)

Unlike scoring methods such as logistic regression or discriminant analysis that provide a global decision rule in the range of data, decision trees are designed to search for subgroups of data for which the prediction rule is locally adapted. The CART decision tree [START_REF] Breiman | Classication and regression trees[END_REF] achieves this partitioning of the data using a binary recursive algorithm : each split of the learning sample is dened by a binary rule, consisting either in thresholding a quantitative variable or forming two sets of levels of a categorical variable. Decision trees have become very popular in machine learning issues because they can handle both continuous and nominal attributes as targets and predictors.

Once a criterion has been chosen to measure the so-called purity of a group of data, the whole learning dataset, viewed as the root of the decision tree, is optimally split into two children nodes (left and right), so that the sum of the purity indices of the two subgroups is as large as possible. Each of the children node is in turn split following the same goal ... and so on until no further splits are possible due to lack of data. The tree is grown to a maximal size and then pruned back to the root with the method of cost-complexity pruning. Indeed, [START_REF] Breiman | Classication and regression trees[END_REF] show that pruning the largest optimal tree produces optimal subtrees of smaller size. Simple or cross-validation assessment of the predictive performance can be used to determine the right size for the decision tree. In order to be able to estimate class probabilities, we choose hereafter to consider r = 0, 1 as a numeric variable (which in fact sums up to the use of the Gini index as the impurity measure associated with a unit misclassication cost matrix, see [START_REF] Nakache | Statistique explicative appliquée[END_REF].

Splitting criteria

For each node t which is not terminal, splitting t in two children nodes t left and t right is based on a binary classication rule involving one of the explanatory variables. For each explanatory variable, say x, the binary rule depends on the nature, categorical or numeric, of x. In the case x is nominal, the binary rule just consists in dividing the node t by choosing a group of x levels for t left and the remaining x levels for t right . In the case x is numeric or ordinal, the binary rule consists in a thresholding of x : if the value of x for a given item exceeds a threshold s, then the item goes to t left , otherwise it goes to t right . The best split is obtained by an exhaustive screening of the variables, and for each variable, by optimization of the binary decision rule. For example, if x is numeric, the optimal choice of the threshold s is achieved by minimizing the sum of within-children nodes sum-of-squared deviations to the mean :

x i <s (r i -rt left ) 2 + x i ≥s (r i -rt right ) 2
Finally, applying the sequence of recursive binary splitting rules to an item based on its values of the explanatory variables assigns this item to one of the terminal node, say t. The corresponding estimated probability that r = 1 is just the proportion rt of respondents in t.

Pruning

Consistently with the above splitting algorithm, if T stands for the set of terminal nodes of a tree T , then the goodness-of-t of T can be measured by sum-of-squared dierences between the observed and tted values, namely C(T ) = t∈T (r i -rt ) 2 . The largest possible tree obtained by applying the recursive binary splitting rules until no further split is possible minimizes C(T ). This largest tree may overt the data, which can be detrimental to its prediction performance. Therefore, it is recommended to prune the tree by minimizing the following goodness-of-t criterion, penalized by the so-called size |T | of the tree, namely the number of its terminal nodes :

C α (T ) = t∈T (r i -rt ) 2 + α|T |
where α > 0 is a penalty parameter.

For a given value of α, minimizing C α (T ) results in a unique smallest subtree T α ⊆ T 0 . Consistently, progressively elevating α produces a sequence of subtrees T 0 ⊇ T 1 ⊇ ... ⊇ T L = t 0 , where t 0 is the complete set of items in the sample. The penalty parameter α is usually obtained by minimization of a cross-validated evaluation of the penalized goodness-of-t criterion for all the subtrees in the sequence or, as suggested in [START_REF] Breiman | Classication and regression trees[END_REF] to get more stable results, by taking the subtree which cost is one standard-error above the minimal cost.

Surrogate splits CART handles missing data among regressors with surrogate splits. Breiman proposes to dene a measure of similarity between the best split of any node t and any other possible split of t built with a regressor taht is not involved in the best split denition. Surrogate splits are computed by searching for splits leading approximately to the same partition of the observations as the original best split.

In section 3.1, we will see that this way of choosing the optimal tree by pruning is not appropriate for our nal purpose of estimating totals on variables of interest that are subject to missingness.

Conditional Inference Trees for simple and multitarget decision problems

Due to its exhaustive search algorithm for the optimal splitting rules, the above recursive partitioning algorithm has several drawbacks among which overtting (if not pruned) and selection bias towards covariates with many possible splits. Conditional Inference Trees (Ctree, [START_REF] Hothorn | Unbiased Recursive Partitioning : A Conditional Inference Framework[END_REF]) are designed to overcome those two drawbacks by improving the search of the best splitting rules using conditional inference procedures and permutation tests (see [START_REF] Strasser | On the Asymptotic Theory of Permutation Statistics[END_REF].

According to [START_REF] Hothorn | Unbiased Recursive Partitioning : A Conditional Inference Framework[END_REF], conditional inference trees keep the same exibility as the original tree methods, since they can be applied to dierent kinds of decision problems, "including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates".

Let us assume that, based on a model for the conditional distribution of the response indicator r given a J-vector of explanatory variables x = (x 1 , ..., x J ) , test statistics can be derived for the signicance of the relationship between the response and each of the explanatory variable. As for the standard tree method presented above, the Ctree algorithm to dene the optimal splitting rule of a non-terminal node can be divided in two steps :

1. Variable selection : signicance of the relationship between the response and each of the explanatory variables is tested, based on random permutations of the response values to obtain a nonparametric estimate of the null distribution of the test statistics. A multiple testing procedure controlling the Family-Wise Error Rate (FWER), such as the Bonferroni correction of the p-values, is then implemented for testing the global null hypothesis H 0 of independence between any of the covariates x j and the response indicator r. The algorithm is stopped if H 0 cannot be rejected at a pre-specied FWER control level α. Otherwise the covariate x j * with the strongest association to r is selected.

2. Optimal split : the best split point for x j * is also chosen using permutation tests for the signicance of the dierence between the response rates in the two children nodes.

In the above algorithm, the FWER control level α turns out to be the key parameter to determine the size of the nal tree.

Predictions

As with CART, in each cell t which is a terminal node, pi = rt .

Missing values in regressors

CTree, as well as CART, handles missing data among regressors which is not the case with logistic regression. Surrogates splits are computed by searching for splits leading approximately to the same partition of the observations as the original best split.

Iterated Multivariate decision trees

Conditional inference trees, introduced in subsection 2.3, can also produce decisions rules with several targets at once (see [START_REF] De'ath | Multivariate Regression Trees : A New Technique for Modeling Species-Environment Relationships[END_REF][START_REF] De | mvpart : Multivariate Partitioning. R package version 1.6-2[END_REF]. Thus, they enable us to provide groups of items that can be homogeneous regarding a Q-vector of target variables y = (y 1 , . . . , y Q ) and the response indicator r. This could be related with the concept of doubly robustness [START_REF] Bang | Doubly Robust Estimation in Missing Data and Causal Inference Models[END_REF]Robins 2005, Haziza and[START_REF] Haziza | A nonresponse model approach to inference under imputation for missing survey data[END_REF].

In the present item nonresponse context, where all the target variables y 1 , ..., y Q are missing for an item with the target r = 0, we propose to implement iteratively MultiVariate CTrees. This procedure can be viewed as an estimation method of p i , i = 1...n based on successive steps of simultaneous y imputation.

1. In the rst step, the training sample of the multivariate Ctree is based on the sample of respondents only S r . The targets are y and the response indicator r. The predictors are J covariates x 1 , ..., x J . In case of missing values among the covariates then surrogate rules can be used. Applying on the nonrespondents sample S nr this rst decision tree built on S r , we get ŷ for non respondents sample S nr .

2. In the second step, the training sample of multivariate Ctree contains all items (respondents and nonrespondents) with observed values of y for respondents and imputed values (from step one) for nonrespondents. We still use the observed values of the response indicator (not those predicted in step 1) to get new values ŷ for non respondents sample S nr .

3.

Step 2 is repeated iteratively until ŷ is stabilized. In our simulation study (section 4), few iterations have been necessary (less than ten). The nal output is the n-vector of estimated response probabilities pi 's, i = 1...n for each sample item, provided at the last iteration of multivariate Ctree as the response rate in the terminal node of each item.

This iterated method deals with dierent patterns of missingness : item nonresponse with imputation of y, unit nonresponse with estimation of response probability and nonresponse among regressors with surrogates rules. It highlights the fact that missingness can be seen as a multivariate problem.

Bagging and Random Forests

Bootstrap aggregating, also called Bagging "is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class." (Breiman 1996).

This machine learning ensemble meta-algorithm is especially benecial to the notoriously unstable decision tree methods. It is a special case of the model averaging approach, which aim is both to avoid overtting and to improve the reproducibility and accuracy of machine learning algorithms.

In a general regression problem, bagging averages predictions over a set of bootstrap samples, thereby reducing the variance of a base estimator (e.g., a decision tree). For each bootstrap sample S b , b = 1, 2, ..., B, drawn in the whole learning sample S n , a model is tted with a base estimator, giving prediction f b (x). The bagging estimate of the response probability p i , i ∈ S n is dened by

pi = f bag (x i ) = 1 B B b=1 f b (x i )
Bagging takes advantage of the independence between base learners tted on dierent bootstrap samples to reduce the estimation variance while keeping the bias unchanged. It performs best with strong and complex models (e.g., fully developed decision trees), in contrast with boosting methods (see next subsection) that usually work best with weak models (e.g., small decision trees).

Random Forest [START_REF] Breiman | Random Forests[END_REF]) is an extension of Bagging applied to regression and classication tree methods, where the main dierence with standard Bagging is the randomized covariate selection. Indeed, to optimize each splitting rule, the Random Forest method rst randomly selects a subset of covariates, and then apply the usual split selection procedure within the subset of selected covariates. The former additional randomized feature selection is meant to lead to more independent base learners leading to a more ecient variance reduction, in comparison with Bagging. The Random Forest method usually has a worse starting point (when b = 1) than Bagging but converges to lower test errors as B increases [START_REF] Zhou | Ensemble Methods : Foundations and Algorithms[END_REF].

Note that we have chosen to aggregate within a family of learning algorithm, both in Bagging and Random Forest, and not in an overall perspective mixing dierent families -unlike in stacking [START_REF] Wolpert | Stacked Generalization[END_REF], Breiman 1996[START_REF] Nocairi | Improving Stacking Methodology for Combining Classiers ; Applications to Cosmetic Industry[END_REF]).

Gradient Boosting and Stochastic Gradient Boosting

Similarly as in the Bagging methods, Boosting aims at taking advantage of a set of classication methods, named learners, to improve the overall classication performance. The original learners are assumed to be just slightly better than random guessing : for this reason, we talk about weak learners. The basic principle of Boosting is to iteratively derive a performant classication rule by selecting a weak learner at each iteration and combine it with the learner derived at the preceding step in such a way that the items with largest prediction errors are especially targeted by the current update of the boosted learner. Boosting was rst proposed in the computational learning theory literature (Shapire 1990[START_REF] Freund | Boosting a weak learning algorithm by majority[END_REF], Freund and Shapire 1997) and rapidly became popular since it can result in dramatic improvements in performance. [START_REF] Friedman | Additive logistic regression : a statistical view of Boosting[END_REF] give a more statistical perspective to boosting by using the principles of additive modeling and maximum likelihood. [START_REF] Hastie | The Elements of Statistical Learning : Data Mining, Inference, and Prediction[END_REF] argued that decision trees are ideal base learners for applications of boosting. This motivates our choice of boosting decision trees in our study.

One of the most famous family of boosting methods is Adapative Boosting (AdaBoost, Freund and Shapire, 1996). Hereafter, we present a variant of Adaboost, named Real Adaboost (Freund and Shapire 1996[START_REF] Schapire | Improved boosting algorithms using condence-rated predictions[END_REF][START_REF] Friedman | Additive logistic regression : a statistical view of Boosting[END_REF], especially suited to the present purpose of estimating response probabilities rather than predicting the membership to the group of respondents. Indeed, at each iteration b, b = 1, ...B, the Real AdaBoost algorithm uses weighted class probability estimates pb (x) to build real-value contributions f b (x) to the nal aggregated rule F (x), i.e. to update the additive model. In the following, the base learners h 

Number of iterations B,

Process :

1 : Initialize the boosted estimator F (0) (x) = 0 and weights w

(0) i = 1 n , i ∈ S n 2 : For b = 1 to B do a : Fit ĥ(b)
γ with the target ri (where ri = 1 if r i = 1 and ri = -1 if r = 0) on the weighted items in the training samples, using weights w (b) i , in order to obtain class probability estimates pb (x i ) c : Update

• w (b+1) i = w (b) i exp{-r i f b (x i )}, i ∈ S n , with f b (x i ) = 0.5 log{ pb (x i )
1-p b (x i ) } and renormalize so that i∈Sn w

(b+1) i = 1 • F (b) (x) = F (b+1) (x) + f b (x)
End for Outputs :

• The classier sign[ F (B) (x)] estimates the label • The estimated probability p(r = 1|x) = p(r = 1|x) = 1 1+exp(-2 F (B) (x))
In our study, the more sophisticated Gradient Boosting and Stochastic Gradient Boosting versions [START_REF] Friedman | Stochastic Gradient Boosting[END_REF][START_REF] Culp | ada : An R Package for Stochastic Boosting[END_REF] of Real AdaBoost are implemented.

Gradient Boosting is a mix of gradient descent optimization and boosting. Both Boosting and Gradient Boosting t an additive model in a forward stage-wise manner. In each stage, they both introduce a weak learner to compensate the shortcomings of previous weak learners. However, Gradient Boosting especially focuses on the minimization of a loss function, here the exponential loss function derived from the maximum-likelihood estimation of a logistic regression model, by identifying those "shortcomings" using gradients, instead of the AdaBoost weighting function : "Both high-weight data and gradients tells us how to improve the model", [START_REF] Li | A Gentle Introduction to Gradient Boosting[END_REF]. In addition, a regularization parameter is introduced to control at each iteration the weight of the new learners in the current update of the boosted classication method.

The Stochastic Gradient boosting algorithm is referred to as a hybrid bagging and boosting algorithm [START_REF] Friedman | Stochastic Gradient Boosting[END_REF], in the sense that it combines advantages of the two procedures : at each iteration, the new learner is not tted on the whole learning sample but on a randomly drawn subsample.

The Suppport vector Machine

Support Vector Machines (SVM) are among the most famous machine learning methods in the statistical learning theory presented in [START_REF] Vapnik | Statistical Learning Theory[END_REF]. In the special case where the p-dimensional space of data points (x i1 , . . . , x ip ), where x ij is the observation of the jth explanatory variable on the ith sampling item, is fully separable into two subgroups, one with only respondents and one with only non-respondents, using a linear combination of the explanatory variables, then there exists two parallel hyperplanes separating the two subgoups, with maximal distance between those two hyperplanes : this maximal distance is named an hard margin. The maximalmargins hyperplanes contains data points that are called the support vectors. In this special case of separable groups of respondents and non-respondents, the linear SVM classier consists of considering the position of a data point with respect to the hyperplane that lies in the middle of the maximal-margins hyperplanes to determine the class of an item.

In the general case where the space of data points (x i1 , . . . , x ip ) is not fully separable, whatever the hyperplane and the margin chosen to separate the two subgroups, any linear classication rule dened as in the fully separable case by the position with respect to a separating hyperplane will result in misclassied data points. A so-called hinge loss function, very similar to the deviance loss function minimized in the maximum-likelihood estimation of a logistic regression model, is introduced to measure the relevance of a linear classication rule in-between the two maximalmargin hyperplanes. For a given soft margin, nding the optimal hyperplane can be stated as minimizing the mean hinge loss over the learning sample, which is convex optimization issue. The SVM solution nally consists in choosing the best compromise between a low mean hinge loss over the learning sample and a wide margin.

One of the reason why SVM has become so popular is that it can easily be extended to nonlinear classication rule, using the so-called "kernel trick" [START_REF] Schölkopf | Learning with Kernels[END_REF]. Indeed, in the linear framework, both the mean hinge loss function and the squared inverse of the margin size involve standard scalar products x i .x i of data points i and i . This standard scalar product can be replaced by K(x i , x i ), where K is a symmetric positive denite kernel function [START_REF] Hastie | The Elements of Statistical Learning : Data Mining, Inference, and Prediction[END_REF], that is intentionally introduced to dene the similarity of two observations, after a nonlinear transformation of the explanatory variables : to each choice of K corresponds a nonlinear transformation ϕ such that K(x i , x i ) = ϕ(x i ).ϕ(x i ). For example, the gaussian radial kernel, that is used in the following because it is a "general-purpose kernel used when there is no prior knowledge about the data" [START_REF] Karatzoglou | Support Vector Machines in R[END_REF], is dened as follows :

K(x i , x i ) = exp(-γ J j=1 (x ij -x i j ) 2 )
where γ is a positive constant.

It can be shown that the SVM classier can be expressed as the sign of a score function f (x) which is straightforward deduced from the hinge loss function. Since we are more interested in estimating class probabilities than in predicting class labels, we use Platt's a posteriori probabilities (see [START_REF] Platt | Probabilistic outputs for support vector machines and comparison to regularized likelihood methods[END_REF] :

P (r = 1| f (x)) = 1 1 + exp(A f (x) + B)
where A and B are estimated by minimizing the negative log-likelihood function.
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Homogeneous Response Groups (HRG)

The dierent methods listed above produce "raw" estimated probabilities. The survey weights may be then adjusted inversely to those raw estimated response probabilities. But in order to protect against model insuciency, it is suggested that homogeneous response groups be formed, i.e. that units with the same characteristics and the same propensity to respond be grouped together [START_REF] Eltinge | Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey[END_REF][START_REF] Haziza | On the construction of imputation classes in surveys[END_REF][START_REF] Little | Survey Nonresponse Adjustments for Estimates of Means[END_REF]. That is why we computed, for each set of "raw" estimated probabilities, a corresponding Homogeneous Response Groups (HRG) version.

Dening HRG requires to partition the population into C groups. The design weight of respondents in group c is adjusted by multiplying it by the inverse of the observed response rate in class c, for c = 1 to C. Homogeneous groups are formed by using a clustering algorithm (kmeans) on "raw" estimated probabilities. Finally, the probability of a unit in class c is estimated by the response rate observed in the same class.

Example of HRG's usefulness with CART :

CART pruning consists in selecting a tree minimizing a cross-validated error (see section ??). Therefore, the way the learning method is optimized is not especially designed to match our nal aim which is to minimize the following expected estimation error :

E(t y -t y ) 2
Therefore, in the following simulation study, we propose to extract clusters of homogeneous estimated response probabilities calculated using unpruned trees. Let us take as example, the variable of interest Y 1 and response mechanism R0 described bellow in the simulation study section 4. With this example, we measure a bias of 11% for the expansion estimation ty Exp of t y in our simulation study with a default pruned CART leading to 6 splits but no bias with an unpruned tree (see gure 1 below). Furthermore, the SSE of ty Exp is much lower with 40 splits than with 6 splits.

Truncation of estimated probabilities

In order to prevent from too small weights, a lower bound has to be determined for the pi 's. In practice, the lower bound 0.02 is often used. However, some of our simulations show that the choice of the lower bound may have a certain impact depending on the machine learning method in use. For instance, in our simulations, the global performance of Ctree is robust to variations of the truncation level, which is not the case with the Bagging version of Ctree (see appendix 6.3 for details).

4 Simulations study

Simulations set-up

We conduct an extensive simulation study to compare the dierent methods described in Section 2 in terms of bias and eciency. We perform K = 1000 iterations of the following process : rst, a nite population of size N = 1500 is generated from a given model. Then, from the realized population, we generate nonresponse according to a specic nonresponse mechanism. Below, we describe one iteration in further details.

Figure 1 Performance of CART depending on the number of splits

We generate a nite population of size N = 1500 consisting of ten survey variables, y j , j = 1, ..., 10 and ve auxiliary variables x 1 -x 5 . First, the auxiliary variables were generated as follows. The x 1 -values are generated from a standard normal distribution. The x 2 -values are generated from a beta parameter with shape parameter equal to 3 and scale parameter equal to 1. The x 3 -values are generated from a gamma distribution with shape parameter equal to 3 and scale parameter equal to 2. The x 4 -values are generated from a Bernoulli distribution with probability equal to 0.7. Finally, the x 5 -values are generated from a multinomial distribution with probabilities (0.4, 0.3, 0.3). We standardize x 2 and x 3 so that their means equal zero and their variances equal one : without loss of generality, it allows us to have more readable coecients in the denition of the models M 1 to M 10 and of response mechanisms R0 to R6 provided bellow.

Given the values of x 1 to x 5 , the values of y 1 -y 10 were generated according to the following models :

M 1 : y i1 = 2 + 2x i1 + x i2 + 3x i3 + i1 ; M 2 : y i2 = 2 + 2x i1 + x i2 + 3x i3 + i2 ; M 3 : y i3 = 2 + 2x i4 + 1.5 1 (x i5 =1) -2 1 (x i5 =2) + i3 ; M 4 : y i4 = 2 + 2x i1 + x i2 + 3x i3 + 2x i4 + 1.5 1 (x i5 =1) -2 1 (x i5 =2) + i4 ; M 5 : y i5 = 2 + 2x i1 + x i2 + 3x i3 x i4 + 1.5 1 (x i5 =1) -2 1 (x i5 =2) + i5 ; M 6 : y i6 = 2 + 2x i1 + x 2 i2 + 3x i3 + i6 ; M 7 : y i7 = 2 + 2x 3 i1 + x 2 i2 + 3x i3 x i4 + 1.5 1 (x i5 =1) -2 1 (x i5 =2) + i7 ; M 8 : y i8 = 1 + exp(2x i1 + x i2 + 3x i3 ) + i8 ; M 9 : y i9 = 1 + x i4 exp(2x i1 + x i2 + 3x i3 ) + i9 ; M 10 : y i10 = 1 + 4cos(x i1 ) + i10 .
As a rst step away from our simplest linear model M 1, for y 2 we only modify the errors : they are generated from a mixture of a standard normal distribution and a beta distribution with 13 es Journées de méthodologie statistique de l'Insee (JMS) / 12-14 juin 2018 / PARIS shape parameter equal to 3 and scale parameter equal to 1. For the other variables y 3 , ...y 10 , the models are more complicated in terms of relations between variables of interest and covariates but the errors ji are generated from a standard normal distribution.

In order to focus on the nonresponse error, we consider the case of a census that is, n = N = 1500. In each population, response indicators are generated according to the following response mechanisms. The response mechanism R0 is a logistic model and constitutes the reference model in our empirical study. The other response mechanisms R1-R5 are expressed as the sum of p 0 and dierent terms that draw them away from the reference model. The response mechanism R6 is built as a regression tree decision rule. In each population, seven sets of response indicators r id are generated independently from a Bernoulli distribution with parameter p id (i.e. response probabilities), i = 1, • • • , N and d = 0, • • • , 6, which leads to seven sets of respondents.

R0 : p i0 = 1/[1 + exp{-0.4(6.5 + 2x i1 + 2x i2 + 2x i3 -x i4 + 1.5 1 (x i5 =1) -2 1 (x i5 =2) -x i3 x i4 )}] ; R1 : p i1 = 0.65p i0 + 0.007x 2 i1 ; R2 : p i2 = 0.5p i0 + 0.02 -0.01x 3 i2 ; R3 : P i3 = 0.5p i0 + 0.1|x i1 | ; R4 : p i4 = 0.5p i0 + 0.01 + exp(x i2 ) ; R5 : p i5 = 0.5p i0 + 0.2 + 0.1{(sin(x i1 ) + cos(x i2 )} ; R6 : p i6 = 1 (x i1 <0) (0.4 + 0.2x i4 ) + 1 (x i1 ≥0) 1 (x i2 <0.75) 1 (x i3 <6) {0.51 (x i5 =1) + 0.651 (x i5 =2) + 0.71 (x i5 =3) } + 0.81 (x i1 ≥0) 1 (x i2 <0.75) 1 (x i3 ≥6) + 0.91 (x i1 ≥0) 1 (x i2 ≥0.75) ;
Figures presented in Appendix 6.1 show the distributions of the simulated values of response probabilities p id , d = 0, • • • , 6. Note that the resulting response rates are approximately 85% for R0, 56% for R1, 45% for R2, 51% for R3, 58% for R4, 69% for R5 and 61% for R6. Figures presented in Appendix 6.2 illustrate the possibility of non linear links between the response probabilities and the survey variables in our simulations : Hajek's estimator is expected to outperform the expansion estimator in such situations.

We use a truncation for pi with a 0.02 lower bound for all the methods (with or without HRG). As a measure of bias of an estimator ty (m) of the nite population parameter t y , using machine learning method m for response probabilities estimations, we compute the Monte Carlo percent relative bias

RB M C ( ty (m) ) = 1 K K k=1 ( ty (m,k) -t y ) t y × 100, (6) 
where ty (m,k) denotes the estimator of t y in the k-th sample obtained with machine learning method m. As a measure of relative eciency, we compute

RE M C ( ty (m) ) = M SE M C ( ty (m) ) M SE M C ( ty (HRG Reglog) ) , (7) 
where ty (m) and ty (HRG Reglog) denote respectively the estimator of t y obtained with method m and the estimator of t y obtained with Homogenous Response Group applied to logistic regression estimated probabilities, and where

M SE M C ( ty (m) ) = 1 K K k=1 ( ty (m,k) -t y ) 2 .
13 es Journées de méthodologie statistique de l'Insee (JMS) / 12-14 juin 2018 / PARIS Using RB M C ( ty (m) ) and RE M C ( ty (m) ) as measures of performance leads to a huge amounts of indicators. Indeed, we have to cross 7 response mechanisms, by 10 variables of interest, 30 methods (with and without HRG versions of 15 machine learning methods) and this for 2 types of estimators ty Exp and ty Haj : 42000 performance indicators. We have to sum up all this information. In order to get a global ranking of the 30 methods for ty Exp and ty Haj , we build two kind of global indicators : one to sum up the RB M C tables and one to sum up the RE M C tables of each machine learning method.

Relative Bias results

Global indicator of relative bias

For each machine learning method, we have a RB M C table containing 70 indicators (10 rows for the 10 variables of interest and 7 columns for the 7 response mechanisms) that can be summed up by one indicator : the Frobenius norm of the RB MC table. The denition of the Frobenius norm of a matrix T is T F = trace(T * T ) where T * is the conjugate transpose of T . We want to identify the methods with the lowest relative bias. Thus we look for the methods for which the Frobenius norm of relative bias tables are the smallest. Once we get the global ranking of the methods based on this norm, we can go into more details for the best methods.

Global ranking results

In terms of relative bias results summed up with RB M C F (gure 2), the best method is HRG logistic regression for both ty Exp and ty Haj . However, among the methods that could handle missing values in predictors, HRG unpruned CART is good and performs better than unpruned CART (and much better than default pruned CART and than HRG prunned CART). Bagging Ctree (which also could handle missing values in predictors) performs also quite good but better for ty Haj than for ty Exp . As shown in gure 2, the four best methods for ty Exp provide lower bias than the four best for ty Haj . We also can see that applying HRG reduces bias for the very best methods (logistic regression and Unpruned CART) but it is not the case for all the methods (see for instance Bagging Ctree and MultiVariate CTrees). Note that in gure 2, the most extreme values have been removed for a better readability : only the 25 best methods (among 30) are provided.

a. RB M C : Focus on the three best methods for ty Exp a.1 HRG logistic regression (Table 1, Frobenious norm = 22.5)

Among the 70 scenarios, 30 show unbiased ty Exp (bias < 1%) and 9 scenarios exhibit bias above 4%. The best results occur with R0 (reference response mechanism i.e. logit link) and R6 (decision tree response mechanism). The worse results occur with R2 (reference response mechanism + a quadratic term) and R4 (reference response mechanism + an exponential term). The highest bias equals -7.7 with Y 7 (model with quadratic, cubic and interaction terms) and R5 (reference response mechanism + sine and cosine terms).

a.2 HRG Unpruned CART ( 4, Frobenious norm = 22.5) Among the 70 scenarios, 30 show unbiased ty Exp (bias < 1%) and 9 scenarios exhibit bias above 4%. The best results occur with R0 (reference response mechanism i.e. logit link) and R6 (decision tree response mechanism). The worse results occur with R2 (reference response mechanism + a quadratic term) and R4 (reference response mechanism + an exponential term). The highest relative bias equals -7.68% with Y 7 (model with quadratic, cubic and interaction terms) and R5 (reference response mechanism + sine and cosine terms).

b.2 Logistic regression (Table 5, Frobenious norm = 27.36)

Among the 70 scenarios, 28 show unbiased ty Exp (bias < 1%) and 12 scenarios exhibit bias above 4%. The best results occur with R0 (reference response mechanism i.e. logit link).

The worse results occur with R2 (reference response mechanism + a quadratic term). The highest relative bias equals 8.81% with Y 7 (model with quadratic, cubic and interaction terms) and R4 (reference response mechanism + an exponential term).

b.3 Bagging Ctree (Table 6, Frobenious norm = 30.11) Among the 70 scenarios, 23 show unbiased ty Exp (bias < 1%) and 21 scenarios exhibit bias above 4%. The best results occur with R0 (reference response mechanism i.e. logit link) and R6 (decision tree response mechanism). The worse results occur with R2 (reference response mechanism + a quadratic term). The highest relative bias equals -8.62% with Y 10 (model with a cosine term) and R2 (reference response mechanism + a quadratic term). 

Global indicator of relative eciency

In the denition of relative eciency RE M C (equation 7), we explicitly use the logistic regression combined with HRG as the reference method. It is not the case in the denition of relative bias RB M C (equation 6). That is why we propose a dierent global indicator of performance, normalized to 1 for the logistic regression combined with HRG.

Let us denote RE M C (e, m) the table computed for : e the estimator type of t y 's, e ∈ { ty Exp , ty Haj }, m the machine learning method used to estimate response probabilities.

Note that the model m can either be a machine learning used alone to estimate probabilities or a machine learning method associated to the Homogeneous Response Group creation (see section 3.1).

We compute the following normalized indicator (based on the Frobenius norm) : 

N REF (e,m) = RE M C (e,

Global ranking results

In the Bar plot (Figure 3) the most extreme values of N REF have been removed for a better readability. The best methods are HRG logistic regression, Logistic regression HRG Unpruned CART and Unpruned CART for both ty Exp and ty Haj . However among the methods that could handle missing values in predictors, MultiVariate CTree with four iterations is not far, particularly for ty Exp .

a. RE M C : Focus on the three best methods for ty Exp HRG logistic regression is a common used method and appears to the best rank among all the machine learning methods we used. That is why we used it as the reference : data table 7 is used as denominator in RE M C computation for all the other methods. Consequently, it's RE M C table is lled with 1's only which leads to a Frobenius norm equal to 3.87 and a Normalized Frobenius norm equal to 1. Thus we rather provide here the M SE M C table. In the following table, we darkened the worse cases for each variable of interest (the maximal value in each row). It shows for each variable of interest, on which response mechanism HRG logistic regression performs the best (always R0 i.e. the reference response mechanism with logit link)) and the worse (R2 i.e. the reference response mechanism + a quadratic term for Y 1 to Y 5, R3 for Y 8 to Y 10 for instance).

Let us focus now on the two other best methods in terms of RE M C . 

Discussion

In this article, we conducted a comprehensive simulation study, aiming at a global ranking of dierent machine learning methods in totals t y estimation performance through response probabilities estimation. In our simulation set-up with a census context, the best method in terms of MSE is the logistic regression associated with Homogeneous Response Groups creation. This is true both for the expansion estimator and for the Hajek estimator. One drawback of this method is that it does'nt handle missing data among regressors. Unpruned CART associated with Homogeneous Response Groups creation appear among the methods with good performance and that could handle missing values among regressors, particularly with the expansion estimator. Note that those two rst methods turn out to be very robust against changes in lower bound truncation of estimated probabilities. Bagging Ctree (which also could handle missing values among regressors) outperforms Unpruned CART associated to Homogeneous Response Groups creation with the Hajek estimator. However, it seems to require a higher level of truncation than the usual 0.02 value.

In further researches, we would like to study deeper our proposed iterated version of multivariate Ctree whose performances are quite good. For instance, which variables of interest pattern makes the Iterated MultiVariate CTrees work or fail ? Furthermore, this method could maybe prove useful in a context of imputation. Another interesting eld would be evaluating the performance of the dierent machine learning methods with missing data among the regressors. We could also enlarge the set of model aggregation with stacking for instance [START_REF] Wolpert | Stacked Generalization[END_REF], Breiman 1996[START_REF] Nocairi | Improving Stacking Methodology for Combining Classiers ; Applications to Cosmetic Industry[END_REF]. And lastly, evaluating the methods with dierent complex sampling designs could bring useful information. In order to avoid too small values for pi , the common practice is to implement truncation with a lower bound t for pi 's. A usually implemented lower bound is t = 0.02. We want to check how much the choice of a dierent value in t could change the nal performance in terms of MSE for ty built on dierent machine learning methods. Let us denote T M SE (e,m,t) an MSE table computed for : e the estimator type of t y 's, e ∈ { ty Exp , ty Haj }, m the machine learning method used to estimate response probabilities, t the lower bound used for truncation.

Note that the model m can either be a machine learning used alone to estimate probabilities or a machine learning method associated to the Homogeneous Response Group creation (see section 3.1).

In our simulation study (see section 4), for each combination e × m × t, we have 70 indicators of MSE for ty (10 variables of interest × 7 response mechanisms) -see for instance table 13. Thus we need a global indicator to sum up the overall modication of the 70 MSE's induced by a change in t. The Frobenius norm T M SE (e,m,t) F = trace(T M SE * (e,m,t) T M SE (e,m,t) ) of the T M SE (e,m,t) 's could provide this global measure of performance, and help evaluating the impact of a change in t. Indeed, the lower the MSE's are, the better the combination e × m × t is. Thus, given e and m, the best value for t is the one that provides the lowest T M SE (e,m,t) F .

However, for an easier analysis of the results, we rather compute the following normalized indicator (still based on the computation of a Frobenius norm) :

N F (e,m,t) = T M SE (e,m,t) /T M SE (e,m,t=0.02) F /8.3666

where T M SE (e,m,t) /T M SE (e,m,t=0.02) is a term by term division of T M SE (e,m,t)

by T M SE (e,m,t=0.02) . The reference value for t is 0.02. The denominator 8.3666 is the Frobenius norm of a 10 × 7 matrix lled with 1 s : it is the NF value in case of TMSE's global stability when t=0.02 is replaced by an other value of t. For instance in table 14, we can examine in detail the 70 ratios of T M SE ( ty Haj , HRG after logistic regression, 0.06) /T M SE ( ty Haj , HRG after logistic regression, 0.02)

In this example, a change in truncation bound from t=0.02 to 0.06 has very little impacts (only 3 cases in bold font where the ratios are slightly dierent from 1). The corresponding indicator N F ( ty Haj ,HRG after logistic regression, 0.06) is 1 (see table 16 ). 
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Table 1

 1 Relative bias of ty Exp with HRG after logistic regression

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	0.82	3.65	5.30	3.35	4.60	2.49	-0.33
	Y2	0.60	2.68	3.85	2.44	3.33	1.84	-0.23
	Y3	-0.12	0.19	0.69	0.78	0.70	0.35	-0.04
	Y4	0.35	2.40	3.77	2.77	3.39	1.88	-0.24
	Y5	0.11	2.91	5.28	3.62	4.67	2.35	-0.80
	Y6	0.07	1.71	3.41	0.84	4.33	-1.46	2.27
	Y7	0.85	2.79	5.91	-0.22	6.99	-7.68	-2.32
	Y8	1.19	-1.29	-1.51	0.63	-3.06	2.55	-0.26
	Y9	0.72	-0.86	-1.80	-0.23	-2.57	1.95	-0.92
	Y10	0.15	0.03	0.64	-4.70	1.21	-0.99	0.16

Table 2

 2 Relative bias of ty Exp with HRG after unpruned CART

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	2.53	2.33	-2.13	-0.95	2.61	2.29	-0.88
	Y2	1.86	0.75	-4	-2.37	0.58	1.39	-1.26
	Y3	0.36	-2.81	-7.56	-5.07	-3.66	-0.23	-1.94
	Y4	1.82	0.91	-3.70	-2.06	0.65	1.62	-1.11
	Y5	2.61	3.32	-1.13	0.09	3.66	2.76	-1.36
	Y6	0.77	-2.05	-4.68	-4.81	-4.03	-0.34	-1.10
	Y7	3.41	2.12	0.70	-2.87	0.47	1.21	-0.43
	Y8	3.78	3.49	-1.02	-1.38	5.32	5.18	2.44
	Y9	3.14	5.23	-4.77	-0.36	3.61	4.37	3.68
	Y10	-0.02	-3.72	-8.49	-7.22	-4.80	-0.71	-2.57

Table 3

 3 Relative bias of ty Exp with Logistic regression RB M C : Focus on the three best methods for ty Haj b.1 HRG logistic regression (Table

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	0.06	3.56	5.25	2.95	4.08	2.61	-0.71
	Y2	0.04	2.55	3.77	2.15	3.07	1.85	-0.42
	Y3	-0.21	-0.01	0.71	0.76	1.16	0.15	0.00
	Y4	-0.17	2.32	3.78	2.51	3.29	1.88	-0.59
	Y5	-0.70	3.06	5.42	3.18	4.18	2.53	-1.16
	Y6	-0.03	0.51	3.23	0.66	6.80	-1.86	2.46
	Y7	-0.25	1.69	5.93	-0.85	9.28	-8.42	-5.80
	Y8	-0.11	-7.28	-6.80	-1.14	-3.54	-0.38	0.72
	Y9	-0.49	-6.22	-6.50	-1.52	-2.90	-0.82	-0.13
	Y10	0.01	0.27	1.29	-5.13	1.60	-0.59	-0.62

b.

Table 4

 4 Relative bias of ty Haj with HRG after logistic regression

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	0.82	3.65	5.30	3.35	4.60	2.49	-0.33
	Y2	0.60	2.68	3.85	2.44	3.33	1.84	-0.23
	Y3	-0.12	0.19	0.69	0.78	0.70	0.35	-0.04
	Y4	0.35	2.40	3.77	2.77	3.39	1.88	-0.24
	Y5	0.11	2.91	5.28	3.62	4.67	2.35	-0.80
	Y6	0.07	1.71	3.41	0.84	4.33	-1.46	2.27
	Y7	0.85	2.79	5.91	-0.22	6.99	-7.68	-2.32
	Y8	1.19	-1.29	-1.51	0.63	-3.06	2.55	-0.26
	Y9	0.72	-0.86	-1.80	-0.23	-2.57	1.95	-0.92
	Y10	0.15	0.03	0.64	-4.70	1.21	-0.99	0.16

Table 5

 5 Relative bias of ty Haj with Logistic regression

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	0.08	3.85	5.33	2.93	3.64	2.85	-0.98
	Y2	0.06	2.84	3.85	2.14	2.63	2.09	-0.70
	Y3	-0.20	0.27	0.78	0.74	0.73	0.39	-0.28
	Y4	-0.15	2.61	3.86	2.50	2.85	2.11	-0.87
	Y5	-0.68	3.35	5.50	3.16	3.74	2.77	-1.43
	Y6	-0.02	0.78	3.30	0.65	6.34	-1.64	2.18
	Y7	-0.23	1.98	6.00	-0.87	8.81	-8.22	-6.06
	Y8	-0.09	-7.02	-6.75	-1.16	-3.96	-0.15	0.44
	Y9	-0.47	-5.96	-6.44	-1.55	-3.33	-0.59	-0.40
	Y10	0.03	0.55	1.36	-5.15	1.17	-0.36	-0.90

Table 6

 6 Relative bias of ty Haj with Ctree Bagging

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	1.46	5.26	6.30	5.78	5.44	1.85	0.67
	Y2	1.13	3.90	4.54	4.22	3.99	1.36	0.50
	Y3	-0.05	0.73	0.81	0.89	0.97	0.59	-0.47
	Y4	0.84	3.86	4.45	4.31	4.20	1.75	-0.13
	Y5	0.16	5.16	6.39	6.20	5.81	2.03	-0.11
	Y6	2.32	3.67	4.29	3.45	4.13	2.09	0.54
	Y7	2.81	7.65	9.13	7.08	9.34	3.01	0.01
	Y8	2.86	0.67	1.32	4.84	2.22	4.04	2.16
	Y9	2.41	1.19	0.83	3.02	2.56	3.71	1.35
	Y10	-0.88	-0.02	0.39	-3.02	0.38	0.03	-0.11

  m)/RE M C (e, HRG logistic regression) F /8.3666 where RE M C (e, m)/RE M C (e, HRG logistic regression) is a term by term division of RE M C (e, m) by RE M C (e, HRG logistic regression). The denominator 8.3666 is the Frobenius norm of a 10 × 7 matrix lled with 1 s : it is the Frobenius norm of the table RE M C (e, HRG logistic regression)/RE M C (e, HRG logistic regression).

  Figure 3 Normalized Frobenius norm of the relative eciency tables for ty Logistic regression (Table 8, Normalized Frobenious norm = 1.2) Among the 70 scenarios, Logistic regression outperforms HRG Logistic regression in 36 scenarios (RE M C < 1) ) and is much worse in 3 scenarios with RE M C > 2. The relative best outperformances of Logistic regression occur with R1 (logit response mechanism with non normal residuals) and R2 (reference response mechanism + a quadratic term). The worse underperformances occur with Y 5 and R0 (reference response mechanism i.e. logit link) : RE M C = 3.41 which means that the MSE of Logistic regression is more than three times the one of HRG Logistic regression. a.2 HRG Unpruned CART (Table 9, Normalized Frobenius norm = 5.8) Among the 70 scenarios, HRG Unpruned CART outperforms HRG Logistic regression in 18 scenarios (RE M C < 1) and is much worse in 25 scenarios with a RE M C higher than 2. Relative underperformances occur with R0 to R6. The highest RE M C equals 29.41 with Y 10 and R2 (reference response mechanism + a quadratic term) and 20.69 with Y 3 and R2.

	a.1																										
	Exp and ty Haj	Frobenius norm of the relative eciency matrix for ty Haj	HRG logistic regression	Logistic regression	HRG unpruned CART	Unpruned CART	MultiVariate CTree 4 iter	HRG MultiVariate CTree 4 iter	HRG Quadratic Discriminant Analysis	Boosting	HRG Gradient Boosting	Ctree	HRG Ctree	Bagging Ctree	HRG SVM Radial Kernel	HRG Pruned CART	Pruned CART	HRG bagging Ctree	HRG Boosting	Gradient Boosting	Random Forest Ctree	HRG Random Forest Ctree	Bagging CART	Random Forest CART	SVM Radial Kernel	Random Forest log.reg.	HRG Bagging log. reg.
		Exp																									
		Frobenius norm of the relative eciency matrix for ty	HRG logistic regression	Logistic regression	HRG unpruned CART	Unpruned CART	MultiVariate CTree 4 iter	HRG MultiVariate CTree 4 iter	Ctree	HRG Ctree	HRG SVM Radial Kernel	Pruned CART	HRG Pruned CART	HRG bagging Ctree	Boosting	Gradient Boosting	HRG Gradient Boosting	HRG Boosting	HRG Quadratic Discriminant Analysis	Bagging Ctree	Random Forest Ctree	HRG Random Forest Ctree	HRG Bagging log. reg.	HRG Random Forest log.reg.	Random Forest log.reg.	Bagging CART	Random Forest CART

Table 7 M

 7 SE M C for ty Exp with HRG logistic regression

	Variable R0	R1	R2	R3	R4	R5	R6
	Y1 1.40E+03 2.14E+04 3.86E+04 2.30E+04	3.07E+04	1.12E+04	8.99E+03
	Y2 1.42E+03 2.17E+04 3.94E+04 2.30E+04	3.02E+04	1.19E+04	8.98E+03
	Y3 6.51E+02 4.14E+03 8.10E+03 6.62E+03	5.71E+03	3.27E+03	2.27E+03
	Y4 1.33E+03 2.66E+04 5.33E+04 3.50E+04	4.27E+04	1.67E+04	9.75E+03
	Y5 1.10E+03 1.70E+04 4.00E+04 2.59E+04	3.12E+04	1.10E+04	8.06E+03
	Y6 2.72E+03 2.01E+04 4.05E+04	1.80E+04	5.16E+04 1.29E+04	2.15E+04
	Y7 3.30E+04 9.16E+04 1.48E+05	1.01E+05	1.57E+05	1.79E+05 5.90E+04
	Y8 1.96E+17 3.08E+20 3.94E+20	4.38E+20 2.04E+20	3.42E+19	1.79E+20
	Y9 1.68E+17 2.83E+20 3.60E+20	4.23E+20 2.00E+20	3.27E+19	1.75E+20
	Y10 1.54E+03 5.79E+03 7.11E+03	6.51E+04 9.55E+03	5.22E+03	4.11E+03

Table 8

 8 Relative eciency for ty Exp with logistic regression

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	1.52	0.91	0.97	0.89	0.90	1.03	1.05
	Y2	1.43	0.89	0.96	0.90	0.93	0.97	1.02
	Y3	1.33	0.86	0.93	1.03	1.57	0.87	1.03
	Y4	1.97	0.90	1.00	0.88	0.99	0.97	1.10
	Y5	3.41	0.97	1.01	0.88	0.92	1.05	1.03
	Y6	1.23	0.63	0.92	0.93	2.33	1.13	1.11
	Y7	1.80	0.70	0.98	1.05	1.65	1.19	2.67
	Y8	0.01	1.25	0.56	1.03	0.88	0.48	0.97
	Y9	0.01	1.28	0.53	1.05	0.88	0.48	0.97
	Y10	1.04	0.97	1.72	1.16	1.36	0.79	1.43

Table 9

 9 Relative eciency for ty Exp with HRG after unpruned CART RE M C : Focus on the three best methods for ty Haj Here again, HRG logistic regression is used as the reference (denominator in RE M C computation). In the following table, we darkened the worse cases for each variable of interest (the maximal value in each row). It shows that HRG logistic regression performs the best with R0 (reference response mechanism) and the worse with R2 (reference response mechanism + a quadratic term) for Y 1 to Y 6, R3 for Y 8 to Y 10.Let us focus now on the two other best methods in terms of RE M C . b.1 Logistic regression (Normalized Frobenius norm = 1.4) Among the 70 scenarios, logistic regression outperforms HRG Logistic regression in 31 scenarios (RE M C < 1) and is much worse in 5 scenarios with a RE M C higher than 2. The relative best outperformances occur with R2 (reference response mechanism + a quadratic term) and the worse underperformances with R0 (reference response mechanism). The highest RE M C equals 4.57 with Y 5 and R0 (reference response mechanism). b.2 HRG Unpruned CART (Normalized Frobenius norm = 2.9) Among the 70 scenarios, HRG Unpruned CART outperforms HRG Logistic regression in 12 scenarios (RE M C < 1) and is much worse in 42 scenarios with a RE M C higher than 2. The relative best outperformances occur with Y 8 and Y 9 and worse underperformances occur with R0 (reference response mechanism). The highest RE M C equals 10.37 with Y 5 and R0 (reference response mechanism).

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	7.02	1.05	0.70	0.95	0.90	1.51	2.27
	Y2	7.23	0.85	1.30	1.35	0.72	1.31	2.73
	Y3	3.30	8.12	20.69	12.52	8.86	3.17	10.67
	Y4	10.16	0.89	1.25	1.16	0.65	1.36	3.16
	Y5	9.40	1.70	0.65	0.88	1.15	1.92	2.57
	Y6	3.09	1.74	1.80	3.98	1.27	1.60	1.25
	Y7	2.20	1.52	1.00	1.06	0.89	0.66	2.11
	Y8	0.08	0.09	0.57	1.84	1.89	1.97	0.63
	Y9	0.05	0.02	0.53	1.88	1.72	2.04	0.63
	Y10	1.56	8.78	29.41	2.37	8.00	1.87	7.87

Table 10 M

 10 SE M C for ty Haj with HRG logistic regression

	Variable R0	R1	R2	R3	R4	R5	R6
	Y1 1.40E+03 2.15E+04 3.86E+04 2.30E+04	3.08E+04 1.12E+04	9.00E+03
	Y2 1.42E+03 2.17E+04 3.95E+04 2.30E+04	3.03E+04 1.19E+04	8.98E+03
	Y3 6.52E+02 4.15E+03 8.11E+03 6.62E+03	5.72E+03 3.27E+03	2.28E+03
	Y4 1.33E+03 2.66E+04 5.33E+04 3.50E+04	4.27E+04 1.67E+04	9.76E+03
	Y5 1.10E+03 1.70E+04 4.00E+04 2.59E+04	3.13E+04 1.11E+04	8.07E+03
	Y6 2.73E+03 2.02E+04 4.05E+04 1.80E+04	5.16E+04 1.29E+04	2.15E+04
	Y7 3.30E+04 9.17E+04 1.49E+05	1.01E+05	1.58E+05 1.80E+05 5.90E+04
	Y8 1.97E+17 3.08E+20 3.95E+20	4.39E+20 2.04E+20 3.43E+19	1.79E+20
	Y9 1.68E+17 2.83E+20 3.60E+20	4.24E+20 2.00E+20 3.27E+19	1.75E+20
	Y10 1.54E+03 5.80E+03 7.11E+03	6.51E+04 9.56E+03 5.22E+03	4.12E+03

Table 11

 11 Relative eciency of ty Haj with logistic regression

	A	R0	R1	R2	R3	R4	R5	R6
	Y1	2.30	1.01	0.99	0.90	0.81	1.16	1.14
	Y2	2.47	1.02	0.98	0.91	0.80	1.14	1.13
	Y3	1.33	0.88	0.95	0.99	1.07	0.92	1.09
	Y4	3.57	1.04	1.02	0.88	0.83	1.14	1.27
	Y5	4.57	1.08	1.03	0.89	0.83	1.18	1.14
	Y6	1.12	0.64	0.94	0.91	2.00	1.00	0.99
	Y7	1.89	0.74	0.99	1.07	1.51	1.16	2.81
	Y8	0.03	1.27	0.56	1.03	0.88	0.49	0.97
	Y9	0.03	1.30	0.53	1.05	0.87	0.49	0.97
	Y10	1.30	1.14	1.83	1.17	1.01	0.82	1.90

Table 12

 12 Relative eciency of ty Haj with HRG after unpruned CART

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	7.14	2.82	1.97	2.28	2.66	2.13	2.41
	Y2	7.38	2.83	1.90	2.27	2.67	2.04	2.46
	Y3	3.24	2.69	2.03	2.03	2.21	2.27	3.74
	Y4	10.37	3.48	2.19	2.35	2.75	2.13	3.01
	Y5	9.53	4.42	2.40	2.59	3.26	2.65	2.35
	Y6	3.12	1.64	1.77	1.56	0.59	1.49	1.15
	Y7	2.21	2.46	2.72	1.27	1.37	0.72	2.19
	Y8	0.08	0.10	0.67	2.09	2.10	1.97	0.71
	Y9	0.05	0.03	0.63	2.12	1.89	2.04	0.70
	Y10	1.53	1.43	1.61	0.17	0.91	1.12	1.86

Table 13 T

 13 M SE

Table 14

 14 Ratios of TMSE with truncation 0.06 / TMSE with truncation 0.02 T M SE ( ty Haj , HRG after logistic regression, 0.06) /T M SE ( ty Haj , HRG after logistic regression, 0.02)Let us focus on two of the best methods in terms of MSE's (see section 4.3). NF indicators table 15 for ty Exp and table 16 for ty Haj , show that HRG after logistic regression is robust in terms of MSE : we can see that NF indicators are always equal to 1, with m = HRG after logistic regression. HRG after Unpruned CART is quite robust but exhibits better global performance in terms of MSE with t = 0.06 both for ty Exp and for ty Haj .

	Variable	R0	R1	R2	R3	R4	R5	R6
	Y1	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Y2	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Y3	1.00	1.00	1.00	1.00	0.99	1.00	1.00
	Y4	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Y5	1.00	1.01	1.00	1.00	1.00	1.00	1.00
	Y6	1.00	1.00	1.00	1.00	0.99	1.00	1.00
	Y7	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Y8	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Y9	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Y10	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 15

 15 NF indicator for ty Exp with dierent lower bounds truncation of pi

	Lower	Lower	Lower	Lower
	bound	bound	bound	bound

Table 16

 16 NF indicator for ty Haj with dierent lower bounds truncation of pi

	Lower	Lower	Lower	Lower
	bound	bound	bound	bound
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