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16 ABSTRACT 

17 Seeds are involved in the transmission of microorganisms from one plant generation to the 

18 next and consequently act as reservoirs for the plant microbiota. The driving processes 

19 influencing seed microbiota assemblage have not been yet deciphered because of 

20 confounding factors related to environmental location, agricultural practices and host 

21 genotype selection. Nine genotypes were chosen among a large panel of genetically diverse 

22 Brassica napus accessions. The taxonomic structure of the seed microbiota was monitored 

23 by amplification and subsequent high-throughput sequencing of gyrB and ITS1 markers for 

24 two successive years on seed lots collected from self-pollinated plants. Seed germination 

25 capacities were compared between all seed lots. Although harvesting year was the main 

26 driver of seed microbiota composition, the host genotype also significantly altered the 

27 structure of seed microbial assemblages. The core microbiota of B. napus included nine 

28 fungal taxa shared between all the genotypes and years, while no bacterial taxa were 

29 conserved across all genotypes and years. The harvesting year had the major effect on seed 

30 germination but with some differences between genotypes. The study demonstrated the 

31 relative contribution of host- and environmental-filtering on the assemblage of the seed 

32 microbiota. It suggested some influence of these assemblages on seed germination.

33
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34 Plants live in association with a diverse and complex set of microorganisms also known as 

35 microbiota. The plant microbiota can modify several host traits, such as plant nutrition 

36 (Paredes et al., 2018), flowering kinetics (Panke-Buisse et al., 2015) and resistance against 

37 plant pathogens and herbivores (Haney et al., 2018; Kwak et al., 2018). Owing to such 

38 impacts on plant growth and health, it is of interest to decipher the biological and ecological 

39 processes involved in the assembly of the plant microbiota. Several studies have notably 

40 investigated the impact of environmental factors and host genetic variation on the 

41 composition of plant microbiota (e.g. Bulgarelli et al., 2012; Peiffer et al., 2013; Horton et al., 

42 2014; Edwards et al., 2015; Pérez-Jaramillo et al., 2017; Fitzpatrick et al., 2018). These 

43 studies have revealed a major impact of environment on the taxonomic structure of plant 

44 microbiota and a limited but significant contribution of the host genotype. Accordingly, it 

45 has been recently highlighted that community heritability (H2
C, Opstal & Bordenstein, 2015) 

46 of the maize rhizosphere microbiota is low, even if the abundance of some operational 

47 taxonomic units (OTUs) is significantly affected by host genetics (Walters et al., 2018). This 

48 broad-sense heritability (H2) of some bacterial taxa is probably linked to host genes involved 

49 in the recruitment of its microbiota, for instance genes related to specific plant metabolites 

50 and to plant immunity (Hacquard et al., 2017; Sasse et al., 2018). 

51 In contrast to other plant habitats, diversity of seed microbial assemblages is restrained 

52 (Barret et al., 2015; Klaedtke et al., 2016; Leff et al., 2017; Rybakova et al., 2017; Rodríguez 

53 et al., 2018; Adam et al., 2018; Bergna et al., 2018; Rezki et al., 2018), perhaps as a 

54 consequence of a seed bottleneck for microbial transmission (Paredes & Lebeis, 2016; 

55 Newcombe et al., 2018). In fact considering that rhizosphere and phyllosphere are plant 

56 habitats with a highly diversified and abundant microbiota, seeds act as a filter and select 
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57 smaller sized and less diversified microbial assemblages.Therefore, the relative importance 

58 of vertical transmission from maternal plant to its progeny over horizontal transmission from 

59 the environment is probably limited in plants (Leff et al., 2017; Newcombe et al., 2018). 

60 Nevertheless, seeds represent the initial inoculum of the plant microbiota and can thus 

61 potentially impact plant fitness especially during its early development stages.

62 Rapidity and uniformity of seed germination and seedling growth together with 

63 emergence ability under adverse environmental conditions and performance after storage 

64 are collectively referred to as seed vigor (Finch-Savage & Bassel, 2016). Seed vigor is 

65 determined by seed dormancy (Bentsink & Koornneef, 2008) and seed longevity (Leprince et 

66 al., 2017); both traits being influenced by genetic and environmental perturbations. For 

67 instance, seed dormancy in Brassica napus is affected by the genotype and pre-harvest 

68 environmental conditions (Gulden et al., 2004; Gruber et al., 2009). In contrast to 

69 physiological and environmental factors, the impact of seed microbiota composition on seed 

70 vigor has not been yet explored. However, experimental evidences indicated that some 

71 plant-associated bacteria can repress germination through the production of oxyviniglycines 

72 (McPhail et al., 2010; Chahtane et al., 2018) or decrease dormancy through free cytokinins 

73 production (Rodrigues Pereira et al., 1972; Goggin et al., 2015). Hence, one may argue that 

74 changes in seed microbiota structure could ultimately result in differences of seed vigor.

75 The few studies that have investigated the importance of ecological processes involved 

76 in the assembly of the seed microbiota have reported that the environment significantly 

77 impacts the structure of the seed microbiota, and especially fungal assemblages (Klaedtke et 

78 al., 2016). Part of these studies has also highlighted that the host genotype could have a 

79 weaker but significant influence on bacterial endophytes of oilseed rape ; however, it is 
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80 difficult to eliminate environmental variations that could be confounding (Rybakova et al., 

81 2017). In addition, neutral-based processes such as dispersal and ecological drift are also 

82 involved in the assembly of seed microbial assemblages (Rezki et al., 2018).

83 Brassica napus (oilseed rape) is a cropping plant cultivated worldwide for its oilseed and 

84 for protein cattle feed production. B. napus is sensitive to a range of soilborne plant 

85 pathogens including Plasmodiophora brassicae, Rhizoctonia solani and Verticillium 

86 longisporum, which can cause clubroot, seedling damping-off and Verticillium wilt, 

87 respectively (Hwang et al., 2012; Sturrock et al., 2015; Depotter et al., 2016). In absence of 

88 efficient control methods to restrict the populations of these phytopathogenic 

89 microorganisms, some biocontrol-based methods based on seed inoculation with microbial 

90 consortia have been proposed (Kataria & Verma, 1992; Müller & Berg, 2008). However, 

91 employing these seed inocula requires more basic knowledge on processes involved in 

92 assembly and dynamics of the seed microbiota (Barret et al., 2016). In this study, we 

93 estimated the impact of host genotypes and environment on the structure of the seed 

94 microbiota of nine genotypes representing the diversity of winter oilseed rape (WOSR) 

95 during two consecutive years. In addition, we explored the potential effect of seed 

96 microbiota composition on seed germination of these nine genotypes. 
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97 MATERIALS AND METHODS

98 Selection of winter oilseed rape (WOSR) genotypes.

99 A total of 116 cultivars of winter oilseed rape (Brassica napus), registered in France between 

100 the 1950’s and the 2000’s, were gathered from the CRB BraCySol (INRA, IGEPP, France) to 

101 represent the diversity of inbred lines cultivated in Western Europe. All cultivars were 

102 genotyped with the infinium Brassica 60K SNP array (Clarke et al., 2016). A set of 628 

103 polymorphic SNPs presenting a low level of linkage disequilibrium (r²<0.2) were selected to 

104 analyze the structure of the genetic diversity within the accessions. 

105 The structure of the collection was studied using admixture (Alexander et al., 2009) and 

106 ten cross-validations. The genetic diversity of the collection was analyzed using Darwin 

107 software (Perrier & Bonnot, 2003). Sokal and Michener genetic distances were estimated 

108 between each couple of cultivars, and then clustering was performed using UPGMA. Nine B. 

109 napus genotypes, namely Astrid, Aviso, Boston, Colvert, Express, Major, Mohican, Tenor and 

110 Zorro, were chosen among the collection (Supplementary Fig. S1, Table S1) as representative 

111 of B. napus diversity.

112 Seed production.

113 The selected genotypes were cultivated in 2012-2013 (Y0) in the same experimental field 

114 (INRA, Le Rheu, France) to minimize the effect of any former environmental difference 

115 between genotypes, and under self-pollination cages to ensure autogamy and therefore 

116 produce genetically homogenous lines. The 2013 (Y0) seeds, harvested individually for each 

117 genotype were sown in 2015 in a field located close to the field dedicated to seed 2013 

118 production. Pollination bags were applied over 20 plants per genotype after cutting off the 

Page 6 of 55



Rochefort et al., Phytobiomes Journal

7

119 early emerging flowers. The 2015-2016 (Y1) seeds of 20 plants were harvested and pooled 

120 independently for each genotype. In 2016-2017 (Y2), the seeds harvested for each genotype 

121 in the Y1 trial were sown in a field near the previous locations (INRA, Le Rheu, France) with 

122 the same cropping and harvesting process as Y1. GPS coordinates, distances between fields 

123 and cropping history for each year are available on Supplementary Table S2. Climatic data 

124 for the cropping periods Y1 and Y2 are reported in Supplementary Figure S2. All seed lots 

125 harvested in Y1 and Y2 were stored in paper bags in dark dry conditions and at room 

126 temperature.

127 Seed phenotyping. 

128 Seed imbibition, germination, and early radicle growth were monitored in vitro with an 

129 automated phenotyping platform (Phenotic, SFR Quasav, Angers, France), which is described 

130 in detail in Ducournau et al. (2004, 2005) and Wagner et al. (2012). Briefly, four subsamples 

131 of 25 seeds by genotype and year (Y1 and Y2) were incubated at 20°C on germination test 

132 paper (GE Healthcare, type 3644) continuously moistened for 5 days and image acquisition 

133 was performed every two hours. Image acquisition, image analysis and data analysis 

134 methods are described in Demilly et al. (2014). The following parameters were determined: 

135 seed area (Area; in mm2), volume 8h after initiation of imbibition (Imb_Vol; in mm3), radicle 

136 elongation after 8h (Elon_germ, in mm), mean germination time (germination, in hours), and 

137 time to reach 50% of germination per seed subsample (T50, in hours). Differences were 

138 assessed with Kruskal-Wallis tests and considered as significant at a p-value < 0.01. 

139 Microbial DNA sample preparation.
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140 DNA extraction was performed on five subsamples of 1,000 seeds (~4 g) per genotype (45 

141 subsamples in total per year). First, seeds were soaked in 20 mL of phosphate buffered 

142 saline (PBS) supplemented with 0.05% (v/v) of Tween 20 for 2h30 under constant agitation 

143 (140 rpm) at room temperature. After this seed soak that enables the recovery of epiphytic 

144 and endophytic microorganisms (Barret et al., 2015), the suspensions were centrifuged 

145 (4,500 g, 10 min) and DNA extraction was performed on the resulting pellets with the 

146 DNeasy PowerSoil HTP 96 Kit (Qiagen), following the manufacturer’s procedure. Seed 

147 suspensions in PBS are classically performed in seed pathology (see International Seed 

148 Testing Association –ISTA: https://www.seedtest.org/en/home.html) to PCR-amplify 

149 bacterial strains located in the endosperm (e.g. Acidovorax citrulli; or Xanthomonas citri). 

150 Numerous antimicrobial compounds are associated to seed tissues and are released during 

151 grinding, which therefore can result in underestimation of seed microbial diversity.

152 Libraries construction and sequencing. 

153 An initial PCR amplification was performed with the primer sets gyrB_aF64/gyrB_aR553 

154 (Barret et al., 2015) and ITS1F/ITS2 (Buée et al., 2009), which target a portion of gyrB and 

155 the fungal ITS1 region, respectively. The cycling conditions for ITS1F/ITS2, were an initial 

156 denaturation at 94°C for 3 min, followed by 35 cycles of amplification at 94°C (30 s), 50°C (45 

157 s) and 68°C (90 s), and a final elongation step at 68°C for 10 min. The cycling conditions for 

158 gyrB were: initial denaturation at 94°C for 3 min, 35 cycles of amplification at 94°C (30 s), 

159 55°C (45 s) and 68°C (90 sec), and final elongation step at 68°C for 10 min. Amplicons were 

160 purified with magnetic beads (Sera-MagTM, Merck). A second PCR amplification was 

161 performed to incorporate Illumina adapters and barcodes. PCR cycling conditions were 

162 identical for the two molecular markers: a first denaturation step at 94°C (1 min), followed 
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163 by 12 cycles at 94°C (1 min), 55°C (1 min) and 68°C (1 min), and a final elongation at 68°C for 

164 10 min. Amplicons were purified as previously described and quantified with the QuantIT 

165 PicoGreen ds DNA Assay Kit (ThermoFisher Scientific). All the amplicons were pooled in 

166 equimolar concentrations and the concentration of the equimolar pool was monitored with 

167 quantitative PCR (KAPA SYBR® FAST, Merck). Amplicon libraries were mixed with 10% PhiX 

168 and sequenced with MiSeq reagent kit v2 500 cycles (one sequencing cartridge per year). 

169 Sequence processing.

170 Fastq files were processed with DADA2 version 1.6.0 (Callahan et al., 2016), using the 

171 parameters described in the workflow for “Big Data: Paired-end” 

172 (https://benjjneb.github.io/dada2/bigdata_paired.html). The only modification made 

173 relative to this protocol was a change in the truncLen argument according to the quality of 

174 the sequencing run. Taxonomic affiliations for amplicon sequence variants (ASV) generated 

175 with DADA2 were assigned with a naive Bayesian classifier (Wang et al., 2007) on an in-

176 house gyrB database (Bartoli et al., 2018) and the UNITE v7.1 fungal database (Abarenkov et 

177 al., 2010). 

178 Microbial community analyses.

179 Analyses of diversity were conducted with the R package Phyloseq version 1.22.3 (McMurdie 

180 & Holmes, 2013). Data were normalized based on sequencing depth, using a rarefaction of 

181 1,100 and 15,000 sequences per sample for gyrB and ITS1, respectively. Observed richness 

182 (number of ASV per sample), estimated richness (Chao1 index), and inverse Simpson’s index 

183 were calculated with Phyloseq. Faith’s phylogenetic diversity was calculated on gyrB dataset 

184 with the R package picante version 1.6-2 (Kembel et al., 2010). Differences in alpha-diversity 
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185 estimators between years and genotypes were assessed with Kruskal-Wallis tests. 

186 Differences were considered as significant at a p-value < 0.01.

187 Changes in microbial assemblage composition were assessed with Bray-Curtis (BC) index 

188 and weighted UniFrac (wUF) distance (Lozupone & Knight, 2005). Principal coordinate 

189 analysis (PCoA) was used for ordination of BC index and wUF distance. To quantify the 

190 relative contribution of plant generation and plant genotype in microbial community 

191 profiles, canonical analysis of principal coordinates (CAP) was performed with the function 

192 capscale of the R package vegan 2.4.2 (Oksanen et al., 2017) followed with permutational 

193 multivariate analysis of variance (PERMANOVA; Anderson, 2001). 

194 A presence/absence matrix of common ASVs was constructed as follows. Common ASV 

195 was recorded as present if detected in all subsamples (n=5) of one seed lot. One seed lot 

196 corresponded to seeds collected each year from each plant genotype. Visualization of 

197 genotype-specific ASVs and shared ASVs between plant genotypes was assessed for each 

198 year with the R package UpSetR (Lex et al., 2014). The number of common bacterial and 

199 fungal ASV between years for each individual genotype was also assessed using Venn 

200 diagrams. This binary matrix was used for assessing Jaccard and unweighted UniFrac 

201 distance (uUF) between genotypes. Comparisons of Sokal-Michener genetic distance and 

202 Jaccard/uUF distances were monitored with coefficient of determination.

203 Distribution of bacterial and fungal ASVs in other Brassicaceae seeds was assessed by 

204 investigating their prevalence in 479 seed samples associated to Brassica oleracea, Brassica 

205 rapa and Raphanus sativus (Barret et al., 2015; Rezki et al., 2016, 2018).

206
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207 The datasets supporting the conclusions of this article are available in the SRA database 

208 under the accession number PRJEB31617.
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209 RESULTS

210 Diversity of the seed microbiota of B. napus.

211 Overall 4,451 bacterial and 359 fungal ASVs were detected within gyrB and ITS1 datasets. 

212 ASV provided a finer resolution than OTU (Callahan et al., 2017), this descriptor was 

213 therefore used for estimating the taxonomic structure of the seed microbiota of B. napus. 

214 According to coverage estimates, the number of gyrB sequences was not sufficient for 

215 reaching the plateau after rarefaction, while saturation was achieved for fungal reads. 

216 Hence, predicted richness (Chao1 index) was assessed for bacterial assemblages, while 

217 observed richness (number of ASVs) was measured for fungal assemblages. Although 

218 bacterial and fungal richness were significantly different between the two harvesting years 

219 (P < 0.01), seed samples collected in Y2 contained on average fewer bacterial and more 

220 fungal ASVs than Y1 seed sample (Fig. 1A, D). The increase of fungal richness in Y2 was 

221 associated with a significant decrease in fungal diversity (Fig. 1E). While bacterial diversity 

222 did not differ between years (Fig. 1B), bacterial phylogenetic diversity (Faith’s PD), was 

223 significantly higher in Y2 (P < 0.01; Fig. 1C). In contrast to the harvesting year, no significant 

224 differences in α-diversity estimators were observed between plant genotypes (P > 0.01). 

225 Similarities in composition of bacterial and fungal assemblages were estimated with 

226 weighted UniFrac (wUF) distance and Bray-Curtis (BC) index, respectively. Ordination of wUF 

227 and BC revealed a significant clustering of seed-associated bacterial and fungal assemblages 

228 according to the harvesting year (Fig. 2, Table 1). The relative influence of the harvesting 

229 year and the plant genotype in assemblage composition was further inspected through 

230 canonical analysis of principal coordinates (CAP) followed by PERMANOVA. Based on CAP 

231 analyses, 16.4% and 65.5% of variances in bacterial and fungal assemblage compositions, 
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232 respectively, were explained by the harvesting year, (P < 0.01). Changes in bacterial and 

233 fungal assemblage compositions were also significantly (P < 0.01) explained by the plant 

234 genotype, with 19.3% and 11.5% of variances driven by this factor, respectively (Table 1). 

235 Interaction between harvesting year and genotype was significant (P < 0.01) and explained 

236 16.6% and 13.3% of variances of bacterial and fungal assemblage compositions respectively. 

237 When each year is analyzed separately, the impact of plant genotype (P < 0.01) ranged from 

238 40% to 90% of explained variance (Table 1, Supplementary Fig. S3). However, similarity in 

239 assemblage compositions between genotypes were different in Y1 and Y2. 

240 Core and specific fractions of the B. napus microbiota.

241 Differences in relative abundance of bacterial orders between genotypes were mostly 

242 observed within Y1 (Fig. 3A). Notably we detected a higher abundance of Sphingomonadales 

243 and Pseudomonadales in Astrid, Aviso and Boston in comparison to the other genotypes 

244 (Fig. 3A). However, these differences between genotypes were not detected in Y2, where 

245 principal variations were related to increase in relative abundance of Enterobacteriales in 

246 Express and Zorro. Regarding fungal assemblages, differences in relative abundance of 

247 fungal orders were mostly observed between harvesting years, with a decrease in relative 

248 abundance of Tremellales and Helotiales in Y2 (Fig. 3B). 

249 The distribution of ASVs between plant genotypes for each year of production was also 

250 assessed (Fig. 4, Fig. 5). Among the 15 bacterial ASVs systematically detected in at least one 

251 genotype in Y1, none were shared between all genotypes (Fig. 4A). In Y2, six bacterial ASVs 

252 (out of 268) were shared between all genotypes (Fig. 4B). Four of these six ASVs have been 

253 already detected in more than 10% of seed samples (n = 479) collected from various 

254 Brassicaceae including Brassica oleracea, Brassica rapa and Raphanus sativus (Table 2). The 
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255 inheritance of bacterial ASVs between years was quite low, since only three genotypes 

256 (Astrid, Aviso and Boston) possessed four and five ASVs in common in Y1 and Y2, 

257 respectively (Supplementary Fig. S4A). These ASVs shared between both years are related to 

258 Sphingomonas, Pseudomonas and Frigoribacterium.

259 Fungal assemblages shared more ASVs between all genotypes in comparison to bacterial 

260 assemblages. Indeed, 18 (out of 37) and 19 (out of 52) fungal ASVs were shared between all 

261 the genotypes in Y1 and Y2, respectively (Fig. 5). For each genotype, 35% to 40% fungal ASVs 

262 were conserved from Y1 to Y2 (Supplementary Fig. S4B). In addition, nine fungal ASVs were 

263 systematically detected during both years. These fungal ASVs are also highly prevalent in 

264 seed samples of other Brassicaceae species (Table 2). There were very few bacterial ASVs 

265 specifically associated to one genotype in Y1, while there were in general more specific 

266 bacterial ASVs per genotype in Y2. Conversely, very few genotypes harbor specific fungal 

267 ASVs in Y1 as in Y2 (Supplementary Table S3, Table S4).

268 Relationship between B. napus genotypes and seed microbiota composition.

269 To assess if the composition of the seed microbiota could be related to genetic relatedness 

270 of B. napus, we compared Sokal-Michener genetic distance to Jaccard and uUF distances 

271 calculated with ITS1 and gyrB sequences, respectively (Supplementary Fig. S5). Coefficient of 

272 determination between Jaccard/uUF distances and Sokal-Michener distance were low for 

273 bacterial (r2= 0.026 in Y1; r2= 0.009 in Y2) and fungal (r2= 0.005 in Y1; r2= 0.117 in Y2) 

274 assemblages. While a significant (P = 0.002) positive correlation between genetic distance 

275 and fungal assemblage composition was detected in Y2, the overall genetic similarities 

276 between the B. napus genotypes employed in this work is not a robust predictor of seed 

277 microbiota composition.
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278 Impact of production year and host genotype on seed phenotypes.

279 There were no significant differences between years and genotypes for seed area, radicle 

280 elongation and imbibition speed (Supplementary Fig. S6). However, according to average 

281 germination rate (n=100), germination of seed samples harvested in Y1 was significantly (P < 

282 0.01) slower than germination of seed samples harvested in Y2 (Fig. 6). Significant 

283 differences were also observed between genotypes within specific year. For instance, seeds 

284 from Astrid germinated on average earlier (P <0.01) than the other genotypes in Y1 but not 

285 in Y2 (Fig. 6). Seeds from Tenor had a slower mean germination time (P <0.01) in comparison 

286 to the other genotypes but only for samples collected in Y2 (Fig. 6). Thus, another metric, 

287 T50, varied in the same way as mean germination time (Supplementary Fig. S6D). Of note, 

288 three bacterial ASV were specifically associated with Astrid in Y1 (Supplementary Table S3). 

289 Moreover, 3 bacterial ASVs and 5 fungal ASVs were specifically associated to Tenor in Y2 

290 (Supplementary Table S4).
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291 DISCUSSION

292 The aim of this study was to assess the relative influence of the environment (i.e. year) and 

293 the host genotype on the structure of the B. napus seed microbiota. To eliminate 

294 environmental variations within a year, we sowed seeds of nine B. napus genotypes in the 

295 same field. In addition, to ensure homogeneous genetic material and preserve genotype 

296 specificities, each individual plant was cultivated in self-pollination.

297 Over two years we observed a decrease in bacterial richness for seed samples collected 

298 during the second year. This loss of bacterial richness could be explained by a selection of 

299 bacterial taxa across years, in an analogous process that has been described for continuous 

300 cropping (e.g. Zhao et al., 2018). Loss of bacterial richness might be related to the repeated 

301 self-pollination process, which limits dispersal of individuals among local bacterial 

302 assemblages (Vannette & Fukami, 2017). If this assumption was  correct, a similar reduction 

303 of richness would be expected within seed fungal assemblages. However, fungal richness 

304 increased in Y2. Therefore, alteration of richness could be solely due to differences in 

305 richness of local microbial assemblages between years. Influence of the harvesting year was 

306 the main driving factor of seed fungal assemblage composition with 65.5% of explained 

307 variance. These results agree with a previous report showing that seed fungal assemblages 

308 of common bean are mostly shaped by crop management practices and geographical 

309 locations (Klaedtke et al., 2016). The high impact of environmental filtering on composition 

310 of the fungal fraction of the seed microbiota could be related to local biogeographical 

311 patterns of fungal assemblages (Peay et al., 2016).

312 Diversity and composition of the B. napus seed microbiota was different between years 

313 but also between the host genotypes used in this study. Host-genotype is an important 
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314 driver in the assembly of the seed microbiota, especially for the bacterial fraction. The 

315 impact of host genotypes on the structure of B. napus microbiota was already highlighted for 

316 endophytic bacteria (Rybakova et al., 2017). Since seed lots employed by Rybakova et al. 

317 (2017) were collected from different geographical regions, the influence of host genotype 

318 was therefore inseparable from the influence of the environment. Our study confirmed 

319 without any confounding factor that the structure of the B. napus seed bacterial assemblage 

320 are partly genotype-dependent. Since interaction between year and genotype was 

321 significantly influencing β-diversity, we assessed the influence of host genotypes on 

322 microbiota compositions for each year. According to these analyses, the plant genotype 

323 explained a major part of variation in seed microbial assemblage composition, therefore 

324 suggesting an important influence of host-filtering in the assembly of the seed microbiota. 

325 However, composition of seed microbial assemblage differed greatly between harvesting 

326 years. In addition, a small part of the B. napus seed bacterial assemblage is inherited from 

327 one generation to the next. Overall, our study highlighted a low inheritance of bacterial and 

328 fungal assemblages across B. napus generations. Indeed no bacterial ASV were consistently 

329 detected between plant generations, while nine fungal ASVs were conserved between years. 

330 The absence of conserved bacterial ASV between year and genotypes could be explained by 

331 a stronger impact of host-filtering on assembly of the bacterial fraction of the seed 

332 microbiota. Alternatively, the absence of generalist bacterial ASV observed between years 

333 could be partly explained by the weak number of bacterial ASVs detected in Y1. The 

334 inheritance of seed-borne microbial taxa is quite low, therefore confirming previous 

335 observations performed on R. sativus over three consecutive generations (Rezki et al., 2018) 

336 and Solanum lycopersicum over two generations (Bergna et al., 2018). Hence, the main 
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337 acceptable conclusion is that few microbial taxa associated with seeds are inherited and that 

338 most of seed-borne taxa represented cases of horizontal transmission (Leff et al., 2017). 

339 Despite these changes in assemblage compositions, the ASVs detected on seed samples 

340 corresponded to microbial taxa frequently associated with other seed samples. For instance, 

341 four of the bacterial generalists detected in Y2, namely Pantoea agglomerans, Pseudomonas, 

342 Sphingomonas and Frigoribacterium, were already detected in more than 10% of other 

343 Brassicaceae seed lots (Barret et al., 2015; Rezki et al., 2018). Hence, these taxa might be 

344 adapted to the seed habitat. The case was different for fungi with a significant number of 

345 fungal ASVs recovered through generations. However this does not mean that these taxa are 

346 vertically-transmitted. Assessing the relative importance of vertical and horizontal 

347 transmission will required an in-depth analysis of the seed transmission pathways (internal, 

348 floral and external) employed by these fungal taxa. Therefore, it is tempting to speculate that 

349 these differences in seed microbiota composition between years are the result of 

350 fluctuations of the local microbial reservoir. In this way, specific microbial recruitment and 

351 selection by the genotypes are modulated among years. Consequently, the relative impact of 

352 the host genotype on the structure of seed microbial assemblages is difficult to predict, as it 

353 is dependent of fluctuations of the local reservoir.

354

355 Previous works performed on the rhizosphere and phyllosphere of multiple maize 

356 genotypes have highlighted a relatively low H2 of microbial taxa (Wallace et al., 2018; 

357 Walters et al., 2018). Although the number of genotypes employed in our study precluded 

358 the measurement of this broad sense heritability, we did not establish any significant link 

359 between the genetic distance of the nine genotypes and their microbial distances. While 

360 considering the variability between subsamples collected from plants of the same genotype 
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361 and cultivated on the same field, in addition to the relative influence of environment and 

362 host genotype, there is a contribution of other neutral-based processes on the assembly of 

363 the seed microbiota (Rezki et al., 2018). However, some specific plant functions and traits, 

364 and especially genes implicated in plant immune system, shape the structure and diversity of 

365 their own microbiota (Horton et al., 2014; Li et al., 2018). Thus, it would be necessary to use 

366 a larger number of genetically diverse genotypes of WOSR to explore this hypothesis at a 

367 finer resolution (i.e. intra-species). To date, some studies failed to establish this link even 

368 when microbial diversification due to genetic diverse plant species was demonstrated 

369 (Bouffaud et al., 2012; Schlaeppi et al., 2014). However, establishing a direct correlation 

370 between genotypes and their microbiota would be of great interest for selecting genotypes 

371 with a specific microbiota in which certain taxa would ensure positive functions for the plant 

372 fitness.

373 Among different observed seed phenotypes, only the mean germination time and T50 

374 (half-mean germination time) varied between years. Seed germination progresses through 

375 three phases (Bewley, 1997). The first phase, known as imbibition, is a physical process 

376 driven by difference in water potential between the inside and the outside of the seed. Based 

377 on seed volume monitored during 8 hours after initiation of imbibition, no significant 

378 differences in imbibition was observed between seed samples. This observation suggested 

379 that seed moisture was quite comparable between seed samples and that the resulting 

380 differences in germination kinetics are related to later phases. Since the environmental factor 

381 (year) more strongly shapes the bacterial and fungal communities, we assessed whether the 

382 change in microbiota composition could explain variation in germination rates. Authors 

383 demonstrated that the environmental conditions, age of seed and genotype (He et al., 2014; 

384 Nagel et al., 2015; Leprince et al., 2017) affect different seed performances like secondary 

Page 19 of 55



Rochefort et al., Phytobiomes Journal

20

385 dormancy and seed vigor. The requirement to perform germination assays for all seed 

386 samples simultaneously ultimately results in differences in longevity of seed collected in Y1 

387 and Y2. However, long-term storage (i.e. several years) of B. napus seeds samples does not 

388 impact germination time but rather germination percentage (Nagel et al., 2011), which was 

389 not different between Y1 and Y2. Moreover, Astrid and Tenor genotypes did not support the 

390 ageing effect hypothesis as their germination rates were either similar or inverted 

391 respectively between Y1 and Y2 compared to the other genotypes. In addition, for Tenor 

392 different bacterial and fungal ASVs were effectively described in seed assemblages. Seed 

393 moisture cannot be involved as there was no significant differences during imbibition phase. 

394 Therefore, because of the most probable assumption of microbiota involvement, further 

395 experiments are required to investigate further the implication of microbial assemblages in 

396 germination or extended seed phenotypes variations. 

397 In conclusion, the microbial assemblages of B. napus seeds are mainly influenced by the 

398 environment but to a lesser extent by the plant genotype. The inheritance of some abundant 

399 bacterial and fungal ASVs also differs between genotypes. Further studies will explore more 

400 extensively the host genetic determinants driving the microbial assemblages and the impact 

401 of such assemblages on seed vigor.
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603 Table 1 Percentage of explained variance for beta-diversity estimators. Percentage of 

604 explained variance estimated with PERMANOVA analysis (P < 0.01) for β-diversity of 

605 bacterial (gyrB) and fungal (ITS1) assemblages.

Year Genotype Year:Genotype Genotype (Y1) Genotype (Y2)

gyrB 16.4 19.3 16.6 44 40.8

ITS1 65.5 11.5 13.3 66.2 90.7

606

607

608

609

610

611

612

613

614

615

616

617

618

619
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621

622 Table 2 Core members of Brassica napus seed microbiota. Prevalence (expressed as a 

623 percentage) of each amplicon sequence variants (ASV) in B. napus seed samples collected in 

624 year 1 (Y1), year 2 (Y2) and in seed samples (Others) of Brassica oleracea, Brassica rapa and 

625 Raphanus sativus  reported by Barret et al., 2015; Rezki et al., 2016; Rezki et al., 2018.

ASV Taxonomy Y1 (%) Y2 (%) Others (%)

Bacteria    
ASV00001 Pantoea agglomerans 0.0 100.0 90.6
ASV00003 Ralstonia pickettii 0.0 100.0 0.6
ASV00028 Pseudomonas 20.0 100.0 34.9
ASV00038 Sphingomonas 0.0 100.0 10.6
ASV00046 Frigoribacterium 10.0 100.0 11.1
ASV00124 Burkholderiales 0.0 100.0 0.0

Fungi
ASV0001 Alternaria infectoria 100.0 100.0 72.6
ASV0002 Cladosporium 100.0 100.0 97.6
ASV0003 Cladosporium delicatulum 100.0 100.0 100.0
ASV0004 Botrytis fabae 100.0 100.0 47.9
ASV0005 Sporidiobolales sp. 100.0 100.0 60.1
ASV0006 Alternaria infectoria 100.0 100.0 66.2
ASV0007 Alternaria brassicae 100.0 90.0 95.4
ASV0008 Cryptococcus victoriae 100.0 0.0 34.8
ASV0009 Cryptococcus victoriae 100.0 0.0 37.5
ASV0010 Cryptococcus oeirensis 100.0 0.0 37.8
ASV0011 Filobasidium stepposum 100.0 100.0 95.4
ASV0012 Alternaria infectoria 100.0 100.0 62.8
ASV0013 Alternaria infectoria 0.0 100.0 47.0
ASV0014 Bulleromyces sp. 100.0 0.0 0.3
ASV0015 Bensingtonia sp. 100.0 90.0 58.5
ASV0017 Erysiphe cruciferarum 100.0 20.0 12.8
ASV0018 Cryptococcus oeirensis 0.0 100.0 0.0
ASV0019 Udeniomyces pannonicus 60.0 100.0 14.0
ASV0021 Cladosporium aggregatocicatricatum 100.0 100.0 47.3
ASV0022 Alternaria 90.0 100.0 0.3
ASV0025 Cryptococcus victoriae 0.0 100.0 0.0
ASV0028 Cryptococcus tephrensis 100.0 90.0 32.9
ASV0029 Cryptococcus carnescens 90.0 100.0 32.9
ASV0030 Cladosporium perangustum 0.0 100.0 4.6
ASV0038 Phaeosphaeria caricicola 100.0 0.0 11.9
ASV0041 Cladosporium ramotenellum 0.0 100.0 5.2
ASV0044 Cryptococcus victoriae 0.0 100.0 0.0
ASV0054 Ramularia vizellae 0.0 100.0 0.9

626
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627 Figures, Tables and Supporting information captions.

628 Fig. 1 Diversity of seed-associated microbial assemblages of B. napus. Seed samples of nine 

629 genotypes were collected during two consecutive years (Y1 and Y2). Community profiling of 

630 the seed microbiota was performed on five seed subsamples per genotype. (A) Estimated 

631 richness (Chao1 index), (B) diversity (Inverse Simpson’s index) and (C) phylogenetic diversity 

632 (Faith’s phylogenetic diversity index) were monitored with gyrB ASVs for bacteria. (D) 

633 Observed richness (number of detected ASVs) and (E) diversity (Inverse Simpson’s index) 

634 were assessed with ITS1 ASVs for fungi. 

635

636 Fig. 2 Similarities in microbial composition between B. napus genotypes seed-associated 

637 microbial assemblages. Similarities in seed microbial composition were estimated with 

638 weighted UniFrac distance (A) and Bray-Curtis index for bacterial and fungal assemblages (B), 

639 respectively. Principal coordinate analysis (PCoA) was used for ordination of weighted 

640 UniFrac distance and Bray-Curtis index. Samples are coloured according to their genotypes, 

641 while shape corresponded to the two years of production.

642

643 Fig. 3 Taxonomic composition of B. napus seed microbiota. Relative abundance of the most 

644 abundant bacterial (A) and fungal (B) order within B. napus seed samples collected from nine 

645 genotypes across two successive generations. Taxonomic affiliation of bacterial and fungal 

646 ASVs was performed with an in-house gyrB database (Bartoli et al., 2018) and the UNITE v7.1 

647 database (Abarenkov et al., 2010), respectively. Unknown taxa represented ASVs that are 

648 not affiliated at the order level.

649
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650 Fig. 4 Generalist and specific bacterial ASVs. Prevalence of bacterial ASVs across plant 

651 genotypes were investigated with UpSetR (Lex et al., 2014). Upper histograms represented 

652 the number of ASVs associated to one specific intersection in Y1 (A) or Y2 (B). Plant genotype 

653 associated with each particular intersection is highlighted with a dot. Intersection associated 

654 with all genotypes is displayed in red. The histogram located on the left of each UpSetR 

655 representation indicated the number of ASVs per genotype. Finally, boxplot represented the 

656 median relative abundance (log10) of bacterial ASVs associated with each intersection. 

657

658 Fig. 5 Generalist and specific fungal ASVs. Prevalence of fungal ASVs across plant genotypes 

659 were investigated with UpSetR (Lex et al., 2014). Upper histograms represent the number of 

660 ASVs associated with one specific intersection in Y1 (A) or Y2 (B). Plant genotype(s) 

661 associated with each particular intersection is (are) highlighted with a dot. Intersection 

662 associated with all genotypes is displayed in red. The histogram located on the left of each 

663 UpSetR representation indicated the number of ASVs per genotype. Finally, boxplot 

664 represented the median relative abundance (log10) of fungal ASVs associated with each 

665 intersection. 

666

667 Fig. 6 Dynamics of seed germination of each genotype and year. Germination was 

668 monitored in vitro with an automated phenotyping platform (Phenotic; Ducournau et al., 

669 2004, 2005; Wagner et al., 2012). Four subsamples of 25 seeds by genotype and year (Y1 and 

670 Y2) were incubated at 20°C on germination paper (GE Healthcare, type 3644) continuously 

671 moistened for 5 days and image acquisition was performed every two hours. 

672
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673 Fig. S1 Distribution of the 116 genotypes representing the diversity of WOSR in Western 

674 Europe, among the 5 WOSR genetic groups. Cultivars were genotyped using 628 SNP (Clarke 

675 et al., 2016). The structure of the collection was studied using ADMIXTURE (Alexander et al., 

676 2009). Each genetic group is represented with a colour. A cultivar belongs to the group of 

677 which the colour is majority. The 9 selected genotypes of the study are marked with a yellow 

678 star.

679

680 Fig. S2 Climatic data for the cropping periods Y1 and Y2. (A) Rainfall level in mm (RR-DC) and 

681 mean humidity in % (UM-MD). (B) Mean calculated temperature (TMC), minimal (TN) and 

682 maximal (TX) temperatures in °C. All data are reported for 10 days (decade) during the years 

683 2015-2016 (Y1) and 2016-2017 (Y2) from records at Le Rheu station 35240002 – La Grande-

684 Verrière – (48,113°N, -1,781°E) (INRA Agroclim network)

685

686 Fig. S3 Similarities in microbial composition between B. napus genotypes seed-associated 

687 microbial assemblages, per year. Similarities in seed microbial composition were estimated 

688 with weighted UniFrac distance (A, B) and Bray-Curtis index (C, D) for bacterial and fungal 

689 assemblages, respectively. Principal coordinate analysis (PCoA) was used for ordination of 

690 weighted UniFrac distance and Bray-Curtis index. Samples are colored according to their 

691 genotypes, while shape corresponded to the year (=Y1; =Y2).

692

693 Fig. S4 Number of bacterial (A) and fungal (B) ASVs shared between years or specific of one 

694 year, for each genotype. 

695
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696 Fig. S5 Relationships between B. napus genetic distances and similarities of microbial 

697 assemblage compositions. The relationship between plant genotype and microbial 

698 assemblage composition was estimated by fitting a linear regression model between Sokal-

699 Michener genetic distance and unweighted UniFrac distance (bacteria; A, B) or Jaccard index 

700 (fungi; C, D) for Y1 (A, C) and Y2 (B, D). 

701

702 Fig. S6 Different phenotyping parameters calculated for seeds of each year and genotype. 

703 (A) Seed surface at initial time; (B) Seed imbibition 8h after initiation of imbibition; (C) 

704 Radicle elongation 8h after initiation of germination; (D) Time at which a half of the seeds 

705 have germinated. Significant results are marked with a red star.

706

707 Table S1 Characteristics of the nine B. napus genotypes. Quality: 00 or ++ is for absence or 

708 presence of Glucosinolate-Erucic acid. WOSR groups are defined from the genetic diversity 

709 study of 116 WOSR accessions with 628 SNPs (Fig. S1).

710

711 Table S2 Cropping conditions for the B. napus seed production. 

712

713 Table S3 Genotype-specific bacterial and fungal ASVs for Y1.

714

715 Table S4 Genotype-specific bacterial and fungal ASVs for Y2.
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Fig. 1 Diversity of seed-associated microbial assemblages of B. napus. Seed samples of nine genotypes were 
collected during two consecutive years (Y1 and Y2). Community profiling of the seed microbiota was 

performed on five seed subsamples per genotype. (A) Estimated richness (Chao1 index), (B) diversity 
(Inverse Simpson’s index) and (C) phylogenetic diversity (Faith’s phylogenetic diversity index) were 

monitored with gyrB ASVs for bacteria. (D) Observed richness (number of detected ASVs) and (E) diversity 
(Inverse Simpson’s index) were assessed with ITS1 ASVs for fungi. 
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Fig. 2 Similarities in microbial composition between B. napus genotypes seed-associated microbial 
assemblages. Similarities in seed microbial composition were estimated with weighted UniFrac distance (A) 
and Bray-Curtis index for bacterial and fungal assemblages (B), respectively. Principal coordinate analysis 
(PCoA) was used for ordination of weighted UniFrac distance and Bray-Curtis index. Samples are coloured 

according to their genotypes, while shape corresponded to the two years of production. 
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Fig. 3 Taxonomic composition of B. napus seed microbiota. Relative abundance of the most abundant 
bacterial (A) and fungal (B) order within B. napus seed samples collected from nine genotypes across two 
successive generations. Taxonomic affiliation of bacterial and fungal ASVs was performed with an in-house 
gyrB database (Bartoli et al., 2018) and the UNITE v7.1 database (Abarenkov et al., 2010), respectively. 

Unknown taxa represented ASVs that are not affiliated at the order level. 
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Fig. 4 Generalist and specific bacterial ASVs. Prevalence of bacterial ASVs across plant genotypes were 
investigated with UpSetR (Lex et al., 2014). Upper histograms represented the number of ASVs associated 

to one specific intersection in Y1 (A) or Y2 (B). Plant genotype associated with each particular intersection is 
highlighted with a dot. Intersection associated with all genotypes is displayed in red. The histogram located 

on the left of each UpSetR representation indicated the number of ASVs per genotype. Finally, boxplot 
represented the median relative abundance (log10) of bacterial ASVs associated with each intersection. 
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Fig. 5 Generalist and specific fungal ASVs. Prevalence of fungal ASVs across plant genotypes were 
investigated with UpSetR (Lex et al., 2014). Upper histograms represent the number of ASVs associated 

with one specific intersection in Y1 (A) or Y2 (B). Plant genotype(s) associated with each particular 
intersection is (are) highlighted with a dot. Intersection associated with all genotypes is displayed in red. 

The histogram located on the left of each UpSetR representation indicated the number of ASVs per 
genotype. Finally, boxplot represented the median relative abundance (log10) of fungal ASVs associated 

with each intersection. 
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Fig. 6 Dynamics of seed germination of each genotype and year. Germination was monitored in vitro with an 
automated phenotyping platform (Phenotic; Ducournau et al., 2004, 2005; Wagner et al., 2012). Four 

subsamples of 25 seeds by genotype and year (Y1 and Y2) were incubated at 20°C on germination paper 
(GE Healthcare, type 3644) continuously moistened for 5 days and image acquisition was performed every 

two hours. 
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Fig. S1 Distribution of the 116 genotypes representing the diversity of WOSR in Western Europe, among the 
5 WOSR genetic groups. Cultivars were genotyped using 628 SNP (Clarke et al., 2016). The structure of the 
collection was studied using ADMIXTURE (Alexander et al., 2009). Each genetic group is represented with a 
colour. A cultivar belongs to the group of which the colour is majority. The 9 selected genotypes of the study 

are marked with a yellow star. 
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Fig. S2 Climatic data for the cropping periods Y1 and Y2. (A) Rainfall level in mm (RR-DC) and mean 
humidity in % (UM-MD). (B) Mean calculated temperature (TMC), minimal (TN) and maximal (TX) 

temperatures in °C. All data are reported for 10 days (decade) during the years 2015-2016 (Y1) and 2016-
2017 (Y2) from records at Le Rheu station 35240002 – La Grande-Verrière – (48,113°N, -1,781°E) (INRA 

Agroclim network) 
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Fig. S3 Similarities in microbial composition between B. napus genotypes seed-associated microbial 
assemblages, per year. Similarities in seed microbial composition were estimated with weighted UniFrac 
distance (A, B) and Bray-Curtis index (C, D) for bacterial and fungal assemblages, respectively. Principal 
coordinate analysis (PCoA) was used for ordination of weighted UniFrac distance and Bray-Curtis index. 

Samples are colored according to their genotypes, while shape corresponded to the year (=Y1; =Y2). 
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Fig. S4 Number of bacterial (A) and fungal (B) ASVs shared between years or specific of one year, for each 
genotype. 
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Fig. S5 Relationships between B. napus genetic distances and similarities of microbial assemblage 
compositions. The relationship between plant genotype and microbial assemblage composition was 

estimated by fitting a linear regression model between Sokal-Michener genetic distance and unweighted 
UniFrac distance (bacteria; A, B) or Jaccard index (fungi; C, D) for Y1 (A, C) and Y2 (B, D). 
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Fig. S6 Different phenotyping parameters calculated for seeds of each year and genotype. (A) Seed surface 
at initial time; (B) Seed imbibition 8h after initiation of imbibition; (C) Radicle elongation 8h after initiation 

of germination; (D) Time at which a half of the seeds have germinated. Significant results are marked with a 
red star. 
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Table S1 Characteristics of the nine B. napus genotypes. Quality: 00 or ++ is for 

absence or presence of Glucosinolate-Erucic acid. WOSR groups are defined from the 

genetic diversity study of 116 WOSR accessions with 628 SNPs (Fig. S1).

Name Quality Year of
creation Breeder (country) WOSR

genetic group

Astrid 00 2003 Euralis (UK ) 4
Aviso 00 2000 Danisco (France) 5
Boston 00 2000 Limagrain (UK) 1
Colvert 00 1997 Limagrain (UK) 4
Express 00 1993 NPZ (Germany) 2
Major ++ 1977 INRA (France) 2
Mohican 00 1995 Euralis (France) 5
Tenor 00 1999 Momont/Limagrain (France) 1
Zorro 00 1994 NPZ (Germany) 2
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Table S2 Cropping conditions for the B. napus seed production. 

Distance between fields in meters

 Y01 Y1 Y2
Y0 0   
Y1 170 0  
Y2 966 860 0

1Self-pollination with cages of 1.80 m height, 0.65 m diameter, covered with a polyester veil, Lenglart, France
230x70 mm bags ref SM570Y, Sealed air Cryovac, France

Location of INRA fields in Le Rheu, France

Years Year code GPS coordinates
2012-2013 Y0 48°06'36.29''N 1°46'22.04''0
2015-2016 Y1 48°06'40.86''N 1°46'26.08''0
2016-2017 Y2 48°06'37.21''N 1°47'07.98''0

Cropping history

Years Year code WOSR 
Genotypes Sowing date

Date of self-
pollination bag 

attach2
Harvest date

2015-2016 Y1
Astrid 11/09/2015 04/04/2016 15/07/2016

  Aviso 11/09/2015 10/04/2016 15/07/2016
  Boston 11/09/2015 10/04/2016 15/07/2016
  Colvert 11/09/2015 07/04/2016 15/07/2016
  Express 11/09/2015 07/04/2016 15/07/2016
  Major 11/09/2015 10/04/2016 15/07/2016
  Mohican 11/09/2015 08/04/2016 15/07/2016
  Tenor 11/09/2015 10/04/2016 15/07/2016
  Zorro 11/09/2015 10/04/2016 15/07/2016
2016-2017 Y2   

Astrid 22/09/2016 04/04/2017 04/07/2017
  Aviso 22/09/2016 07/04/2017 04/07/2017
  Boston 22/09/2016 07/04/2017 04/07/2017
  Colvert 22/09/2016 05/04/2017 04/07/2017
  Express 22/09/2016 05/04/2017 04/07/2017
  Major 22/09/2016 07/04/2017 04/07/2017
  Mohican 22/09/2016 05/04/2017 04/07/2017
  Tenor 22/09/2016 06/04/2017 04/07/2017
  Zorro 22/09/2016 06/04/2017 04/07/2017
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Table S3 Genotype-specific bacterial and fungal ASVs for Y1.

Bacterial ASVs  Fungal ASVs

Genotype ASV Taxonomy Ab 
(log10)  ASV Taxonomy Ab 

(log10)

Astrid ASV00217 Sphingomonas 2.6 - - - 
ASV00220 Sphingomonas 3 - - - 
ASV00704 Sphingomonas 2.3 - - - 

Aviso ASV00047 Sphingomonas 3.3 - - - 

Boston ASV00046 Frigoribacterium 3.1 - - - 
ASV00178 Sphingomonas 2.8 - - - 

Colvert - - - ASV0037 Sclerotinia 4
- - - ASV0047 Cryptococcus 3.4
- - - ASV0043 Cystofilobasidium macerans 2.9

Express ASV00993 Comamonadaceae 2.6 - - - 

Major - - - - - - 

Mohican - - - ASV0023 Holtermanniales 2.8
- - - ASV0076 Entylomatales 2.3

Tenor ASV00020 Propionibacterium acnes 2.7 ASV0062 Cryptococcus victoriae 3.3

Zorro - - -  - - - 
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Table S4 Genotype-specific bacterial and fungal ASVs for Y2.

Bacterial ASVs Fungal ASVs

Genotype ASV Taxonomy Ab 
(log10)

ASV Taxonomy Ab 
(log10)

Astrid ASV00004 Pantoea agglomerans 4.2 - - -
ASV00014 Pseudomonas viridiflava 3.7 - - -
ASV00100 Pseudomonas fluorescens 4.0 - - -
ASV00216 Oxalobacteraceae 3.4 - - -
ASV00243 Microbacteriaceae 3.3 - - -
ASV00268 Pseudomonas 3.4 - - -
ASV00300 Sphingomonas 3.4 - - -
ASV00309 Oxalobacteraceae 3.4 - - -
ASV00330 Sphingomonas 3.2 - - -
ASV00339 Sphingomonas 3.3 - - -
ASV00446 Sphingomonas 3.1 - - -
ASV00457 Sphingomonas 3.1 - - -
ASV00482 Oxalobacteraceae 3.1 - - -
ASV00510 Frigoribacterium 3.0 - - -
ASV00637 Sphingomonas 2.9 - - -
ASV00709 Oxalobacteraceae 2.8 - - -
ASV00724 Oxalobacteraceae 2.8 - - -
ASV00782 Sphingomonas 2.6 - - -
ASV00804 Sanguibacter keddieii 2.7 - - -
ASV00933 Oxalobacteraceae 2.5 - - -
ASV00944 Actinobacteria 2.6 - - -
ASV00995 Sphingomonas 2.5 - - -
ASV01202 Sphingomonas 2.5 - - -

Aviso ASV00016 Pseudomonas 4.9 ASV0089 Alternaria infectoria 2.9
ASV00018 Pseudomonas tolaasii 4.9 ASV0114 Alternaria infectoria 2.6
ASV00068 Pantoea agglomerans 3.1 - - -
ASV00110 Pseudomonas proteolytica 3.1 - - -
ASV00164 Pseudomonas 3.6 - - -
ASV00285 Rhizobium 3.4 - - -
ASV00297 Sphingomonas 3.3 - - -
ASV00410 Pseudomonas proteolytica 3.2 - - -
ASV00424 Sphingomonas 3.0 - - -
ASV00449 Pseudomonas 2.9 - - -
ASV00493 Sphingomonas 3.1 - - -
ASV00540 Curtobacterium 3.0 - - -
ASV00653 Oxalobacteraceae 2.9 - - -
ASV00673 Frigoribacterium 2.8 - - -
ASV00697 Actinobacteria 2.8 - - -
ASV00737 Pseudomonas fluorescens 2.8 - - -
ASV01479 Frigoribacterium 2.3 - - -
ASV01639 Sphingomonas 2.2 - - -

Boston ASV00030 Erwinia billingiae 4.6 - - -
ASV00062 Pseudomonas 3.7 - - -
ASV00064 Pseudomonas 3.1 - - -
ASV00085 Pseudomonas viridiflava 3.6 - - -
ASV00108 Pseudomonas 4.0 - - -
ASV00137 Pseudomonas 3.8 - - -
ASV00193 Rhizobium 3.4 - - -
ASV00197 Pseudomonas fluorescens 3.7 - - -
ASV00202 Oxalobacteraceae 3.7 - - -
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ASV00214 Massilia 3.6 - - -
ASV00215 Rhizobium 3.4 - - -
ASV00244 Rahnella aquatilis 2.8 - - -
ASV00283 Rhizobium 3.4 - - -
ASV00302 Rhizobium 3.2 - - -
ASV00358 Rhizobium 3.3 - - -
ASV00438 Pseudomonas 3.1 - - -
ASV00473 Sphingomonas 3.0 - - -
ASV00491 Pseudomonas 2.6 - - -
ASV00523 Sphingomonas 2.9 - - -
ASV00524 Oxalobacteraceae 3.0 - - -
ASV00531 Comamonadaceae 3.0 - - -
ASV00573 Sphingomonas 2.9 - - -
ASV00610 Rhizobium 2.9 - - -
ASV00903 Oxalobacteraceae 2.6 - - -
ASV01010 Oxalobacteraceae 2.5 - - -
ASV01142 Oxalobacteraceae 2.5 - - -
ASV01318 Morganella morganii 2.4 - - -
ASV01439 Microbacterium 2.2 - - -

Colvert ASV00034 Pseudomonas 3.3 ASV0076 Entylomatales 2.0
ASV00200 Pseudomonas 3.6 - - -
ASV00207 Sphingomonas 3.3 - - -
ASV00227 Sphingomonas 3.6 - - -
ASV00270 Rhizobium 3.5 - - -
ASV00296 Sphingomonas 3.4 - - -
ASV00321 Oxalobacteraceae 3.0 - - -
ASV00347 Rhodobacteraceae 3.3 - - -
ASV00364 Sphingomonas 3.3 - - -
ASV00377 Sphingomonas 3.1 - - -
ASV00392 Frigoribacterium 3.2 - - -
ASV00432 Oxalobacteraceae 3.2 - - -
ASV00483 Sphingomonas 3.1 - - -
ASV00549 Oxalobacteraceae 3.0 - - -
ASV00557 Sphingomonas 3.0 - - -
ASV00612 Sphingomonas 2.9 - - -
ASV00615 Rhizobium 2.6 - - -
ASV00664 Methylobacterium 2.8 - - -
ASV00736 Sphingomonadaceae 2.7 - - -
ASV00829 Frigoribacterium 2.7 - - -
ASV01320 Frigoribacterium 2.4 - - -
ASV01377 Rhizobiales 2.3 - - -

Express ASV00037 Pseudomonas 3.0 - - -
ASV00326 Sphingomonas 3.3 - - -
ASV00371 Sphingomonas 3.3 - - -
ASV00403 Sphingomonas 3.0 - - -
ASV00525 Sphingomonas 2.9 - - -
ASV00535 Sphingomonas 3.0 - - -
ASV00608 Oxalobacteraceae 2.9 - - -

Major ASV00017 Pseudomonas fluorescens 3.4 ASV0037 Sclerotinia 2.6
ASV00128 Sphingomonas 3.0 ASV0047 Cryptococcus 2.9
ASV00252 Rhodococcus 3.4 ASV0135 Ulocladium chartarum 2.0
ASV00253 Sphingomonas 3.5 - - -
ASV00261 Sanguibacter keddieii 2.5 - - -
ASV00273 Variovorax 3.1 - - -
ASV00275 Rhizobium 3.1 - - -
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ASV00284 Sphingomonas 3.4 - - -
ASV00303 Sphingomonas 3.2 - - -
ASV00322 Sphingomonas 3.3 - - -
ASV00332 Sphingomonas 3.3 - - -
ASV00363 Methylobacterium 3.3 - - -
ASV00379 Agrobacterium tumefaciens 3.0 - - -
ASV00389 Sphingomonas 3.2 - - -
ASV00397 Pseudomonas fluorescens 3.2 - - -
ASV00404 Sphingomonas 3.1 - - -
ASV00490 Microbacteriaceae 3.0 - - -
ASV00506 Pseudomonas 2.6 - - -
ASV00515 Oxalobacteraceae 3.0 - - -
ASV00572 Sphingomonas 2.9 - - -
ASV00579 Microbacteriaceae 2.9 - - -
ASV00588 Rhizobium 2.8 - - -
ASV00603 Sphingomonas 2.9 - - -
ASV00621 Oxalobacteraceae 2.9 - - -
ASV00685 Pseudomonas fluorescens 2.8 - - -
ASV00727 Oxalobacteraceae 2.8 - - -
ASV00730 Methylibium 2.8 - - -
ASV00738 Sphingomonas 2.8 - - -
ASV00745 Sphingomonas 2.8 - - -
ASV00773 Sphingomonas 2.7 - - -
ASV00863 Actinobacteria 2.7 - - -
ASV00875 Frigoribacterium 2.7 - - -
ASV00916 Clavibacter michoganensis 2.6 - - -
ASV00947 Sphingomonas 2.6 - - -
ASV00966 Alphaproteobacteria 2.6 - - -
ASV01070 Oxalobacteraceae 2.5 - - -
ASV01327 Curtobacterium 2.4 - - -
ASV01608 Pseudomonas fluorescens 2.2 - - -

Mohican ASV00044 Pseudomonas lurida 3.3 ASV0081 Alternaria infectoria 3.0
ASV00054 Stenotrophomonas maltophilia 3.0 ASV0110 Gibellulopsis nigrescens 2.6
ASV00122 Pseudomonas 3.9 - - -
ASV00239 Agrobacterium 3.2 - - -
ASV00368 Oxalobacteraceae 3.3 - - -
ASV00375 Actinobacteria 3.3 - - -
ASV00414 Sphingomonas 3.2 - - -
ASV00562 Oxalobacteraceae 3.0 - - -
ASV00633 Actinomycetales 2.7 - - -
ASV00639 Actinomycetales 2.8 - - -
ASV00668 Actinomycetales 2.8 - - -
ASV00743 Rhizobiales 2.7 - - -
ASV00865 Sphingomonas 2.6 - - -
ASV01174 Hymenobacter 2.4 - - -
ASV01574 Sphingomonas 2.3 - - -

Tenor ASV00022 Pseudomonas fluorescens 4.7 ASV0080 Alternaria infectoria 3.0
ASV00289 Pseudomonas rhizosphaerae 3.2 ASV0083 Pleosporaceae 3.0
ASV00562 Oxalobacteraceae 3.0 ASV0093 Alternaria infectoria 2.8
- - - ASV0100 Alternaria triticina 2.7
- - - ASV0108 Alternaria 2.6

Zorro ASV00070 Pseudomonas fluorescens 4.2 ASV0086 Pleosporaceae 2.9
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