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Identification and assessment of variable
single-copy orthologous (SCO) nuclear loci
for low-level phylogenomics: a case study
in the genus Rosa (Rosaceae)
Kevin Debray1* , Jordan Marie-Magdelaine1, Tom Ruttink2, Jérémy Clotault1, Fabrice Foucher1 and
Valéry Malécot1*

Abstract

Background: With an ever-growing number of published genomes, many low levels of the Tree of Life now
contain several species with enough molecular data to perform shallow-scale phylogenomic studies. Moving away
from using just a few universal phylogenetic markers, we can now target thousands of other loci to decipher taxa
relationships. Making the best possible selection of informative sequences regarding the taxa studied has emerged
as a new issue. Here, we developed a general procedure to mine genomic data, looking for orthologous single-
copy loci capable of deciphering phylogenetic relationships below the generic rank. To develop our strategy, we
chose the genus Rosa, a rapid-evolving lineage of the Rosaceae family in which several species genomes have
recently been sequenced. We also compared our loci to conventional plastid markers, commonly used for
phylogenetic inference in this genus.

Results: We generated 1856 sequence tags in putative single-copy orthologous nuclear loci. Associated in silico
primer pairs can potentially amplify fragments able to resolve a wide range of speciation events within the genus
Rosa. Analysis of parsimony-informative site content showed the value of non-coding genomic regions to obtain
variable sequences despite the fact that they may be more difficult to target in less related species. Dozens of
nuclear loci outperform the conventional plastid phylogenetic markers in terms of phylogenetic informativeness, for
both recent and ancient evolutionary divergences. However, conflicting phylogenetic signals were found between
nuclear gene tree topologies and the species-tree topology, shedding light on the many patterns of hybridization
and/or incomplete lineage sorting that occur in the genus Rosa.

Conclusions: With recently published genome sequence data, we developed a set of single-copy orthologous
nuclear loci to resolve species-level phylogenomics in the genus Rosa. This genome-wide scale dataset contains
hundreds of highly variable loci which phylogenetic interest was assessed in terms of phylogenetic informativeness
and topological conflict. Our target identification procedure can easily be reproduced to identify new highly
informative loci for other taxonomic groups and ranks.

Keywords: Species-level phylogenomics, Nuclear single-copy orthologs, Phylogenetic informativeness, Conflicting
topologies
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Background
Next-Generation Sequencing (NGS) methods are now ex-
tensively used to address various scientific issues ranging
from ecology to medicine, and become more affordable
each year. Molecular phylogenetic studies greatly benefit
from the high-throughput sequencing technologies that
generate a wealth of information to decipher taxa relation-
ships [1]. The 1000 plant (1KP) project [2] released large-
scale gene sequencing data for over 1000 species, and
thousands of other genome sequences are expected in the
near future [3]. Relationships among angiosperms are rela-
tively well-known, ranging from deep branches to the
family rank [4, 5], with some exceptions [6]. However, it is
often challenging to understand shallower relationships in
particular angiosperm families, especially between species
[7, 8]. Rapid diversifications are common to angiosperms,
involving evolutionary processes such as polyploidization
and hybridization [9, 10]. These two processes are likely to
occur between closely-related species, generally inside
genera [11]. While plant molecular phylogenetics has long
been dominated by plastid sequence analysis [12, 13],
identifying nuclear genes has now become an important
issue in phylogenetic reconstruction, especially for hybrid
and polyploid taxa [14]. Nuclear markers generally show
higher rates of evolution than plastid sequences and may
contain more informative nucleotide substitutions to dis-
tinguish closely-related taxa [15]. Whereas plastid
genomes are mainly maternally inherited in angiosperms
[16], nuclear markers contain sequence signatures of both
parents, making them more useful to study hybridization
and polyploidization events in taxa at the boundary be-
tween species and populations [15, 17]. Up to now, only
few nuclear genes that are ubiquitously present in species
across the Tree of Life have been commonly used for phy-
logenetics such as nuclear ribosomal internal transcribed
spacers (nrITS) and glyceraldehyde 3-phosphate dehydro-
genase (GAPDH). However, such sequences may present
multiple issues for phylogenetic analyses. GAPDH is bet-
ter suited to resolve relationships at the kingdom or class
level [18, 19] than at the genus or species levels. nrITS
exist in multiple copies that might not evolve at the same
rate so that comparison between them may mislead phylo-
genetic analyses [20, 21]. With the ever-growing number
of available whole genome sequences, several sets of new
nuclear markers have been published to help unravel
phylogenetic relationships at different plant taxonomic
levels, ranging from the angiosperm clade [22–25] to par-
ticular families [26–28]. Specific attention has been given
to single-copy genes (SCG) that go beyond the issues of
conventional markers (ie plastid sequences or ubiquitous
nuclear genes) and turn out to be good candidates for
phylogenetic analysis [15, 29]. In addition to their biparen-
tal inheritance and their high content of informative char-
acters, SCGs ease the identification of orthologs [15].

Orthologs are genes that derive from speciation events, as
opposed to paralogs that derive from duplication events
and should therefore be discarded from phylogenetic ana-
lyses. Consequently, sequences found in a wide range of
taxa and that share a 1-to-1 homology with core SCGs
may have resulted from speciation events and may there-
fore be considered as orthologous sequences. In angio-
sperm genomes, 8–35% of the genes are found as a single
copy [24], providing the opportunity to find many ortho-
logous sequences well suited to carrying out phylogenetic
studies at various taxonomic levels.
Phylogenomics, i.e., the use of large arrays of genome

sequences to infer phylogenetic relationships, has emerged
over the last few years and is increasingly used in molecu-
lar studies of taxa relationships [30, 31]. With the tremen-
dous increase in plant genome sequencing projects [32], it
is now feasible to include thousands of sequences for
phylogenetic analysis. Since a larger set of genomic se-
quences are included in the comparison, topological con-
flicts between individual gene trees and the species-tree
arise [33–36]. These conflicts could be due to horizontal
gene transfer, incomplete lineage sorting, and gene dupli-
cation and gene loss [37]. To circumvent these particular
issues, a common method consists in concatenating the
gene sequences, assuming that the true overall phylogen-
etic signal would arise and conceal the noise contained in
individual genes [38, 39]. Several methods have been de-
veloped to assess this noise and to help in selecting the
best marker set with the most informative characters cap-
tured with the lowest number of sequences. Most of these
methods rely on distance metrics derived from tree top-
ologies [40] and branch length comparisons [41, 42] or,
alternatively, on likelihood ratio tests [43, 44] combined
with various clustering methods [45–49]. Other methods
use a conceptual index to assess the phylogenetic utility of
sequences [50]. The main goal of marker selection is to
find the optimal balance between character sampling and
taxon sampling. Too few markers may lead to inaccurate
estimations of phylogenetic relationships whereas too
many markers increase the computational needs and the
overall cost of the experiment, especially for phyloge-
nomic studies involving a broad number of taxa.
Phylogenetic analysis of the genus Rosa is challenging be-

cause the genus comprises approximatively 150 species dis-
tributed in the Northern Hemisphere that are the result of a
complex evolutionary history involving multiple
hybridization and polyploidization events across the last 30
M years [51]. Currently, Rehder’s classification [52], slightly
modified by Wissemann [53], is still used and divides the
genus into four subgenera (R. subgen. Rosa, R. subgen.
Hulthemia (Dumort.) Focke, R. subgen. Platyrhodon (Hurst)
Rehder and R. subgen. Hesperhodos Cockerell). About 95%
of the wild rose species belong to the subgenus Rosa which
is further divided into ten sections (R. sect. Pimpinellifoliae
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(DC.) Ser., R. sect. Gallicanae, R. sect. Caninae (DC.)
Ser., R. sect. Carolinae Crép., R. sect. Rosa [= R. sect.
Cinnamomeae (DC.) Ser.], R. sect. Synstylae DC., R.
sect. Chinenses Ser. [= R. sect. Indicae Thory], R. sect.
Banksianae Lindl., R. sect. Laevigatae Thory and R.
sect. Bracteatae Thory). In this paper, we adopt the
designation of Rosa cinnamomea L. (syn. Rosa majalis
Herrm.) as the type species of the genus, a proposal
from Jarvis [54] and validated in 2005 at the Vienna
International Botanical Congress. This implies that the
section previously known as Rosa sect. Cinnamomeae
(DC.) Ser. is renamed R. sect. Rosa. In addition,
Wissemann [53] subdivided the R. sect. Caninae into
six subsections (R. subsect. Trachyphyllae H. Christ,
R. subsect. Rubrifoliae Crép., R. subsect. Vestitae H.
Christ, R. subsect. Rubiginae H. Christ., R. subsect.
Tomentellae H. Christ and R. subsect. Caninae). R.
sect. Caninae is an evidence of rapid radiation in
the genus Rosa. While this section accounts for
approximatively 20% of the Rosa species, it appeared
only ca. 6 MYa [51]. Thus far, the phylogenetic relation-
ships among wild roses have been explored with nrITS
[55–61], chloroplast regions [51, 59–65], and GAPDH
[17, 51], as phylogenetic markers. The phylogenetic rela-
tionships derived from these conventional markers either
focused on specific sections, or were poorly resolved, be-
cause many clades lacked support due to little sequence
variation between the sampled species. Nevertheless,
Fougère-Danezan et al. [51] distinguished three main
clades (sect. Synstylae and allies, sect. Pimpinellifoliae,
and sect. Cinnamomeae [i.e., sect. Rosa] and allies)
and is currently the most completely resolved phyl-
ogeny of the genus Rosa. The recent publication of a
high-quality reference genome sequence of Rosa ‘Old
Blush’ [66, 67], a putative hybrid between R. chinensis
and R. odorata var. gigantea [68], provides an excel-
lent resource to mine for nuclear sequences for high-
resolution phylogenomic analysis of the genus Rosa.
Moreover, multiple poor quality draft genomes of wild Rosa
species have recently been released and can also be mined
for shared loci with sequence variations between the differ-
ent species (Table 1). We used these genomes here to
present a general method to identify a set of single-copy
nuclear orthologous loci that can be amplified from species
across the genus. These sequences contain the sequence var-
iations required to study species relationships through phy-
logenomics. The method was developed for the genus Rosa,
and can be used at different taxonomic levels and groups.

Results
Identification of single-copy orthologs (SCO) in Rosa ‘Old
Blush’ and Fragaria vesca
We compared annotated proteins from reference genomes
of haploid Rosa ‘Old Blush’ [67] and Fragaria vesca [71] to

identify single-copy orthologs (SCOs) using the all-
against-all BLAST+ procedure. We found that Rosa ‘Old
Blush’ (resp., Fragaria vesca) has 8568 single-copy genes
(resp., 7146), which represents 21.6% (resp., 20.5%) of all
predicted proteins for this genome (Step 1, Fig. 1).
Using these two sets of single-copy genes, the Reciprocal

Best Blast (RBB) procedure identified 1817 shared SCOs
between Rosa ‘Old Blush’ and the Markov Clustering
(mcl) identified 1814 shared SCOs. A total of 1784 SCOs
were commonly identified by both methods (Step 2, Fig.
1). These common SCOs are evenly distributed across the
seven chromosomes of the haploid genome of Rosa ‘Old
Blush’ (Fig. 2a). The synteny analysis reveals that the order
of SCOs along the genome of Fragaria vesca and R. ‘Old
Blush’ is well conserved (Additional file 1: Figure S1). The
great majority (73%) of SCOs that we found are new
and were never published before in other ortholog
sets (Additional file 1: Figure S2).

Target assembly and primer design
We applied the automated Target Restricted Assembly
Method (aTRAM) for the 1784 selected SCOs to recon-
struct (either partly or completely) their corresponding
orthologs from the available unassembled genome se-
quences of 12 Rosa species (Table 1). A mean of 1776 SCOs
(ranging from 1754 SCOs for R. gigantea to 1782 SCOs for
R. moschata) was retrieved per Rosa species (Fig. 2b).
After creating alignments of the aTRAM contigs for

each of the 1784 SCOs, we were able to identify 2874
sub-alignments of at least 300 bp that were covered by
at least four taxa, including the haploid reference gen-
ome of Rosa ‘Old Blush’ and the most divergent species
R. persica. Strict consensus sequences of these sub-align-
ments were used to design a total of 2339 in silico pri-
mer pairs flanking variable non-overlapping tags of 300–
550 bp. A total of 1000 out of the 1784 SCOs have at
least one tag, with an average of 2.3 tags per SCO (ran-
ging from 1 to 14). Of the 2339 candidate tags, 483 did
not pass the post-assembly tests (Step 5, Fig. 1). In de-
tails, 46 tags were removed due to unspecific binding of
their primer pairs to the haploid reference genome se-
quence of Rosa ‘Old Blush’; 224 tags did not pass the RBB
test of orthology; 47 tags did not have a consistent allele
number in aTRAM contigs regarding the ploidy level of
the unassembled Rosa genome; 166 tags did not have a
consistent hit number regarding the ploidy level of the
Rosa genome when BLAST-searched on already assem-
bled Rosa datasets. The final set contains 1856 tags that
could be used for phylogenomic analyses (Additional file 2).
These tags will now be referred to as Single-Copy Ortho-
logous Tags (SCOTags) in the text, to denote that they are
short, PCR-amplifiable sequence tags, derived from
primers in conserved sequences that flank variable se-
quence regions in single-copy orthologous genes identified

Debray et al. BMC Evolutionary Biology          (2019) 19:152 Page 3 of 19



across a set of closely-related species. Of these 1856
SCOTags, 1223 (66%) cover both coding and non-coding re-
gions, while 550 (30%) cover pure coding regions and 83
(4%) cover pure non-coding regions (Fig. 2c).
We also searched outgroup species genomes for the

presence of the respective 1856 SCOTags, leading to 1534
SCOTags that contain at least one of the seven outgroup
species (Fragaria iinumae: 1029; F. nipponica: 875; F.

nubicola: 858; F. vesca: 1142; Rubus occidentalis: 985;
Geum urbanum: 697; Potentilla micrantha: 1092). Apart
from Rosa ‘Old Blush’ and R. persica, which are present for
all of the 1856 SCOTags, the taxon occupancy of SCOTags for
the Rosa ingroup varies from 23% for R. palustris to 97% for
R. wichurana (Additional file 1: Figure S3). Half of the 1856
SCOTags have been found in at least 14 out of the 17 Rosa
species analyzed. Species sequences from each of the 1856

Table 1 References used for Whole Genome Shotgun data

Species Ploidy of
the genome
sequence

Sample origin BioProject/
SRA code

Original
publication

Ingroup Rosa ‘Old Blush’ 1x IRHS, Beaucouzé, France – [67]

Rosa arvensis Huds. 2x Jardin expérimental de Colmar,
Colmar, France

SRX3286288 [67]

Rosa chinensis Jacq. var. spontanea (Rehd. & Wils.)
T.T. Y & T. C. Ku

2x Roseraie du Val-de-Marne, L’
Hay-les-Roses, France

SRX4006790 [67]

Rosa × damascena Mill. 4x Bulgaria PRJNA322107 –

Rosa gigantea Collet ex Crép 2x Lyon botanical garden, Lyon,
France

SRX3286284,
SRX3286283

[66]

Rosa laevigata Michx. 2x Roseraie du Val-de-Marne, L’
Hay-les-Roses, France

SRX4006792 [67]

Rosa majalis Herrm. 2x ENS Lyon, Lyon, France SRX3286287 [66]

Rosa minutifolia var. alba Engelm. 2x Roseraie du Val-de-Marne, L’
Hay-les-Roses, France

SRX4006787 [67]

Rosa moschata Herrm. 2x Roses Loubert rose garden,
Les Rosiers-sur-Loire, France

SRX4006793 [67]

Rosa multiflora Thunb. ex Murr. 2x Keisei Rose Nurseries, Chiba,
Japan

PRJDB4738 [69]

Rosa odorata (Andr.) Sweet 2x Lyon botanical garden, Lyon,
France

SRX3286293 [66]

Rosa palustris Marsh. 2x NA ERS1829481 [70]

Rosa pendulina L 2x Lyon botanical garden,
Lyon, France

SRX3286278 [66]

Rosa persica Michx. ex Jussieu 2x Roses Loubert nurseries,
Les Rosiers-sur-Loire, France

SRX4006789 [67]

Rosa rugosa Thunb. 2x Roseraie du Val-de-Marne, L’
Hay-les-Roses, France

SRX4006791 [67]

Rosa wichurana Crép 2x ILVO, Melle, Belgium PRJNA504542 –

Rosa xanthina var. xanthina f. spontanea Rehd. 2x Roses Loubert rose garden,
Les Rosiers-sur-Loire, France

SRX4006788 [67]

Outgroup Fragaria vesca L. 1x NCGR, Corvallis, OR, USA PRJNA66853 [71]

Fragaria iinumae Makino 2x Kagawa University, Kagawa,
Japan

PRJDB1478 [72]

Fragaria nipponica Makino 2x Kagawa University, Kagawa,
Japan

PRJDB1479 [72]

Fragaria nubicola Lindl. ex Lacaita 2x NCGR, Corvallis, OR, USA PRJDB1480 [72]

Geum urbanum L. 2x Punnets Town, UK PRJEB23412 [73]

Potentilla micrantha Ramond ex DC. 6x Avala, Serbia PRJEB18433 [74]

Rubus occidentalis L. 2x Rich Mountain, South Carolina,
USA

– [75]

Bold species indicate unassembled Whole Genome Shotgun data
IRHS Institut de Recherche en Horticulture et Semences, ENS École Normale Supérieure, ILVO Instituut voor Landbouw-, Visserij- en Voedingsonderzoek, NCGR
National Clonal Germplasm Repository
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Fig. 1 (See legend on next page.)
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SCOTags are available in Additional file 3. Species se-
quences from each SCOTag were aligned using mafft
and cleaned with Gblocks, leading to a supermatrix of
669,354 bp for the ingroup species with 28% of missing
data, after the removal of 4843 (0.7%) poorly-aligned
sites. For the dataset with ingroup plus outgroup spe-
cies, the supermatrix contained 676,389 bp with 34% of
missing data after the removal of 16,978 (2.4%) poorly-
aligned sites.

Efficiency of plastid loci and nuclear SCOTags for Rosa
phylogeny
We analyzed the sequence variation contained in each
of the 1856 SCOTag alignments, focusing only on the
Rosa ingroup. The mean number of taxa per SCOTag

alignment was 9, 11 and 15 for SCOTags covering non-
coding, mixed and coding regions, respectively. As
expected, on average, the non-coding regions contain
more parsimony-informative sites (PIS) than mixed se-
quences, which in turn contain more PIS than pure
coding regions (Fig. 2d). Plastid sequences trnL and
trnG have medium PIS content (2–3%), whereas the
psbA-trnH region is highly variable (> 8% of PIS) and
reaches the upper bound of PIS content distributions of
both mixed and non-coding sequences (Fig. 2d).
In the nuclear SCOTag species-chronogram, almost

all branches show bootstrap supports (BS) of 100%, in
clear contrast with the species-tree obtained based on
the conventional plastid sequences (Fig. 3). Both data-
sets support a distinct Chinenses-Gallicanae-Synstylae
clade but have slightly different tree structures for the
remaining species. While only the nuclear SCOTags
support monophyly for the Chinenses and three of
the four Synstylae, both datasets exhibit strong sup-
port (> 99% BS) for the position of Rosa moschata
and R. minutifolia near the Rosa clade. In addition,
the nuclear SCOTags dates the R. laevigata speciation
event as being more ancient (26 MYa) than the plas-
tid dataset suggests (16 MYa) and supports the mono-
phyly of the two bright yellow-flowered species, R.
persica and R. xanthina.

Phylogenetic informativeness
The Phylogenetic Informativeness (PI) profiles of the
plastid sequences are smooth, with a slow decrease
through geological time, and they never reach values
above net PI of 0.5 (Fig. 3a). During the last 8M years,
psbA-trnH and trnG display a similar profile but trnG
reaches higher PI values for more ancient periods. The
trnL locus shows lower PI values than the two other
plastid loci at all times. The PI profiles of the nuclear
SCOTags have different shapes and heights (Fig. 3b).
While most of the SCOTags do not exceed a net PI of 0.5
during the past 30M years of divergence, some reach PI
values higher than 1.0. A total of 131 SCOTags reach
their maximum value at the 0–15 MYa time interval,
which represents the most recent half of the total diver-
gence period and includes 75% of the species-tree nodes.
For older nodes, informative SCOTags can be identified
with PI values peaking around 20 MYa with net PI be-
tween 0.75 and 1. Additionally, we observed that the
area under the PI profiles for the time interval 0–30
MYa tends to decrease while more taxa are added to
SCOTag alignments (y = 11.8–0.45x, R2 = 0.18). By in-
creasing the number of taxa per alignment from 6 to
17, the average area under the PI profile decreases by a
factor of 2 (Additional file 1: Figure S4A). Albeit less
clear, the fraction of variable sites in SCOTag alignments
also tends to be negatively correlated with the number
of taxa included per SCOTag alignment, especially for
SCOTag with high taxon occupancy (y = 22.1–0.90x,
R2 = 0.11) (Additional file 1: Figure S4B).

Analysis of topological conflict
Higher PI profiles of nuclear SCOTags at a time interval
do not necessary correspond to better support values in
the corresponding species-chronogram. This is because
PI does not directly account for phylogenetic noise [50],
so that genes with fast-evolving sites may display high PI
profiles, whereas they can increase the number of homo-
plastic sites and obscure the number of synapomorphic
sites which therefore scrambles the phylogenetic signal
and provides poor support for bipartitions [76]. There-
fore, we also tested our SCOTags based on topological

(See figure on previous page.)
Fig. 1 Data-mining workflow to identify single-copy orthologous tags (SCOTags) for phylogenomics. Single-copy genes (SCGs) from reference
genomes are identified using a self-blast procedure (step 1). The two SCG sets are compared to each other to retrieve shared single-copy
orthologs (SCOs) (step 2). SCOs are target-assembled from unassembled whole genome shotgun sequencing data using the aTRAM pipeline.
Numbers presented in table (1) correspond to the total number of contigs that were assembled for each Rosa species with an unassembled
genome (step 3). Contig sequences from each SCO are aligned using mafft and the resulting alignment is sliced in regions ≥300 bp covered by
≥4 taxa including Rosa ‘Old Blush’ and Rosa persica. For each region, pairs of primers are designed on the consensus sequence and the most
variable non-overlapping SCOTags are retained (step 4). Additional filtering steps enables to discard SCOTags with unspecific primer pairs (step 5a),
SCOTags that do not pass the RBB test of orthology (5b), SCOTags with inconsistent number of alleles regarding the genome ploidy level (5c) and
to find SCOTags in whole genome shot gun assemblies of three additional Rosa species (step 5d) and seven outgroups. Numbers in table (2)
correspond to the number of SCOTags that were retrieved for each of the four Rosa species with already assembled datasets. The procedure is
described in detail in the Methods section. RBB: Reciprocal Best Blast; mcl: Markov CLuster algorithm
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criteria to ensure that highly informative SCOTags are
concordant with the species-tree and do not result from
regions with too many fast evolving sites. We first con-
structed a network to summarize conflicts between all
SCOTags trees (Additional file 1: Figure S5). Species
groups identified in the network are mostly consistent

with the clades found in the concatenated analysis (Fig. 3b).
The reticulation pattern show conflict between SCOTag

trees for both recent and ancient speciations. For recent
speciations, links between species are short and packed
while they are long and slack for more ancient speciations.
Then, we detailed these conflicts for each node of the

A B

C D

Fig. 2 Characterization of the plastid loci and nuclear SCOTags. a Position of the 1784 single-copy orthologs (SCOs) in the seven pseudo
chromosomes and unanchored scaffolds (Chr00) of the haploid genome sequence of Rosa ‘Old Blush’. b Completeness of SCOs in the 12
unassembled rose genomes. Missing means that no contig matching the reference SCO could have been assembled; partial means that only part
of the reference SCO was assembled; complete means that the complete reference SCO is covered by at least one assembled contig. c Structural
annotation of 1856 SCOTags. d Parsimony-informative site (PIS) content for plastid sequences (psbA-trnH, trnL and trnG) and the nuclear SCOTags.
SCOTags are divided into three categories: coding regions (exons), non-coding (untranslated regions and introns), and mixed regions (containing
both coding and non-coding regions). (*) and (#) denote significant differences between coding and mixed regions and between mixed and
non-coding regions, respectively (t-test; p-value < 0.05)
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species-tree using PhyParts. Of the 1534 SCOTags with
at least one outgroup sequence, 8 did not resolve the
monophyly of outgroup species and were therefore
discarded since rooted SCOTag trees are required to
detail the underlying conflict at each node of the spe-
cies-tree. The Maximum Likelihood (ML) species-tree
obtained after concatenation of the 1526 resulting
SCOTags is presented in Fig. 4. The topology is the
same as for (1) the coalescent species-tree obtained
after the reconciliation of the 1526 SCOTag trees and
(2) the chronogram presented in Fig. 3b, but with
slight modification of BS for node 7 (increase from
60 to 75%), node 13 (decrease from 99 to 91%), node
14 (decrease from 86 to 65%), node 16 (decrease
from 100 to 79%). In addition to BS, we computed
two other support values: (1) Local Posterior Probabilities
(LPP) that derive from frequencies of quadripartitions
observed in the set of SCOTag trees and (2) Internode
Certainty All (ICA) scores that provide information on
the amount of conflict at each node. Although not directly
related, these three support values each explain in their
own way the phylogenetic signal present in the dataset.
We observe that low LPP generally correspond to less

supported branches (BS < 100%), except for node 16.
However, we often observe that high LPP and BS
value do not always correspond to high ICA scores
(Node 6, 8, 9 and 10). The normalized quartet score
for the coalescent tree is 0.73, meaning that 73% of
all the quadripartitions found in SCOTag trees satisfy the
coalescent species-tree. We then deconstructed each
SCOTag tree topology and focused only on bipartitions
showing > 70% BS that we compared to the bipartitions
found in the ML species tree. SCOTags resolve more bipar-
titions with a BS > 70% at ancient nodes than at recent
nodes. This observation holds as well for the ICA score
where the most ancient nodes have higher ICA values
than the most recent nodes (Fig. 4). For very recent nodes,
few SCOTags can individually make the distinction be-
tween closely related taxa at this BS threshold.
Regarding patterns of concordance and conflict, we

first observe that no SCOTags are concordant with more
than six of the 16 nodes present in the species-tree
(Fig. 5a), whereas some SCOTags are in conflict with up
to 12 nodes (Fig. 5b). The highly conflicting SCOTags
(conflicting in more than seven nodes) represent a mi-
nority (4%) of the entire dataset. Actually, 625 SCOTags

A B

Fig. 3 Net phylogenetic informativeness (PI) profiles compared to species chronograms. a Plastid loci; b 1856 nuclear SCOTags. Taxa are colored
as follows: dark blue for taxa from Rosa sect. Chinenses, pink for R. sect. Gallicanae, green for R. sect. Synstylae, light blue for R. sect. Laevigatae, red
for R. sect. Rosa (ex. R. sect. Cinnamomeae), orange for R. sect. Carolinae, purple for R. subg. Hesperhodos, yellow for R. sect. Pimpinellifoliae and
fuchsia for R. subg. Hulthemia
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Fig. 4 Combined ML species tree with summary of conflicting and concordant SCOTags. The ML species-tree was constructed from 1526
concatenated rooted SCOTags. Outgroups are not shown. Node names are in bold. For each branch, the three values separated by a slash are the
local posterior probability (LPP), the bootstrap support (BS) and the Internode Certainty All (ICA), respectively. The pie charts at each node present
the fraction of SCOTags that supports that bipartition (blue), the fraction that supports the main alternative bipartition (green), the fraction that
supports other alternative bipartitions (red) and the fraction with either less than 70% BS at this bipartition or that do not have this partition due
to missing data (gray). On the right side of the pie charts, the top and bottom values indicate the numbers of SCOTags concordant, respectively in
conflict, with the corresponding bipartition in the species-tree. Scatter plot on the left side compares values of BS, LPP and ICA at each node.
Nodes are ranked from the most ancient (N1) to the most recent (N9) according to Fig. 3b. Stars indicate conflicting nodes with great fractions of
alternative bipartitions
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bear 0 conflicting nodes and 1184 SCOTags agree with
one to three nodes. Then, we analyzed the pattern of
conflict node by node. We observed that more than
two-thirds of the SCOTags agree in dividing the genus at
node 1 with the two yellow-flowered species Rosa per-
sica and R. xanthina separate from the rest of the Rosa
species. For more recent nodes, higher number of indi-
vidual alternative bipartitions can be observed (Fig. 4).
Nodes 7, 9, 10, 13, 14 and 16 show a significant proportion
of SCOTags agreeing with the main alternative bipartition,
meaning that the proportion of SCOTags supporting the
main alternative bipartition is greater than 50% of the pro-
portion of SCOTags agreeing with the species-tree bipartition

(Additional file 1: Figure S6). These conflicting nodes do not
always correspond to the lowest BS, ICA or LPP support
values.

Correlation between phylogenetic informativeness and
topological conflict
We then correlated the area under the PI profile for the
0–30 Mya time interval with the number of nodes in
SCOTag tree that are concordant or in conflict with the
species-tree, using a BS cutoff of 70% (Fig. 5). We ob-
served that PI tends to increase while more concordant
nodes are present in SCOTag trees (y = 4.95 + 0.65x, R2 =
0.04). A similar observation can be made for the number

A B C

Fig. 5 Correlation between phylogenetic informativeness (PI) and the number of a concordant nodes and b conflicting nodes in SCOTag
topologies. c corresponds to the PI distribution for unrootable SCOTag that were not analyzed using PhyParts. Situations with less than
30 points were ploted but not used in the calculation of correlations. Red dots correspond to mean values. Blue lines correspond to
regression lines: y = 4.95 + 0.65x, R2 = 0.04 in panel (a) and y = 5.03 + 0.56x, R2 = 0.10 in panel (b). The top most purple dot corresponds to
the highest PI profile in Fig. 3b
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of conflicting nodes (y = 5.03 + 0.56x, R2 = 0.10). Interest-
ingly, we observed that the top most informative SCOTag

identified in Fig. 3b is in fact conflicting in 10 nodes and
agrees with 0 node (Fig. 5). In addition, the 330 SCOTags
that have not been analyzed for topological concordance
due to lack of outgroups tend to show a similar PI distri-
bution to SCOTags that were analyzed for topological
conflict (Fig. 5c).
Metrics regarding variability content, phylogenetic in-

formativeness and topological conflict for the 1856 SCOTags
are available in Additional file 4.

Discussion
Finding nuclear SCOTags at the genus level
Several sets of SCOs have recently been released but few
studies have focused on developing SCOs dedicated to
species-level phylogeny [77, 78]. For genera such as
Rosa, which shows rapid radiations [17, 79], it is likely
that DNA sequences (either nuclear or plastid) are very
closely-related, and SCOs designed for reconstructing
the broad angiosperm phylogeny may not be suited to
resolving species relationships. In this study, we took the
woodland strawberry (Fragaria vesca) as an outgroup to
identify SCOs shared with the genus Rosa. The two taxa
share similar genome characteristics such as diploidy
and a base chromosome number of seven. Macro-syn-
teny analysis also revealed only one major translocation
event between two chromosomes [67]. In addition, Fra-
garia vesca and Rosa species belong to sister tribes
within the subfamily Rosoideae [80]. The number of sin-
gle-copy genes that we identified in each of the two spe-
cies was consistent with previous observations across
angiosperms [24]. Rosa ‘Old Blush’ is currently the only
Rosa taxon with a high-quality annotated genome se-
quence and we chose it as the reference for the whole
Rosa genus [67]. We identified 1784 conserved genes in
the subfamily Rosoideae by searching for shared SCOs
between Fragaria vesca and Rosa ‘Old Blush’. We ob-
served a relative shared synteny in the localization of the
1784 SCOs between F. vesca and R. ‘Old Blush’ which
emphasizes on the fact that we selected conserved genes.
We also found that 73% of the 1784 SCOs are not
present in other published ortholog sets (Additional file
1: Figure S2), suggesting that it is worth developing spe-
cific phylogenomic markers that are dedicated to each
particular taxonomic group. Then, we considered that
the 1784 SCOs identified in R. ‘Old Blush’ are also
orthologous in other Rosa species. We therefore as-
sumed that no more gene duplication or gene loss oc-
curred in the SCO set after the divergence of the
Potentillae and the Roseae tribes around 60 MYa [80].
No recent large genome duplication was detected in
Rosa ‘Old Blush’ [67]. Since Rosa ‘Old Blush’ is consid-
ered to be an interspecific hybrid between R. odorata

and R. chinensis [68], two species sharing their last com-
mon ancestor some 8–9 MYa [51], this suggests that
gene gain by large duplication is not common in closely-
related roses. However, our assumption may not hold if
fine-scale genome rearrangements occurred in other
Rosa species that were not analyzed here. This means
that paralogous genes might be targeted using our 1784
SCOs on a broader set of Rosa species. For this reason,
we carried out additional filtering on the tags obtained
after the target assembly of the 1784 SCOs. This filtering
procedure aimed to eliminate putative paralogous se-
quences by discarding (1) tags with unspecific primer
pairs (Step 5a, Fig. 1), (2) tags that do not have a strict
1-to-1 orthologous relationship with the reference gen-
ome of R. ‘Old Blush’ (Step 5b, Fig. 1) and (3) tags with
an inconsistent number of alleles in either aTRAM con-
tigs (Step 5c, Fig. 1) or already assembled Rosa genomes
(Step 5d, Fig. 1). Our final set of 1856 SCOTags derived
from 1784 SCOs should therefore essentially contain
orthologous sequences suited to phylogenomics analyses.
Using shotgun sequencing libraries and Illumina

short-read sequencing at low depth (10-30x) in 12
Rosa species, we applied the aTRAM pipeline to as-
semble specific loci [81], and we retrieved most of
the 1784 SCOs (Fig. 2b). While this method does not
take individual heterozygosity at each SCOTag into ac-
count, it provides a fast and easy way to extract gen-
ome sequences of specific loci, while circumventing
whole genome assemblies, which may be particularly
difficult for highly heterozygous taxa such as Rosa
species. Our procedure only retains one representative
SCOTag sequence per species, which may be sufficient
for genus section comparisons. However, phyloge-
nomic analyses below the section level may require to
reconstruct multiple sequence variants per species to
reveal hybrid specimens. For this reason, we devel-
oped conserved SCOTag primer pairs that can be used
to target SCOTag alleles using basic PCR amplifica-
tions in future analyses (Additional file 2).

Efficiency of nuclear SCOTags for phylogenomics in the
genus Rosa
We have built a ML phylogenomic tree of some repre-
sentative species of the genus Rosa using 1856 SCOTags
within 1784 SCOs (Fig. 3b), leading to a highly sup-
ported species-tree structure. Both plastid loci and nu-
clear SCOTags revealed a Chinenses-Gallicanae-Synstylae
clade, but only the nuclear SCOTags supports the mono-
phyly of these three groups within the clade. On the
contrary, the plastid loci better resolve the monophyly of
the Rosa sect. Rosa clade, while R. rugosa is separated
from the rest of Rosa sect. Rosa species, and found near
the Chinenses-Gallicanae-Synstylae clade in the nuclear
SCOTag topology. Compared to previous studies [51, 63],
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both plastid and nuclear sequences expressed unexpected
positions of R. moschata, which was expected to group to-
gether with the other Synstylae, and R. minutifolia that
was expected to branch off earlier in the phylogenetic tree.
These discrepancies may arise from the taxon sampling it-
self. R. moschata and R. rugosa have been extensively used
in breeding [82] and Hibrand Saint-Oyant et al. [67] may
have sampled one of many varieties that were derived
from hybridization. The wild origin of Rosa moschata is
uncertain [83] since several moschata-type roses share a
similar geographical distribution from Southeast Europe
to the Himalayas, such as R. beggeriana Schrenk ex Fisch.
& C. A. Meyer, R. fedtschenkoana Regel and R. brunonii
Lindl. [84]. The latter is often cultivated as R. moschata in
rose gardens [52]. We suggest that the R. moschata that
we used could be a hybrid between several wild species
sharing a common distribution, with at least one species
(R. beggeriana) belonging to R. sect. Rosa, the same sec-
tion as R. rugosa. This could explain that R. moschata is
closely related to the R. section Rosa in our analysis
(Fig. 3). Based on a comparison between plastid loci
and nuclear SCOTags phylogenies, our data may sug-
gest that the maternal origin of our R. rugosa is from
R. sect. Rosa, whereas its nuclear genome shows
proximity with species of R. sect. Synstylae, also na-
tive to Northeast Asia. This demonstrates the utility
of combining plastid and nuclear sequences for phylo-
genomic analyses to reveal putative hybridization
events. The R. minutifolia we analyzed here is a white
variety known as R. minutifolia ‘Alba’, and the acces-
sion used shows unexpected morphological character-
istics (leaflet size > 3 cm, long pinnate leaves and
multi-flowered inflorescences), suggesting an earlier
cross with a species from Rosa subg. Rosa. The ease
for Rosa species to hybridize poses a major challenge
for correct taxonomic identification. This highlights
the importance for future studies to preferentially
sample several specimens per species, including wild
accessions and garden-grown accessions derived from
cuttings with a known wild origin.
We further evaluated which of the 1856 SCOTags per-

formed best for a future phylogenomics study on a
broader set of wild species in the Rosa genus. PI analyses
showed that a large fraction of nuclear SCOTags have lit-
tle information content to reconstruct speciation events
in the genus Rosa with profiles lower than 0.5 of net PI
and a slow decrease over time (Fig. 3a). However, a few
hundred SCOTags exhibit high PI profiles that peaked at
different ages of the chronogram. Such a diversity of PI
profiles is interesting since different sets of SCOTags
could resolve specific levels of the species-tree. Many of
the ancient nodes are not well supported in recently
published plastid phylogenies of the genus Rosa [51, 63]
and it would be interesting to target SCOTags with high

PI during ancient evolutionary time intervals. PI profiles
of conventional plastid sequences show their limitations
to resolve nodes in Rosa phylogeny, even for psbA-trnH
(Fig. 3a) that has a relatively high PIS content, in line with
previous works that compared phylogenetic informative-
ness of nuclear vs. plastid sequences in other groups [77].
We then focused on topological conflict between each

SCOTag tree toward the species-tree (Fig. 4). We mainly
show that most SCOTags cannot individually resolve
shallow to intermediate nodes with a BS threshold of
70%. One of the main reasons may be the alignment
length of each SCOTag which is very short and barely ex-
ceeds 500 bp. It may therefore be difficult to have
enough variable sites for a good confidence in biparti-
tions within only one SCOTag, especially for recent
times where DNA sequences among closely-related
taxa are expected to be very similar. SCOTags that
display bipartitions with a BS > 70% often support al-
ternative bipartitions that do not reflect the species-
tree. These discrepancies between gene-trees and the
species-tree were already observed in other studies
[33, 85]. Global patterns of conflict were first summa-
rized on a network (Additional file 1: Figure S5) and
further detailed node by node. We observed that the
species network highlighted many conflicts between
SCOTag trees although the species groups identified
were consistent with the ML species tree. Recent di-
vergences were more prone to conflict as observed
with the tight links between close-related species on
the network and further confirmed by the decrease of
ICA scores for recent nodes (Fig. 4). In details, sev-
eral nodes showed a high proportion of the main al-
ternative bipartition (Additional file 1: Figure S6).
Most of them concern rearrangements between species
inside a section clade or between neighboring species that
belong to sister clades in Fig. 3b. Conflicts observed at
node 7 and node 9 relate to switches between species that
belong to the Chinenses-Gallicanae clade. For instance,
the main alternative bipartition found for node 9 involves
the switches between Rosa odorata, R. gigantea and
R. chinensis as the species that are the most closely
related to Rosa ‘Old Blush’. Those tree structures can
be explained since R. chinensis and R. odorata var.
gigantea are probably the parents of Rosa ‘Old Blush’
[68]. The reference genome sequence of Rosa ‘Old
Blush’ was obtained from a haploid cell line derived
from pollen cells [67]. The resulting chromosome set
may have contained unequal contributions from the
ancestral R. odorata and R. chinensis genomes after
the random meiotic division. Conflicts at node 10
comes from the switch between Synstylae species and
Chinenses-Gallicanae species, showing the close rela-
tionships between those sections. The dubious posi-
tioning of R. minutifolia brings conflicts at node 13
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and 14 since R. minutifolia is found sometimes closer
to R. pendulina (R. sect. Rosa), sometimes closer to
R. moschata (R. sect. Synstylae), highlighting again the
issue of correct taxonomic identification of this acces-
sion. Finally, the most ancient node with a significant
main alternative bipartition is node 16 and relates to
the split of the clade {R. xanthina, R. persica} into
two separate lineages. Despite their bright yellow
petals, R. persica and R. xanthina are very different
wild rose species in terms of shapes, habitats and
morphological traits [52, 83]. Sampling additional rose
species in Rosa sect. Pimpinellifoliae will be useful in
future studies to resolve how these species are
related.

Impact of missing data and topological conflict in
SCOTags selection
In this study, we had to deal with missing or partial
data for almost all of the 1784 SCOs (Fig. 2b) and
therefore for almost all of the 1856 resulting SCOTags
(Additional file 1: Figure S3). Since the approach to
SCOTag identification involves primer design in
strictly conserved sequences flanking variable regions,
we only kept SCO alignments covered by at least four
taxa, including the reference genome sequence of Rosa
‘Old Blush’ and the highly divergent species Rosa persica.
The variation in the number of species included in the
1784 respective SCO alignments has several underlying
reasons and has associated consequences for downstream
analysis. The underlying reasons for missing species from
SCO alignments may reflect: (1) the actual gene duplica-
tion or gene loss in the genome of a given species; (2) in-
sufficient read depth or inability to reconstruct the locus
from the whole genome shotgun sequencing data; (3)
strong sequence divergence that hampers the recognition
of high confidence BLAST identification of orthologous
genes from a given species. Furthermore, selecting
informative SCOTags depends on the complex rela-
tionship between the number of taxa compared, their
sequence divergence (which, in turn, depends on cod-
ing/non-coding capacity) and parsimony-informative
site (PIS) content. For instance, the more taxa that
are compared and the more divergent the species that
are included in the alignment are, the more likely it
is that variable sites will become parsimony informative,
but the less likely it is to identify flanking, strictly conserved
regions for primer design. Indeed, classification of the cod-
ing potential of SCOTags based on positional overlap with
structural gene model annotation revealed, as expected,
that non-coding SCOTag alignments comprise two-fold less
species than pure coding SCOTag alignments, in line with
elevated sequence divergence in non-coding regions com-
pared to protein coding sequences. As a consequence,
SCOTags that contain strictly non-coding regions comprise

only 4% of the entire SCOTag set, and while they contain
lower numbers of taxa per alignment, they still exhibit the
highest relative PIS content (Fig. 2d). A substantial fraction
of our SCOTags contains both coding and non-coding re-
gions, and selecting this type of SCOTag may be a good
strategy to target conserved regions surrounding variable
sequences. By increasing the relative fraction of non-coding
SCOTags, the procedure proposed here may be more in-
formative than exon capture or phylotranscriptomics to
decipher phylogenetic relationships for closely-related spe-
cies or those with complex evolutionary relationships.
Furthermore, we analyzed our set of SCOTags for phy-

logenomic informativeness as a function of divergence
time as well as for topological conflict. We observed
lower PI values for SCOTags containing the most taxa
(Additional file 1: Figure S4A), suggesting that well-cov-
ered SCOTags would not be preferentially sampled based
on the PI profile criteria. Klopfstein et al. [76] claim that
adding more taxa to the alignment reduces the probabil-
ity to observe a never-reversed synapomorphy since each
new taxon may reverse the synapomorphy and thus
lower the optimum evolutionary rate. In contrast, Town-
send and Leuenberger [86] argued that increasing taxon
sampling does not decrease that optimal rate of charac-
ter change. Here, all SCOTag alignments contain se-
quences of the most divergent wild rose species and at
least two other intermediate species. It is therefore un-
likely that some loci disproportionally represent ancient
vs. recent divergences. We also observed that SCOTags
with few taxa tend to have greater relative numbers of
variable sites (Additional file 1: Figure S4B), which may
be due to the fact that SCOTags with less taxon occu-
pancy are less conserved and therefore more variable.
Townsend’s PI does not directly account for noise that

may be caused by fast-evolving sites. However, a thorough
analysis of PI curves can provide insight into how much
noise is present in each SCOTag. Sharp recent peaks with a
steep post-slope may introduce noise for older nodes.
Consequently, for a given value of PImax, it is better to se-
lect SCOTags that express a steady decline after they peak
[86, 87]. Despite we did not observed a general strong cor-
relation between PI and topological conflict, we noticed
that the top most informative SCOTag for the 0–30 MYa
time interval (Fig. 3b) is also a highly conflicting SCOTag

(Fig. 5b). This demonstrates the importance to combine
different approaches to evaluate the set of sequences prior
to phylogenomics inferences. This assessment enables to
identify the most phylogenetic informative sequences and
to reveal patterns of conflicts while a basic supermatrix
approach simply conceals conflicts and can even produces
a well-supported but incorrect species tree [88, 89]. Atyp-
ical SCOTag should not necessary be removed for down-
stream phylogenomic analyses since they hold different
evolutionary histories that may be interesting to study.
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Regarding phylogenomics in the genus Rosa, the many
patterns of conflict, that we especially observed in close-
related species, highlight the difficulty to clearly identify
one overall evolutionary history in this genus. Patterns of
conflicts will have to be taken into account in future stud-
ies to accurately unravel the complex mechanisms that
shaped this genus. It is also worth mentioning that our
sampling covers only one-tenth of the existing wild rose
species, and some recent rapidly evolving sections such as
Rosa sect. Caninae are not represented. Thus, we recom-
mend selecting well-covered SCOTags, that peak at various
times during the 30M years of divergence for future stud-
ies on Rosa relationships. Using sets of SCOTags with simi-
lar PI values, SCOTags with maximal numbers of species
should be prioritized to increase the chance of successful
target PCR amplification.

Conclusion
The method implemented here to mine genome-scale
sequencing data successfully recovered hundreds of nu-
clear single-copy orthologous sequence tags suitable for
species-level phylogenomics in the highly complex genus
Rosa. We emphasize that a thorough analysis must be
performed on phylogenomic datasets in order to choose
the most informative markers. While the sequence con-
tent of variable sites is obviously important, it does not
predict better topology resolution. Computing phylogen-
etic informativeness and topological conflict of SCOTags
ensures the selection of a comprehensive set of SCOTags
containing appropriate sequence variations to cover the
entire period of species divergence and simultaneously
reveals potential sources of topological conflict that may
have biological meanings, such as hybridization events
or unwanted selection of paralogous copies. Despite the fact
that plastid sequences are less variable, their one-sided in-
heritance still gives valuable perspectives for comparison
with nuclear data in view of a better understanding of
how evolutionary processes, such as hybridization, shape
complex genera such as Rosa. The mining strategy pre-
sented here enables the development of SCOTag nuclear
markers to target yet unresolved parts of the green plants’
Tree of Life, from the deepest branches to the shallowest
relationships between individuals.

Methods
Identification of single-copy orthologs in Rosa ‘Old Blush’
and Fragaria vesca
Single-copy nuclear genes were identified by comparing
annotated protein sets in the haploid reference genome
sequences of Rosa ‘Old Blush’ [67] and Fragaria vesca
[71]. First, the annotated protein set from each genome
was compared to itself using an all-against-all BLAST+
[90] search. Outputs were parsed using the tcl script [91]
with an e-value cutoff of 1e-10, identity of at least 30%

and coverage above 70% of the query. Single-copy nuclear
genes were identified as those with a unique blast hit to
themselves (Step 1, Fig. 1). Next, two methods were used
to identify single-copy orthologs (SCOs) shared between
Rosa ‘Old Blush’ and F. vesca. In the first method, a recip-
rocal best-hit blast (RBB) was performed between Rosa
‘Old Blush’ and F. vesca sets of single-copy genes, and
SCOs were identified as pairs of proteins with each other
as the best scoring match in the respective genome. Sec-
ond, the Markov clustering algorithm (mcl) method [92]
was run via the mclblastline command [93] to cluster all
single-copy proteins from Rosa ‘Old Blush’ and F. vesca
into groups using an inflation value of intermediate strin-
gency (3.0). Genes found as SCOs in both methods were
retained for downstream analysis (Step 2, Fig. 1). A syn-
teny analysis was also performed to compare the position
of the SCOs in the genome assemblies of F. vesca [94] and
R. ‘Old Blush’, and to further assess the orthology assump-
tion. Finally, we also used BLAST with the above settings
to compare our set of SCOs to three published ortho-
log sets to evaluate the redundancy of our SCOs (957
Arabidopsis-Populus-Vitis-Oryza (APVO) single-copy
genes [23], 257 Low-Copy Nuclear Genes for Rosaceae
phylogenomics (LCNG) [27] and 1041 Rosaceae
Conserved Ortholog Set of markers (RosCOS) [26]).

Reconstruction of nuclear SCOs and plastid loci in Rosa
sp.
To identify sequence variations within the SCOs across
the genus Rosa, we retrieved the corresponding se-
quences from already published whole genome shotgun
(WGS) Illumina paired-end sequence data of 16 Rosa
species (Table 1 and Fig. 1). For 12 unassembled ge-
nomes, WGS reads were processed with the aTRAM
v1.0 iterative pipeline [81] to assemble the SCOs. Briefly,
reads are first assigned to partitions, also called shards,
to ease the pipeline parallelization and to optimize the
computing needs. Second, a SCO protein sequence is
used as a query to retrieve homologous reads through a
BLASTX search against shards. Corresponding forward
or reverse reads are then retrieved for ABySS v2.0 as-
sembly [95]. Assembled contigs are iteratively used as
queries for the next round of assembly. As a result, con-
tig length increases and this iterative process may lead
to the assembly of the entire SCO locus, including in-
trons and untranslated regions. We performed three it-
erations of assembly on the GenoToul bioinformatics
high-performance computing cluster using 16 cores of
Intel® Xeon® computers with a 2.50GHz processor. For
each SCO in each unassembled Rosa genome, the contig
with the highest alignment score on the Rosa ‘Old Blush’
reference SCO sequence was selected as the representative
orthologous sequence for this genome (Step 3, Fig. 1).
Then, for each SCO, we created mafft [96] alignments
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between all orthologous sequences. Alignments were
screened to find regions covered by at least four taxa, in-
cluding Rosa ‘Old Blush’ and Rosa persica, considered as
the most divergent Rosa taxon [51] and even considered
to be in a separate genus in former classifications [97, 98].
Strict consensus sequences of these regions were used to
design generic conserved primer pairs with Primer3 [99],
so that any fragment could further be amplified using the
polymerase chain reaction technique (Step 4, Fig. 1). Con-
ditions for primer design were a melting temperature be-
tween 59 °C and 61 °C, a maximal homo-polymer of 3, at
least one 3′-GC clamp and amplicon size between 300 bp
and 550 bp. For each SCO, a maximum of 100 primer
pairs spanning the entire consensus sequence were
designed. We then selected the most variable non-over-
lapping amplicon tags for each region and checked for
specificity of their corresponding primers on the haploid
reference genome of Rosa ‘Old Blush’ (Step 5a, Fig. 1). We
additionally retrieved positional information on untrans-
lated transcribed region (UTR), intron, and exon locations
for each tag. To further assess the orthology assumption
of the tags, we ran additional tests. First, we checked that
each tag has a number of alleles in assembled aTRAM
contigs that is compatible with the species genome ploidy
level (Step 5b, Fig. 1). Then, we subjected each targeted
tag sequence to a reciprocal-best BLAST (Step 5c, Fig. 1).
Since the sequence of R. ‘Old Blush’ was used as the query
for the aTRAM assembly, blasting each targeted tag se-
quence back to the genome of R. ‘Old Blush’ provide the
RBB test for orthology. Any tag sequence that did not pass
these two tests led to the rejection of all Rosa sequences
associated with this tag for downstream analysis. Finally,
the corresponding tag were retrieved from recently assem-
bled genomes of three additional Rosa species (Table 1)
(Step 5d, Fig. 1). We also used an assembled transcrip-
tome of Rosa palustris [70] because it belongs to the Rosa
sect. Carolinae and is related to several wild roses native
to North America. Only exonic tag can be retrieved from
transcriptome sequencing data of R. palustris. We used a
BLAST search to retrieve tag sequences from assembled
genomes/transcriptome of Rosa species (e-value ≤1e-10;
identity ≥65%; 100% coverage of the consensus query tag;
maximum query-subject length difference of ±20%). If
multiple best hits were found, we arbitrary choose one of
them as the representing sequence for the Rosa species. If
the number of best hits was not consistent with the ploidy
level of the Rosa species genome, we discarded all se-
quences related to this tag for downstream analysis. We
additionally checked that edges of retrieved sequences
corresponded to primer pairs. Thanks to the different fil-
tering procedures that we applied on the initial set of tags,
we considered that the resulting tags are Single-Copy
Orthologous tags (SCOTags), suited to reconstructing phylo-
genomics relationships in the genus Rosa. We applied the

same procedure as Step 5d, Fig. 1 to identify similar SCO-
Tag sequences in seven sister outgroups belonging to the
subfamily Rosoideae (Rubus occidentalis, Fragaria vesca,
Fragaria iinumae, Fragaria nipponica, Fragaria nubicola,
Geum urbanum, and Potentilla micrantha) (Table 1), ex-
cept that we did not check that edges of sequences strictly
corresponded to the respective primer pairs and that we
did not discard all SCOTag sequences if the number of best
hits was not consistent with the ploidy level of the out-
group species genome.
The same procedure was applied to retrieve three plas-

tid sequences (psbA-trnH, trnG and trnL) from (un)
assembled genome sequences of the same Rosa species.
When the procedure failed to assemble plastid se-
quences, we retrieved corresponding plastid sequences
from NCBI GenBank (Additional file 5: Table S1).

Assessment of phylogenomic utility
SCOTag sequences from different species were aligned using
mafft [96], and Gblock [100] was used to trim poorly
aligned regions. Variable and parsimony-informative site
(PIS) contents were calculated per SCOTag alignment. Gaps
were treated as a fifth base. We then computed phylogen-
etic informativeness (PI) per SCOTag using the formula
presented in [50] and implemented in the PhyDesign online
application [101]. For this analysis, all SCOTag alignments
were concatenated into a super-matrix and the best parti-
tion scheme was searched with PartitionFinder v2.1.1 [102].
The partitioned matrix served to construct a Maximum
Likelihood (ML) species-tree using RAxML v8.1.5 [103].
The species-tree was then converted to a chronogram in R
using the function chronos in the package ape [104] by ap-
plying one calibration point on the crown node of Rosa,
dated at 30 MYa [51]. We uploaded the partition
concatenated matrix and the chronogram on PhyDesign.
Substitution rates were calculated for each SCOTag in
HyPhy [105] using the best generalized time-reversible
(GTR) model, with empirical base frequencies, found for
the super-matrix in jModeltest2 [106]. Some SCOTag align-
ments have sites for which substitution rate was incorrectly
determined leading to high spikes close to time 0. Since
those high spikes have no real biological meaning and cor-
respond to artefacts, we decided to remove them. To do so,
we first identify SCOTag with such spikes by looking for
SCOTag PI profiles with more than 1 maximum. Second,
we retrieved the estimated substitution rates for each
SCOTag with high spikes and looked for an elbow in
the distribution of substitution rates. The substitution
rate found at the elbow served as a threshold to discard
sites with unusual substitution rate. We repeated this sec-
ond step one time to totally remove high spikes from PI
profiles. The python script (PhantomSpikesRemover.py)
that we developed to trim SCOTag PI profiles and align-
ments is available at https://github.com/kdebray/SCOtags.
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The same procedure was applied to the three plastid loci
to recover their PIS content and PI profiles.
To further determine the underlying phylogenetic con-

flicts between SCOTags, we looked for well-supported in-
congruences between SCOTag tree topologies. For each
SCOTag alignment with at least one outgroup sequence,
we determined the best nucleotide substitution model
using jModelTest v2 [106], and we estimated correspond-
ing ML tree with PhyML [107]. We then used PhyParts
[108] to map resulting SCOTag-trees onto the species-tree
topology, previously obtained by concatenation of all
SCOTags followed by a ML tree estimation. Briefly, each
gene-tree is rooted on outgroup species and then split into
bipartitions that are compared to all bipartitions present
in the species-tree. A gene-tree bipartition h is concordant
with a species-tree bipartition s if all of the ingroup of h is
included in the ingroup of s and if all of the outgroup of h
is included in the outgroup of s [108]. We applied a boot-
strap filter of 70% so that only medium to well-supported
bipartitions are taken into account for the concordance
calculations. As a result, each node of the species-tree is
labeled with the fraction of concordant SCOTags and con-
flicting SCOTags. In addition, we used Astral [109] v5.6.3
with default parameters to build a coalescent species-tree
from the SCOTag trees and to compute Local Posterior
Probabilities associated with each quadripartitions of the
coalescent species-tree. We also calculated the Internode
Certainty All (ICA) for each node of the species-tree
topology, as implemented in PhyParts. ICA values near 0
indicate major conflicts with similar frequencies among
conflicting bipartitions. ICA values near 1 indicate a
strong certainty in the bipartition, meaning that few alter-
native bipartitions with low frequencies have been found.
Although ICA score is not directly comparable to boot-
strap support (BS), it provides more information about the
distribution of conflicts among phylogenomic loci for a
specific bipartition [108]. In addition, we also summarized
topological conflict between SCOTag trees through a
species network. For this analysis, we first collapsed
branches that were poorly supported (ie. BS < 70%)
using a custom R script and the function di2multi in
the ape package. Then, we combined all clean SCOTag

trees in a FilteredSuperNetwork as implemented in
SplitsTree [110] v4.
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