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Introduction

Understanding the multifunctional role of soil in ecosystem functioning is crucial, and soil scientists have recently give more importance to quantifying the contribution of soils to climate change mitigation [START_REF] Paustian | Climate-smart soils[END_REF]. The soil system is considered a significant terrestrial sink of carbon. Therefore, quantifying and mapping Soil Organic Carbon (SOC) change over time is crucial to manage agroecosystems sustainably and preserve soil resources at multiple scales, from local to global. The landscape scale appears to be a relevant scale for addressing this issue for the environment and agroecosystems [START_REF] Viaud | Toward Landscape-Scale Modeling of Soil Organic Matter Dynamics in Agroecosystems[END_REF]. This scale allows interactions between SOC dynamics and natural and anthropogenic processes to be considered.

Two approaches can be explored to assess change in stocks of SOC (SSOC): process-based models and inventory measurement systems [START_REF] De Gruijter | Farm-scale soil carbon auditing[END_REF]. Applying each method depends largely on data availability and cost-effectiveness. In general, process-based models are not expensive and are strongly recommended for predicting small-scale temporal change in SOC.

This approach consists of applying a dynamic SOC model to each pixel under different scenarios of change in land use or land management practices that influence carbon inputs and outputs [START_REF] Minasny | Digital Mapping of Soil Carbon[END_REF]. Spatially explicit information about erosion and deposition can also be included, as done by [START_REF] Walter | Spatio-temporal simulation of the field-scale evolution of organic carbon over the landscape[END_REF], who performed field-scale simulations of spatiotemporal evolution in topsoil organic carbon at the landscape scale over a few decades and under different agricultural practices. In a recent study, [START_REF] Lacoste | Model-based evaluation of impact of soil redistribution on soil organic carbon stocks in a temperate hedgerow landscape: Soil Redistribution Impact on Soil Organic Carbon Stocks[END_REF] assessed long-term impacts of soil redistribution on the evolution of SSOC in a hedgerow landscape using a spatiality explicit landscape model. These authors coupled the soil-redistribution model LandSoil with the SOC-dynamics model RothC to perform 90-year simulations. They used soil data collected in 2010 following Conditioned Latin Hypercube sampling and climate data predicted from an available dataset considering similar trends and using statistical methods.

Overall, this study indicated that considering SOC content change over time should improve the modelling of SOC sequestration and consequently the accuracy of predicted sequestration rates.

Although process-based soil models are the approach used most to estimate SOC change [START_REF] Grunwald | Multi-criteria characterization of recent digital soil mapping and modeling approaches[END_REF], they have two main drawbacks. First, they do not cover the existing wide range combinations of climate, soil type, and management practices (De Guijter et al., 2016).

This implies a lack of parametrization for several combinations that influence soil formation and the soil-landscape system. Second, such models use soil data collected over a given period and do not incorporate the temporal dimension of SOC content change in the modelling process. More importantly, SOC dynamics models should provide accurate predictions of SOC change in manageable spatial units, but the disconnect between mechanistic modelling of soil carbon dynamics and advances in soil carbon mapping remains a great challenge [START_REF] Minasny | Digital Mapping of Soil Carbon[END_REF].

The second approach that can be explored to assess SOC change is based on monitoring networks. They consist of performing direct measurements of SOC content over time by revisiting and resampling soils at the same location. To determine trends, SOC is usually directly measured repeatedly by revisiting intensively sampled sites, mainly to reduce short-range variability and thus maximize detection of change. Measuring SOC content for a reasonable number of sampling sites allows SSOC to be extrapolated between the sites for an entire area, using an appropriate method. For an area with a proper monitoring network, SOC change can be predicted and mapped using spatiotemporal models. For example, [START_REF] Bellamy | Carbon losses from all soils across England and Wales 1978-2003[END_REF] assessed SOC change across England and Wales using a dataset from national soil inventories for 1978-2003. Their results showed a mean decrease in SOC of 0.6 % year -1 over the survey period.

Classical statistical approaches that can be applied to estimate temporal change from direct soil measurements are either design-based or model-based [START_REF] Papritz | Estimating temporal change in soil monitoring: I. Statistical theory[END_REF]. In the first case, the sampling locations are selected by probability sampling and the inference of the statistical parameters is based on the sampling design used to select the sampling locations (De Gruijter et al., 2006). Typical applications are to estimate global quantities in space-time, e.g. evolution of soil carbon stocks at farm scale in a context of carbon auditing (Wheler, 2014;[START_REF] De Gruijter | Farm-scale soil carbon auditing[END_REF] where the total difference of SSOC between two dates is the target attribute which uncertainty must be assessed. By contrast, model-based approaches make no assumption on the sampling design but the spatial distribution of the property is considered as a realization of a random process and inference is based on a stochastic model of the variation in space [START_REF] Lark | Model-based analysis using REML for inference from systematically sampled data on soil[END_REF]. Typical applications are mapping spatial variations of a property by taking profit of the existing samples and the spatial autocorrelation of the target variable, e.g mapping SSOC over a domain [START_REF] Eglin | Infl uence of waterlogging on carbon stock variability at hillslope scale in a beech forest (Fougères forest-West France)[END_REF]Chaplot et al., 2009) Assessing SOC change can take advantage from the development of digital soil mapping (DSM) approaches. Several DSM techniques have recently proven to be efficient to spatially predict soil attributes especially when direct soil measurements are scarce but environmental covariates, at high spatial resolution, are available (Hengl el al., 2018). This concept was initially developed by [START_REF] Mcbratney | On digital soil mapping[END_REF] and relies on the construction of soil attributes prediction models as a function of a set of environmental covariates, which include inherent soil properties, landscape topography features and land use. The main advantage of this model is that both quantitative and categorical soil and environmental variables can be considered as explanatory covariables. In the DSM literature, many studies have attempted to predict and map SSOC a fixed period of time [START_REF] Arrouays | Contribution à la lutte contre l'effet de serre : Stocker du carbone dans les sols agricoles de France ? Expertise Scientifique Collective[END_REF][START_REF] Malone | Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes[END_REF][START_REF] Lacoste | High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape[END_REF]Chartin et al., 2016;Hinge et al., 2018) but very few studies have mobilized DSM techniques to map SOC change as done Wheeler in 2014. This researcher used a legacy soil data and environmental covariates to map SOC in 1990 in the southern part of New South Wales, Australia, using rules based models. The SOC status in 2030 was then estimated under a likely climate change scenario and the map of SOC change was generated considering estimates of the bulk density.

The purpose of this study was to map SSOC change (t C ha -1 year -1 ) between 2009 and 2016 within a rural landscape by combining direct measurement of SOC change for a network of monitoring sites and DSM modelling. Uncertainties were assessed at two different scales, at the point scale and the landscape scale, to characterize the impact of the upscaling process.

Materials and Methods

Study area

The Zone Atelier Armorique (NW France, 48° 36' N, 1° 32' W), located in north-western France, covers 10 km² (Fig. 1). This study area, part of the European Long-Term Ecosystem Research Network, has large soil heterogeneity over short distances [START_REF] Lacoste | High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape[END_REF]. Soils are developed on shale and granite with a loamy cover. The main soil types are Cambisols and Luvisols, but the site also contains Leptosols and Fluvisols developed from alluvial and colluvial deposits (IUSS Working Group WRB, 2007). Its topography is strongly related to geological formations: a plateau on granite (southern end), a plain on soft schist (northern end), and a hillside on hard schist (transition between granite and soft schist) [START_REF] Lacoste | High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape[END_REF]. The study site also has a marked micro-topography, related mainly to existing or former hedgerows and banks. Most of the farms are mixed crop-livestock farms and main land cover are annual crops (e.g. maize, wheat, barley) and temporary or permanent grasslands, but the study site also includes woods and natural areas. A full inventory of crops and pastures is collected each year by a combination of field and remote sensing surveys: crop rotations differ depending on the farming system and include succession of annual crops (predominantly wheat and maize), annual crops following or followed by grassland, continuous grassland and finally natural areas (Fig. 1) 2.2 Quantifying changes in soil organic carbon 2.2.1 Data collection Soil was sampled twice in 2009 and 2016 to quantify changes in SSOC over 7 years. The initial sampling strategy was based on 64 points selected using conditioned Latin Hypercube Sampling (cLHS). This method is a form of stratified random procedure that ensures an efficient way of sampling variables from their multivariate distributions [START_REF] Minasny | A conditioned Latin hypercube method for sampling in the presence of ancillary information[END_REF]. cLHS uses environmental covariates to select points that represent the study area well. In our study, four auxiliary variables were used: elevation (50 m of resolution), the topographic wetness index [START_REF] Beven | A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant[END_REF][START_REF] Merot | Testing a climato-topographic index for predicting wetlands distribution along an European climate gradient[END_REF], the natural gamma emission of potassium [START_REF] Bonijoly | Couverture géophysique aéroportée du Massif armoricain[END_REF], and grassland frequency over 15 years (1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007).

Assessment of SSOC change

The 64 points were first sampled in May-June 2009 and resampled in April 2016 using a global positioning system with an accuracy of 3 m. Samples for SOC content analysis were taken with a 7 cm diameter manual auger at four depths (0-7.5, 7.5-15, 15-30, and 30-45 cm): at each location, a composite sample was obtained by mixing four sub-samples collected within a radius of 1 m to attenuate local variability. A total of 256 composite soil samples were collected at each date, and total carbon content was measured by dry combustion with a CHN analyser (Thermo Finnigan EA 1112) according to the ISO 10694 certified method. As soil inorganic carbon may be considered negligible in the pedological context of the study area, SOC content was directly derived from the total carbon measurement. Bulk density was measured at each site and for each depth using an 8 cm diameter root auger, which cored undisturbed samples of known volume (377 and 754 cm 3 for the first two and last two layers, respectively). All samples were oven dried at 105°C, weighted, and sieved at 2 mm. Samples were then weighted again to determine gravel content. In this study, we considered the bulk density of the fine earth fraction calculated from the dry mass and the core volume after being corrected for gravel content. At 6 randomly selected points, two additional replicates were taken to quantify the precision of local estimates of bulk density. Therefore, considering the maximum soil depth, 69 soil samples were used to assess bulk density uncertainty. As for bulk density, 30 replicates of SOC content analyses were performed to quantify the precision of SOC measurements.

Carbon stock was calculated considering a mass coordinate system, which attempts to correct for differences in bulk density over time [START_REF] Minasny | Digital Mapping of Soil Carbon[END_REF]. The method consists of reporting carbon content for a fixed mass of soil mineral material (IPCC, 2006) by converting SOC content measured in soil layers to cumulative mineral mass and cumulative SOC content. This approach allows comparison of the change in SSOC between two dates for any given mineral mass, following three steps:

1. Calculate the mineral mass of each layer (0-7.5, 7.5 -15, 15-30, and 30-45 cm).

m = Z × ρ × f min [1]
where Z = thickness of the layer (m), ρ b = volumetric mass density of the fine earth fraction (kg m -3 ), and f min = the mineral fraction (kg kg -1 ) 2. Calculate cumulative mineral mass at each point (i) by summing the mineral mass of the n soil layers (j):

M = [2]
3. Calculate cumulative carbon stock. The amount of carbon for a given mineral mass (150, 300, and 450 kg m -²) was estimated by linear interpolation:

= [3]
Finally, the SOC stock change per year was calculated for a 300 kg soil mineral mass (≈30 cm) at each sampling site using the interpolation function implemented in stats R package (R Core Team, 2017).

Estimation of SSOC uncertainty at point scale

According to [START_REF] Uusitalo | An overview of methods to evaluate uncertainty of deterministic models in decision support[END_REF], uncertainty stems from various source that can be divided into 6 categories: inherent randomness, measurement error, systematic error, natural variation, model uncertainty and subjective judgement. In our study, uncertainties were assessed for the 64 points using Monte-Carlo simulations by varying bulk density, soil carbon content and thickness of soil layer. The Monte-Carlo approach used a normal probability distribution of all input variables used for SSOC calculation (Table 2) to generate a final probability distribution of the targeted variable. To achieve this, we used @ Risk software ver.4 [START_REF] Palisade | @Risk Software Ver[END_REF] with 1000 iterations.

Environmental covariates for spatial modelling

To model the spatial distribution of SSOC change over time at the landscape scale, we used a set of 15 maps of predictor variables as shown in Table 1. Topographic and geomorphometric variables were derived from a 50 m resolution digital elevation model using ArcGIS 10.3 software (ESRI, 2012) and the MNTsurf software developed by [START_REF] Squividant | MNTSURF: Logiciel de traitement des modèles numériques de terrain[END_REF]. Soil parent material was derived from legacy geological maps and gamma radiometry using machine learning techniques [START_REF] Lacoste | Regional mapping of soil parent material by machine learning based on punctual training data[END_REF]. Predictor variables describing land use and crop rotation stem from systematic field and remote sensing surveys carried out over the past eight years.

2.2.5 Spatial modelling of SSOC change at landscape scale.

Two approaches were explored for spatial modelling of SSOC change within our study area: Fig.

2 details the different steps followed for each approach.

The first method consisted in performing stepwise multiple linear regression (MLR) [START_REF] Hocking | The Analysis and Selection of Variables in Linear Regression[END_REF] was checked to evaluate if a regression-kriging approach [START_REF] Odeh | Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging[END_REF]) may be developped.

The second method consists in applying the SCORPAN model mobilizing a wider range of covariates characterizing both inherent soil properties and soil-landscape features using RandomForest model [START_REF] Breiman | Random forests: machine learning[END_REF][START_REF] Liaw | Classification and regression by randomForest[END_REF]. This model was calibrated using the same soil data expressing SSOC change and 15 environmental attributes covering the whole study area. The spatial autocorrelation of model residuals was also checked.

The performance of the two models: stepwise MLR-kriging model and Random Forest model was assessed using internal validation method and the best approach was chosen to spatially predict the target soil attribute within our study area using three error indexes: i) mean absolute error (MAE, Eq. 4), ii) root mean square error (RMSE, Eq. 5), and the coefficient of determination (R²), which measures the deviation between observed and predicted values (Eq. 6).

= ∑ | ̂ -| where x i = measured delta SSOC [4] ̂ = predicted delta SSOC = ∑ ( ̂ -)² x = mean delta SSOC [5] i = point (1-64) " = ∑ (# $ %#̂$)² [6]
Uncertainties of SSOC change predictions were estimated by constructing 95% confidence intervals using K-means fuzzy clustering of the residuals from the Random Forest models [START_REF] Malone | Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes[END_REF]. This approach consists on dividing the conceptual space into clusters sharing a similar distribution of error. Specifically, we i) performed fuzzy classification of the conceptual space based on the training dataset, ii) constructed model error for each cluster, and iii) determined confidence intervals of predictions for each cluster.

3 Results

Point measurements of SSOC at two dates

SSOC at different soil mineral masses (150, 300, and 450 kg m -2 ) increased overall from 2009 to 2016 (Fig. 3a). At a mineral mass of 300 kg m -2 , mean SSOC was 5.24 kg m -2 (50.24 t C ha -1 ) in 2009 and 5.76 kg m -2 (50.76 t C ha -1 ) in 2016, giving a mean increase in SSOC of 0.51 ± 0.12 kg m -2 (5.1 t C ha -1 ). Fig. 4 shows the evolution of SSOC change for the 64 sites, with their limits of the 90% CI at 300 kg m -2 . Overall, high variability among soil observations change was highlighted. Added to this, associated limits of the 90 % CI were not constant and varied among sites.

3.2 Point assessment of SSOC change at measurement sites SSOC varied greatly among the 64 points depending namely on the land use trajectory concerned. Mean (± 90% confidence interval (CI)) annual change in SSOC was 0.73 ± 0.18 t C ha -1 year 1 .

Fig. 4 shows the evolution of SSOC change for the 64 sites, with their limits of the 90% CI at 300 kg m -2 . Overall, high variability among soil observations SSOC change was highlighted.

Added to this, associated limits of the 90 % CI, was not constant and varied among sites.

Furthermore, crop rotations implemented between 2009 and 2016 led to differences in SOC sequestration. The levels of storage that the crop rotations entail are listed in Table 3. For instance, high increase in SOC storage characterises continuous grassland system (1.40-± 0.31 t C ha -1 year -1 ). A similar trend was shown when croplands were converted to grasslands (0.94 ± 0.29 t C ha -1 year -1 ) and under continuous annual crops (0.82± 0.26 t C ha -1 year -1 ). However, lower rate of SSOC change was obtained for annual crops to grassland rotation (0.42-± 0.18 t C ha -1 year -1 ). As a result of the agriculture practices implemented, the accumulation of SOC was detected at almost all the sampling sites from 2009 to 2016 and a positive correlation characterised the relationship between SSOC at two dates (r²=0.68) (Fig. 3b).

Comparing SSOC change models

We investigated the effect of land cover, crop rotation and grassland frequency since 2009 on SSOC change. These covariates were used as explanatory variables and SSOC change as response variable. Using stepwise MLR model, only crop rotation covariate was selected to build up the regression model. Table 4 gives summary statistics of this MLR model where only crop rotation was selected as predictor variable. The results show that crop rotation accounts for only 20 % SSOC change variability. Thus, SSOC change may be highly variable for a same modality of crop rotation.

The constant coefficient which represents continuous annual crops modality was significant at α= 0.01. Permanent grasslands and grassland to crop rotation coefficients were significant at level of α=0.05. The F-statistic of the regression was 4.83 and the regression found to be significant at α=0.01.

As model residuals showed a spatial autocorrelation, they were kriged over the study area and were added to regression map to generate a final map of SSOC change at the extend of interest.

Internal validation gives R² = 0.23, concordance = 0.30, MEA= 1.3 t C ha -1 year -1 , RMSE= 1.1 t C ha -1 year 1 and bias= -7.77 10 -6 t C ha -1 year -1 .

A larger panel of predictors was used to construct the Random Forest regression tree for SSOC change (Fig. 5). Predictors with high influence on the predictions included inherent soil properties such as soil parent material, and certain terrain attributes describing soil hydromorphic conditions and the contrasting topography. Other variables also appeared important in the condition rules, namely crop rotation system. Model residuals showed no spatial autocorrelation and error indices of the predictive model derived from internal validation are R² = 0.92, concordance = 0.84 MEA = 0.31 t C ha -1 year -1 , RMSE = 0.39 t C ha -1 year -1 , and bias= 0.012 t C ha -1 year -1 .

When comparing internal validation results of both models, MLR regression kriging model and

Random Forest model, we note that the second model achieved highest R² and concordance coefficients and lowest RMSE, MEA, and bias. Therefore, Random Forest model was used to spatially predict SSOC change over the study area.

Mapping of SSOC change at the landscape scale

When mapped, SSOC change for a 300 kg mineral mass ranged from -1.00 to 2.8 t C ha -1 year -1 (mean = 0.98 t C ha -1 year -1 ) and showed high spatial variability (Fig. 6b). Highest values were found mainly in waterlogged soils under permanent grasslands. Similarly, zones with high vegetation cover, particularly woods, and less human development, located on steep slopes, showed high SSOC change. The spatial variability of SSOC change was driven mainly by soil redoximorphic conditions, which varied greatly within the study site.

Discussion

Estimates of SSOC change and associated uncertainties

Within a given area and a short time span, SSOC change is principally driven by evolutions in agriculture practices and crop rotations. Considering the direct measurements at 64 points, mean (± 90% CI) annual change in SSOC (at 300 kg m -2 of soil mineral mass (≈30 cm)) was 0.94 ± 0.29 t C ha -1 year -1 when croplands were converted to grassland and 1.40 ± 0.31 t C ha -1 year -1 under continuous grassland. By comparison, mean carbon sequestration of French soils in the 0-30 cm topsoil layer has been estimated at 0.49 ± 0.26 t C ha -1 year -1 on conversion of cropland to grassland [START_REF] Arrouays | Contribution à la lutte contre l'effet de serre : Stocker du carbone dans les sols agricoles de France ? Expertise Scientifique Collective[END_REF] and can reach 1 t C ha -1 year -1 for grassland systems involving high amounts of organic fertilisation [START_REF] Gac | Le stockage de carbone par les prairies une voie d'atténuation de l'impact de l'élevage herbivore sur l'effet de serre[END_REF]. In our study, when grassland was converted into cropland, mean (± 90% CI) carbon sequestration (at 300 kg m -2 of soil mineral mass) was 0.42 ± 0.18 t C ha -1 year -1 , which is a three times lower decrease than the French mean of -0.95 ± 0.3 t C ha -1 year -1 in the 0-30 cm soil layer [START_REF] Arrouays | Contribution à la lutte contre l'effet de serre : Stocker du carbone dans les sols agricoles de France ? Expertise Scientifique Collective[END_REF]. The observed difference may be explained by the time step considered, as Arrouays et al.'s (2002) findings were based on a 20-year scenario while our results were based on a 7-year time step. Added to this, since 2009, farmers introduced more and more winter catch crops between two successive main crops and these catch crop are generally not harvested but introduced into the soil [START_REF] Viaud | Landscape-scale analysis of cropping system effects on soil quality in a context of crop-livestock farming[END_REF]. Another striking factor was the development of minimum tillage, which could also explain positive evolution of SSOC within the study area through increased SOC inputs and slow-downing of SOC mineralization process.

Uncertainties of the SSOC change indicator were mainly related to the spatial variability of SOC contents, agriculture practices and measurement methods. We sought to minimise spatial variability in 2016 by returning as close as possible to the 2009 points and by mixing samples taken at 1m distance, but residual spatial variability remained over short distances. The accuracy of the global positioning system used (3 m) explains some of these uncertainties. The soil is defined as a phenomenon that varies at different scales in space and over time thereby affecting soil properties, especially SOC content, which is particularly affected by agriculture practices and landscape features like distance from hedgerows [START_REF] Lacoste | High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape[END_REF].

We estimated uncertainties at two different scales: (i) at the point scale by Monte-Carlo simulations considering the 64 sampling points and (ii) at the landscape scale by fuzzy clustering of the residuals from the RandomForest model. Comparing the CI of SSOC change at the 64 points (Fig. 4) and the maps of the mean SSOC change (Figs. 6a and6c) highlights an increase in uncertainty due to upscaling from the punctual scale to the landscape scale: the CI of the 64 points was 0.4 -0. 8 t C ha -1 year -1 , while that of spatial modelling was 0.9 -1.5 t C ha -1 year -1 .

This issue was largely discussed by [START_REF] Dignac | Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review[END_REF], who confirmed that upscaling from the fine spatial scale to landscape and global scale is a crucial issue that generates high uncertainties.

Thus, our results demonstrate high carbon sequestration rates associated with high uncertainties amplified by spatial modelling. This challenge is mainly due to the complexity of carbon sequestration processes, which can be achieved through changes in land use and agricultural practices [START_REF] Minasny | Soil carbon 4 per mille[END_REF]. From a practical point of view, the SSOC greatly depends on the land use patterns and agriculture practices implemented such as the addition of exogenous organic matter, tillage, and fertilisation [START_REF] Dignac | Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review[END_REF]. Actually, our results show that SSOC change over time are highly variable for a same crop rotation and that land cover explains by itself only a relatively small fraction of the time evolution. This may be explained by the influence of other factors impacting the SOC dynamics namely local topographical and pedological conditions, but also by the practices adopted by the farmer to grow a given crop:

tillage, crop residues management, exogeneous organic matter inputs, grazing density, yield levels have a major effect on the quantity and quality of fresh organic matter inputs into the soil and considerably affect their dynamics. Inputs of organic matter to the soil, which mainly depend on the number of grazing animals or mowing frequency in grasslands, as well as on crop residues and exogenous organic matter in agriculture systems, promote SOC storage [START_REF] Dignac | Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review[END_REF]), but may be variable according to the farming systems and the field. These practices markedly affect soil properties including soil physical structure [START_REF] Dignac | Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review[END_REF], soil microbial biomass and microbial activity [START_REF] Tu | Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching[END_REF] and consequently the distribution of SSOC in space and over time [START_REF] Dignac | Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review[END_REF].

Despite the importance of these factors, they could not be directly included in SSOC spatial modelling due to lack of appropriate spatialised data. In addition, our findings emphasise that using land use as a proxy of agriculture practices and crop rotations leads to very uncertain estimates of SSOC change. Thus, although direct measurement of SSOC change is costly and hampered by measurement uncertainties, they appear still essential to ensure unbiased assessment of soil carbon storage at landscape scale.

Conclusions

The SSOC change was assessed and mapped at the landscape scale by coupling direct soil 

  implemented in MASS R package (R Core Team, 2017), in order to explain SSOC change by covariates linked to land cover between 2009 and 2016: annual land cover, crop rotation and grassland frequency between 2009-2016. The model was calibrated with SSOC change computed from the 64 soil samples collected in 2009 and 2016. Spatial autocorrelation of model residuals

  monitoring and machine-learning regression modelling. Our study is innovative because in the soil science literature, to our best knowledge, no other study tried to apply machine-learning on datasets of SSOC change measurements to map SSOC change in space and time. Predictive models were used to elucidate topographical, geological, pedological factors and human activities that caused patterns of spatial distribution. The main results showed that the spatial heterogeneity of SSOC change was driven by crop rotations, topographic attributes, and local soil conditions (waterlogging, soil parent material). These factors could be captured by the regression model and spatially represented. Other important factors such as agricultural practices may also influence the SOC dynamics and could not be informed at each point and therefore were not considered by the model. This study reveals complex interactions in storing SOC, which may have implications for future planning and monitoring of agro-ecosystems and can be integrated into land-use decision-making.
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 4 Figure 4. Mean and 90% confidence intervals of SSOC change calculated for the 64 prospected sites using Monte Carlo simulations.
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 5 Figure 5. Importance of predictor variables in the RF modelling of SSOC change between 2009 and 2016.
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 6 Figure 6. Maps of SSOC change between 2009 and 2016 within the 10 km² study area: a) lower bound of the 90% confidence interval (CI) of SSOC change, b) mean SSOC change, c) upper bound of the 90% CI of SSOC change.
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 2 Probability distribution for input variables used in the Monte-Carlo procedure to estimate SSOC uncertainty at the 64 sampling points. Standard deviations for derived from replicates measurements for SOC content (n=30) and bulk density (n=69).
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Table 4 .

 4 Summary statistics of stepwise MLR regression model

Table 1 . Description of the environmental covariates selected

 1 Summary of environmental covariates. P: parent material; R: relief; O:organisms; C: categorical; Q: quantitative.

	Label	Environmental covariate	SCORPAN factor Type Unit or number
	Terrain attributes derived from the digital elevation model		
	elev	Elevation	R	Q	m
	Slope	Local hillslope gradient	R	Q	%
	Vcurv	Profile curvature	R	Q	m.100m -1
	Hcurv	Tangential curvature	R	Q	6 classes
	Tcurv	Total curvature	R	Q	6 classes
	MWi	Modified topographic wetness index R	Q	5 classes
	Geology				
	MP	Soil parent material	P	C	6 classes
	Organism				
	OS-09	Land cover in 2009	O	C	5 classes
	OS-10	Land cover in 2010	O	C	5 classes
	OS-11	Land cover in 2011	O	C	5 classes
	OS-12	Land cover in 2012	O	C	5 classes
	OS-13	Land cover in 2013	O	C	5 classes
	OS-14	Land cover in 2014	O	C	5 classes
	OS-15	Land cover in 2015	O	C	5 classes
	OS-16	Land cover in 2016	O	C	5 classes
	Rotation Crop rotation	O	C	5 classes

Table 2 . Probability distribution for input variables used in the Monte-Carlo procedure to estimate SSOC uncertainty at the 64 sampling points. Standard deviations for derived from replicates measurements for SOC content (n=30) and bulk density (n=69). Input variable Distribution Parameters

 2 

	Thickness of soil layer: Z (0-	Normal	Mean=Z
	7.5 cm)		Standard Dev.=0.5 cm
	Thickness of soil layer: Z (7.5	Normal	Mean=Z
	-15 cm)		Standard Dev.=1 cm
	Soil organic carbon content:	Normal	Mean=SOC
	SOC (g kg -1 )		Standard Dev.=2 g kg -1
	Bulk density: BD (g cm -3 )	Normal	Mean=BD.
			Standard Dev.=0.03 g cm -3

Table 3 . Median values of SSOC change for different crop rotations betwenn 2009 and 2016
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	Crop rotations	( SSOC) at 300 kg m -2 soil	Number of sites
		mineral (t C ha -1 year -1 )	
	Continuous grassland	1.40 ± 0.31	14
	Annual crops rotation (without	0.82 ± 0.26	26
	grassland)		
	Annual crops rotation to Grassland	0.94 ± 0.29	15
	Grassland to annual crops rotation	0.42 ± 0.18	6

Table 4 . Summary statistics of stepwise MLR regression model
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	Coefficients				
		Estimate	Standar error	t-value	Significance
	Constant	0.9	0.31	2.86	0.005**
	Annual crops rotation to	-0.1	0.72	-0.14	0.88
	Grassland				
	Continuous grassland	1.17	0.53	2.22	0.03*
	Grassland to annual crops	-1.08	0.51	-2.08	0.04*
	rotation				
	Multiple R-squared: 0.20		Adjustes R-squared: 0.16	
	F-statistics: 4.82		p-value: 0.004		
	Signif. codes 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1		
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