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1 Introduction

Understanding the multifunctional role of soil itosystem functioning is crucial, and soil
scientists have recently give more importance tangfying the contribution of soils to climate
change mitigation (Paustian et al., 2016). The sgstem is considered a significant terrestrial
sink of carbon. Therefore, quantifying and mapp8al Organic Carbon (SOC) change over
time is crucial to manage agroecosystems sustgiraid preserve soil resources at multiple
scales, from local to global. The landscape sgaears to be a relevant scale for addressing this
issue for the environment and agroecosystems (Méawadl, 2010). This scale allows interactions

between SOC dynamics and natural and anthropogenéesses to be considered.

Two approaches can be explored to assess chang®adks of SOC (SSOC): process-based
models and inventory measurement systems (De &rwjt al., 2016). Applying each method
depends largely on data availability and cost-¢iffeaess. In general, process-based models are
not expensive and are strongly recommended forigined small-scale temporal change in SOC.
This approach consists of applying a dynamic SO@ehtw each pixel under different scenarios
of change in land use or land management practi@sinfluence carbon inputs and outputs
(Minasny et al., 2013). Spatially explicit informat about erosion and deposition can also be
included, as done by Walter et al. (2003), who qrenkd field-scale simulations of
spatiotemporal evolution in topsoil organic carladrihe landscape scale over a few decades and
under different agricultural practices. In a recstnidy, Lacoste et al. (2016) assessed long-term
impacts of soil redistribution on the evolution 860C in a hedgerow landscape using a
spatiality explicit landscape model. These autlvorgpled the soil-redistribution model LandSoil
with the SOC-dynamics model RothC to perform 90rysinulations. They used soil data

collected in 2010 following Conditioned Latin Hypgabe sampling and climate data predicted
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from an available dataset (1980-2010) consideringla trends and using statistical methods.
Overall, this study indicated that considering S€@tent change over time should improve the

modelling of SOC sequestration and consequentlaticaracy of predicted sequestration rates.

Although process-based soil models are the appresed most to estimate SOC change
(Grunwald, 2009), they have two main drawbacksstFithey do not cover the existing wide
range combinations of climate, soil type, and managnt practices (De Guijter et al., 2016).
This implies a lack of parametrization for severainbinations that influence soil formation and
the soil-landscape system. Second, such modelsoils#gata collected over a given period and do
not incorporate the temporal dimension of SOC aantbange in the modelling process. More
importantly, SOC dynamics models should provideueate predictions of SOC change in
manageable spatial units, but the disconnect betweechanistic modelling of soil carbon

dynamics and advances in soil carbon mapping remaagreat challenge (Minasny et al., 2013).

The second approach that can be explored to a&@€s change is based on monitoring
networks. They consist of performing direct measwaets of SOC content over time by

revisiting and resampling soils at the same locatim determine trends, SOC is usually directly
measured repeatedly by revisiting intensively saohpsites, mainly to reduce short-range
variability and thus maximize detection of chantgeasuring SOC content for a reasonable
number of sampling sites allows SSOC to be extedpdl between the sites for an entire area,
using an appropriate method. For an area with pggrmonitoring network, SOC change can be
predicted and mapped using spatiotemporal modetseXample, Bellamy et al. (2005) assessed
SOC change across England and Wales using a datasehational soil inventories for 1978-

2003. Their results showed a mean decrease in $3O® &6 year over the survey period.
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Classical statistical approaches that can be apphieestimate temporal change from direct soil
measurements are either design-based or model-fRapdtz et al., 1995). In the first case, the
sampling locations are selected by probability dargpand the inference of the statistical
parameters is based on the sampling design usseldct the sampling locations (De Gruijter et
al., 2006). Typical applications are to estimatebgl quantities in space-time, e.g. evolution of
soil carbon stocks at farm scale in a context db@a auditing (Wheler, 2014; De Gruijter et al.,
2016) where the total difference of SSOC betweea tlates is the target attribute which
uncertainty must be assessed. By contrast, modeldbapproaches make no assumption on the
sampling design but the spatial distribution of ghreperty is considered as a realization of a
random process and inference is based on a stachasdel of the variation in space (Lark and
Cullis, 2004). Typical applications are mappingtspavariations of a property by taking profit of
the existing samples and the spatial autocorrelatiothe target variable, e.g mapping SSOC

over a domain (Eglin et al., 2008; Chaplot et2009)

Assessing SOC change can take advantage fromettetoppment of digital soil mapping (DSM)
approaches. Several DSM techniques have recemtyeprto be efficient to spatially predict soll
attributes especially when direct soil measuremargsscarce but environmental covariates, at
high spatial resolution, are available (Hengl el 2018). This concept was initially developed by
McBratney et al. in 2003 and relies on the consimacof soil attributes prediction models as a
function of a set of environmental covariates, whicclude inherent soil properties, landscape
topography features and land use. The main advamtfthis model is that both quantitative and
categorical soil and environmental variables caedmesidered as explanatory covariables. In the
DSM literature, many studies have attempted toiptethd map SSOC a fixed period of time

(Arrouays et al.,2002; Malone et al., 2011; Lacadtal, 2014; Chartin et al., 2016; Hinge et al.,
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2018) but very few studies have mobilized DSM teghes to map SOC change as done Wheeler
in 2014. This researcher used a legacy soil dataeanironmental covariates to map SOC in

1990 in the southern part of New South Wales, Alistrusing rules based models. The SOC
status in 2030 was then estimated under a likefgate change scenario and the map of SOC

change was generated considering estimates otitkelbnsity.

The purpose of this study was to map SSOC changeh@' year') between 2009 and 2016
within a rural landscape by combining direct meament of SOC change for a network of
monitoring sites and DSM modelling. Uncertaintiesrevassessed at two different scales, at the

point scale and the landscape scale, to charaetizimpact of the upscaling process.

2 Materials and Methods

2.1 Study area

The Zone Atelier Armorique (NW France, 48° 36’ N,32’ W), located in north-western France,
covers 10 km? (Fig. 1). This study area, part & Huropean LonJerm Ecosystem Research
Network, has large soil heterogeneity over shostagices (Lacoste et al., 2014). Soils are
developed on shale and granite with a loamy coVee main soil types are Cambisols and
Luvisols, but the site also contains Leptosols Bludisols developed from alluvial and colluvial
deposits (IUSS Working Group WRB, 2007). Its tomgry is strongly related to geological
formations: a plateau on granite (southern endplain on soft schist (northern end), and a
hillside on hard schist (transition between gramitel soft schist) (Lacoste et al., 2014). The
study site also has a marked mitopography, related mainly to existing or formeddgerows
and banks. Most of the farms are mixed crop-livestiarms and main land cover are annual

crops (e.g. maize, wheat, barley) and temporangyeomanent grasslands, but the study site also
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includes woods and natural areas. A full inventairgrops and pastures is collected each year by
a combination of field and remote sensing surveysp rotations differ depending on the
farming system and include succession of annugscfpredominantly wheat and maize), annual

crops following or followed by grassland, continsarassland and finally natural areas (Fig. 1)
2.2 Quantifying changes in soil organic carbon

2.2.1 Data collection

Soil was sampled twice in 2009 and 2016 to quardifgnges in SSOC over 7 years. The initial
sampling strategy was based on 64 points seleci@d egonditioned Latin Hypercube Sampling
(cLHS). This method is a form of stratified rand@mocedure that ensures an efficient way of
sampling variables from their multivariate distiiloms (Minasny and McBratney, 2006). cLHS
uses environmental covariates to select points rif@iesent the study area well. In our study,
four auxiliary variables were used: elevation (5@fmesolution), the topographic wetness index
(Beven and Kirkby, 1979; Merot et al., 2003), thatural gamma emission of potassium

(Bonijoly et al., 1999), and grassland frequencgrdb years (1993-2007).

2.2.2 Assessment of SSOC change

The 64 points were first sampled in May-June 2008 r@sampled in April 2016 using a global
positioning system with an accuracy of 3 m. Samfue$SOC content analysis were taken with a
7 cm diameter manual auger at four depth8.8) 7.515, 15-30, and 30-45 cm): at each location,
a composite sample was obtained by mixing foursarples collected within a radius of 1 m to
attenuate local variability. A total of 256 compessoil samples were collected at each date, and
total carbon content was measured by dry combustittn a CHN analyser (Thermo Finnigan
EA 1112) according to the I1ISO 10694 certified mdthés soil inorganic carbon may be

considered negligible in the pedological contextttté study area, SOC content was directly
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derived from the total carbon measurement. Bulksigmvas measured at each site and for each
depth using an 8 cm diameter root auger, whichccamadisturbed samples of known volume
(377 and 754 crhfor the first two and last two layers, respectjyehll samples were oven dried
at 105°C, weighted, and sieved at 2 mm. Samples ten weighted again to determine gravel
content. In this study, we considered the bulk derd the fine earth fraction calculated from
the dry mass and the core volume after being caddor gravel content. At 6 randomly selected
points, two additional replicates were taken torqiiya the precision of local estimates of bulk
density. Therefore, considering the maximum sqitde69 soil samples were used to assess bulk
density uncertainty. As for bulk density, 30 repties of SOC content analyses were performed to
guantify the precision of SOC measurements.
Carbon stock was calculated considering a massictde system, which attempts to correct for
differences in bulk density over time (Minasny &t 2013). The method consists of reporting
carbon content for a fixed mass of soil mineralanat (IPCC, 2006) by converting SOC content
measured in soil layers to cumulative mineral mags cumulative SOC content. This approach
allows comparison of the change in SSOC between dates for any given mineral mass,
following three steps:

1. Calculate the mineral mass of each layer (0-7%;15, 15-30, and 30-45 cm).

m =7 X pp X fmin [1]
where Z = thickness of the layer (nmp, = volumetric mass density of the fine earth
fraction (kg n®), and f,i» = the mineral fraction (kg ki

2. Calculate cumulative mineral mass at each pointty(isumming the mineral masgs of

then soil layers (j):

n
j=1
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3. Calculate cumulative carbon stock. The amount di@afor a given mineral mass (150,

300, and 450 kg #) was estimated by linear interpolation:

Finally, the SOC stock change per year was caledltor a 300 kg soil mineral mass30 cm)
at each sampling site using the interpolation fiemctmplemented in stats R package (R Core

Team, 2017).

2.2.3 Estimation of SSOC uncertainty at point scale

According to Uusitalo et al. (2015), uncertaintgras from various source that can be divided
into 6 categories: inherent randomness, measurearsnt, systematic error, natural variation,
model uncertainty and subjective judgement. Insiudy, uncertainties were assessed for the 64
points using Monte-Carlo simulations by varyingkdensity, soil carbon content and thickness
of soil layer. The Monte-Carlo approach used a mbrprobability distribution of all input
variables used for SSOC calculatifirable 2) to generate a final probability distribat of the
targeted variable. To achieve this, we used @ Bddiwvare ver.4 (Palisade, 2005) with 1000

iterations.

2.2.4 Environmental covariates for spatial modelling

To model the spatial distribution of SSOC changerdime at the landscape scale, we used a set
of 15 maps of predictor variables as shown in TdhleélTopographic and geomorphometric
variables were derived from a 50 m resolution digitlevation model using ArcGIS 10.3
software (ESRI, 2012) and the MNTsurf software dgved by Squividant (1994). Soil parent
material was derived from legacy geological mapdg gamma radiometry using machine

learning techniques (Lacoste et al., 2011). Predigtrriables describing land use and crop
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rotation stem from systematic field and remote sensurveys carried out over the past eight
years.

2.2.5 Spatial modelling of SSOC change at landscape scal

Two approaches were explored for spatial modethh§SOC change within our study area: Fig.
2 details the different steps followed for eachrapph.

The first method consisted in performing stepwisdtiple linear regression (MLR{Hocking.,
1976) implemented in MASS R package (R Core Tedty), in order to explain SSOC change
by covariates linked to land cover between 2009 201b: annual land cover, crop rotation and
grassland frequency between 2009-2016. The modekalébrated with SSOC change computed
from the 64 soil samples collected in 2009 and 2@&&tial autocorrelation of model residuals
was checked to evaluate if a regression-kriging@ggh (Odeh et al., 1995) may be developped.
The second method consists in applying 8@ORPAN model mobilizing a wider range of
covariates characterizing both inherent soil priger and soil-landscape features using
RandomForest model (Breiman, 2001; Liaw and Wie2@02). This model was calibrated using
the same soil data expressing SSOC change andvirbrenental attributes covering the whole
study area. The spatial autocorrelation of mod&Hreals was also checked.

The performance of the two models: stepwise MLRgikg model and Random Forest model
was assessed using internal validation method haddeést approach was chosen to spatially
predict the target soil attribute within our stualga using three error indexes: i) mean absolute
error (MAE, Eg. 4), ii) root mean square error (RBJSEq. 5), and the coefficient of

determination (R?2), which measures the deviatiaween observed and predicted values (Eqg. 6).
MAE = %Z?ﬂ [ — x; | where ; xmeasured delta SSOC [4]

x; = predicted delta SSOC
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RMSE = \/%Z}Ll(a&- — x;)? X = mean deSOC [5]

i =ipo(1- 64)

R2 — Zi:l(xi_fi) [6]

T (xi— %)?
Uncertainties of SSOC change predictions were as#idh by constructing 95% confidence
intervals using K-means fuzzy clustering of theideals from the Random Forest models
(Malone et al., 2011). This approach consists andolig the conceptual space into clusters
sharing a similar distribution of error. Specifigalwe i) performed fuzzy classification of the
conceptual space based on the training datasepngtructed model error for each cluster, and

iii) determined confidence intervals of predictidos each cluster.

3 Results

3.1 Point measurements of SSOC at two dates

SSOC at different soil mineral masses (150, 300,450 kg nif) increased overall from 2009 to
2016 (Fig. 3a). At a mineral mass of 300 kg,mMmean SSOC was 5.24 kgf50.24 t C ha) in
2009 and 5.76 kg M(50.76 t C h&) in 2016, giving a mean increase in SSOC of 0.8112 kg

m? (5.1t C h&). Fig. 4 shows the evolution of SSOC change feré# sites, with their limits of
the 90% CI at 300 kg ¥ Overall, high variability among soil observationhange was
highlighted. Added to this, associated limits of 80 % CI were not constant and varied among

sites.

3.2 Point assessment of SSOC change at measuremant site



201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

SSOC varied greatly among the 64 points dependiagpefy on the land use trajectory
concerned. Mean (x 90% confidence interval (Ciyuat change in SSOC was 0.73 +0.18t C
ha' year.

Fig. 4 shows the evolution of SSOC change for thesiées, with their limits of the 90% CI at
300 kg n?. Overall, high variability among soil observatioBSOC change was highlighted.
Added to this, associated limits of the 90 % Clswat constant and varied among sites.
Furthermore, crop rotations implemented betweer928@d 2016 led to differences in SOC
sequestration. The levels of storage that the covations entail are listed in Table 3. For
instance, high increase in SOC storage characsecatinuous grassland system (1.40-+ 0.31 t
C ha' yea'). A similar trend was shown when croplands weneveoted to grasslands (0.94 +
0.29 t C hd yeaf) and under continuous annual crops (0.82+ 0.26heEyeaf’). However,
lower rate of SSOC change was obtained for anmoglscto grassland rotation (0.42-+ 0.18 t C
ha' yeaf'). As a result of the agriculture practices impleted, the accumulation of SOC was
detected at almost all the sampling sites from 286892016 and a positive correlation
characterised the relationship between SSOC atlates (r>=0.68) (Fig. 3b).

3.3 Comparing SSOC change models

We investigated the effect of land cover, crop trotaand grassland frequency since 2009 on
SSOC change. These covariates were used as explanatriables and SSOC change as
response variable. Using stepwise MLR model, onbyp gotation covariate was selected to build
up the regression model. Table 4 gives summariststst of this MLR model where only crop
rotation was selected as predictor variable. Tkalte show that crop rotation accounts for only
20 % SSOC change variability. Thus, SSOC changelyedyighly variable for a same modality

of crop rotation.
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The constant coefficient which represents contistemnual crops modality was significantiat
0.01. Permanent grasslands and grassland to datmrocoefficients were significant at level of
a=0.05. The F-statistic of the regression was 4183 the regression found to be significant at
0=0.01.

As model residuals showed a spatial autocorrelatioey were kriged over the study area and
were added to regression map to generate a finplah&SOC change at the extend of interest.
Internal validation gives R? = 0.23, concordanc@.30, MEA= 1.3 t C hadyeaf’, RMSE= 1.1t

C ha' yeatand bias=-7.77 1%t C ha' year.

A larger panel of predictors was used to consttiietRandom Forest regression tree for SSOC
change (Fig. 5). Predictors with high influence tive predictions included inherent soil
properties such as soil parent material, and cetéarain attributes describing soil hydromorphic
conditions and the contrasting topography. Othetnabées also appeared important in the
condition rules, namely crop rotation system. Ma@siduals showed no spatial autocorrelation
and error indices of the predictive model derivednf internal validation are R? = 0.92,
concordance = 0.84 MEA = 0.31 t Chgear', RMSE = 0.39 t C hhyear', and bias= 0.012t C
ha' year'.

When comparing internal validation results of botbdels, MLR regression kriging model and
Random Forest model, we note that the second mextekved highest R?2 and concordance
coefficients and lowest RMSE, MEA, and bias. Theref Random Forest model was used to

spatially predict SSOC change over the study area.

3.4 Mapping of SSOC change at the landscape scale
When mapped, SSOC change for a 300 kg mineral maggd from -1.00 to 2.8 t C hayear'

(mean = 0.98 t C Rayeaf') and showed high spatial variability (Fig. 6b)gHiést values were
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found mainly in waterlogged soils under permanerasglands. Similarly, zones with high
vegetation cover, particularly woods, and less hurdavelopment, located on steep slopes,
showed high SSOC change. The spatial variabilit$80OC change was driven mainly by soil

redoximorphic conditions, which varied greatly viitlhthe study site.

4 Discussion

4.1 Estimates of SSOC change and associated uncezainti

Within a given area and a short time span, SSO@gghas principally driven by evolutions in
agriculture practices and crop rotations. Consimdethe direct measurements at 64 points, mean
(+ 90% CI) annual change in SSOC (at 300 kg @f soil mineral mass~30 cm)) was 0.94 +
0.29 t C h# yeai* when croplands were converted to grassland and#@81 t C h# yeaf*
under continuous grassland. By comparison, medwnoasequestration of French soils in the O-
30 cm topsoil layer has been estimated at 0.42& OC h& yeaf' on conversion of cropland to
grassland (Arrouays et al., 2002) and can react ha' year' for grassland systems involving
high amounts of organic fertilisation (Gac et &Q10). In our study, when grassland was
converted into cropland, mean (+ 90% CI) carborusstiation (at 300 kg tof soil mineral
mass) was 0.42 + 0.18 t Chgeaf’, which is a three times lower decrease than thadfr mean

of -0.95 + 0.3 t C hayear' in the 0-30 cm soil layer (Arrouays et al., 200Phe observed
difference may be explained by the time step camsil as Arrouays et al.’s (2002) findings
were based on a 20-year scenario while our residte based on a 7-year time step. Added to
this, since 2009, farmers introduced more and mamnger catch crops between two successive
main crops and these catch crop are generallyaroehted but introduced into the soil (Viaud et

al., 2018). Another striking factor was the devehemt of minimum tillage, which could also

12
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explain positive evolution of SSOC within the studsea through increased SOC inputs and
slow-downing of SOC mineralization process.

Uncertainties of the SSOC change indicator wereniyaelated to the spatial variability of SOC
contents, agriculture practices and measuremenhadst We sought to minimise spatial
variability in 2016 by returning as close as poestio the 2009 points and by mixing samples
taken at 1m distance, but residual spatial vaitghiémained over short distances. The accuracy
of the global positioning system used (3 m) ex@asome of these uncertainties. The soil is
defined as a phenomenon that varies at differealesdn space and over time thereby affecting
soil properties, especially SOC content, whichadipularly affected by agriculture practices and
landscape features like distance from hedgerowsodta et al., 2014).

We estimated uncertainties at two different scal@s:at the point scale by Monte-Carlo
simulations considering the 64 sampling points @nét the landscape scale by fuzzy clustering
of the residuals from the RandomForest model. Comgahe Cl of SSOC change at the 64
points (Fig. 4) and the maps of the mean SSOC ehdifigs. 6a and 6c¢) highlights an increase
in uncertainty due to upscaling from the punctualles to the landscape scale: the CI of the 64
points was 0.4 - 0. 8 t C Hiayear’, while that of spatial modelling was 0.9 - 1.5 h&" year'.
This issue was largely discussed by Dignac eél17), who confirmed that upscaling from the
fine spatial scale to landscape and global scadecizicial issue that generates high uncertainties.
Thus, our results demonstrate high carbon seqtiestnates associated with high uncertainties
amplified by spatial modelling. This challenge isaimy due to the complexity of carbon
sequestration processes, which can be achievedginrohanges in land use and agricultural
practices (Minasny et al., 2017). From a pracfpmaht of view, the SSOC greatly depends on the
land use patterns and agriculture practices imphkede such as the addition of exogenous

organic matter, tillage, and fertilisation (Dignat al., 2017). Actually, our results show that
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SSOC change over time are highly variable for aesarop rotation and that land cover explains
by itself only a relatively small fraction of theme evolution. This may be explained by the
influence of other factors impacting the SOC dyr@amnamely local topographical and
pedological conditions, but also by the practicdepged by the farmer to grow a given crop:
tillage, crop residues management, exogeneous iorgaatter inputs, grazing density, yield
levels have a major effect on the quantity and iquaf fresh organic matter inputs into the soil
and considerably affect their dynamics. Inputsrgfaaic matter to the soil, which mainly depend
on the number of grazing animals or mowing freqyeangrasslands, as well as on crop residues
and exogenous organic matter in agriculture systpnosnote SOC storage (Dignac et al., 2017),
but may be variable according to the farming systamd the field. These practices markedly
affect soil properties including soil physical sttwre (Dignac et al., 2017), soil microbial
biomass and microbial activity (Tu et al., 2006 amonsequently the distribution of SSOC in
space and over time (Dignac et al., 2017).

Despite the importance of these factors, they cowltd be directly included in SSOC spatial
modelling due to lack of appropriate spatialisetadaln addition, our findings emphasise that
using land use as a proxy of agriculture practi@ed crop rotations leads to very uncertain
estimates of SSOC change. Thus, although direcsumeaent of SSOC change is costly and
hampered by measurement uncertainties, they appka&ssential to ensure unbiased assessment

of soil carbon storage at landscape scale.

5 Conclusions

The SSOC change was assessed and mapped at tisealdscal®y coupling direct soil
monitoring and machine-learning regression modglli@ur study is innovative because in the

soil science literature, to our best knowledgeptieer study tried to apply machine-learning on
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datasets of SSOC change measurements to map SS#gech space and time. Predictive
models were used to elucidate topographical, gezggedological factors and human activities
that caused patterns of spatial distribution. Tlagnmesults showed that the spatial heterogeneity
of SSOC change was driven by crop rotations, tagalgc attributes, and local soil conditions
(waterlogging, soil parent material). These factarsld be captured by the regression model and
spatially represented. Other important factorshsag agricultural practices may also influence
the SOC dynamics and could not be informed at eaatit and therefore were not considered by
the model. This study reveals complex interactionstoring SOC, which may have implications
for future planning and monitoring of agro-ecosysteand can be integrated into land-use

decision-making.
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Figure captions

Figure 1. Location of the study area in France ahthe soil sampling points within the study
area and for different crop rotations.

Figure 2. Diagram of the-dtep method used to map SSOC change across tsz#gre scale at
10m of resolution (RF: Random Forest models, SMLRt¢pwise multiple linear regression
kriging model)

Figure 3. a) Mean and 90% confidence intervalsodf@ganic carbon (SOC) stock in 2009 and
2016 for different soil mineral masses. b) 2016 §Sg@rsus 2009 SSOC at the 64 sampling

points for a mineral mass of 300 kg?nmBlue line: y= 1.55+0.79x regression line (r2=0;69
dashed red lines: 95 %predictive interval; greyez&®5% confidence interval.

Figure 4. Mean and 90% confidence intervals of S®Bange calculated for the 64 prospected
sites using Monte Carlo simulations.

Figure 5. Importance of predictor variables in Rfe modelling of SSOC change between 2009
and 2016.

Figure 6. Maps of SSOC change between 2009 and @@ the 10 km? study area: a) lower
bound of the 90% confidence interval (Cl) of SSA@nge, b) mean SSOC change, c) upper
bound of the 90% CI of SSOC change.
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Table headings
Table 1. Description of the environmental covasaelected

Table 2. Probability distribution for input variasl used in th®onte-Carloprocedure to
estimate SSOC uncertainty at the 64 sampling pdBigsrdard deviations for derived from
replicates measurements for SOC content (n=30palkddensity (n=69).

Table 3. Median values of SSOC change for diffeceop rotations betwenn 2009 and 2016

Table 4. Summary statistics of stepwise MLR regogssiodel
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Figure 1. Location of the study area in France anadf the soil sampling points within the study area
and for different crop rotations.
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variables in the RF modelling of SSOC change betwe@009 and 2016.
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Table 1. Description of the environmental covariate selected

Summary of environmental covariates. P: parent naditdR: relief; O:organisms; C: categorical;
Q: quantitative.

Label Environmental covariate SCORPAN factor Type Unit or number

Terrain attributes derived from the digital elevation model

elev Elevation R Q m

Slope Local hillslope gradient R Q %

Vcurv Profile curvature R Q m.100m
Hcurv Tangential curvature R Q 6 classes
Tcurv Total curvature R Q 6 classes
MWi Modified topographic wetness indexR Q 5 classes
Geology

MP Soil parent material P C 6 classes
Organism

0S-09 Land cover in 2009 O C 5 classes
0S-10 Land cover in 2010 O C 5 classes
0Ss-11 Land cover in 2011 O C 5 classes
0S-12 Land cover in 2012 O C 5 classes
0S-13 Land cover in 2013 O C 5 classes
0S-14 Land cover in 2014 O C 5 classes
0S-15 Land cover in 2015 O C 5 classes
0S-16 Land cover in 2016 O C 5 classes
Rotation Crop rotation O C 5 classes

Table 2. Probability distribution for input variabl es used in thevionte-Carlo procedure to
estimate SSOC uncertainty at the 64 sampling point$Standard deviations for derived from
replicates measurements for SOC content (n=30) arimulk density (n=69).

Input variable Distribution Parameters
Thickness of soil layer: Z (O- Normal Mean=Z
7.5 cm) Standard Dev.=0.5 cm
Thickness of soil layer: Z (7.5 Normal Mean=Z
-15 cm) Standard Dev.=1 cm
Soil organic carbon content: Normal Mean=SOC
SOC (g kg) Standard Dev.=2 g Kg
Bulk density: BD (g crif) Normal Mean=BD.

Standard Dev.=0.03 g ¢in
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Table 3. Median values of SSOC change for differerrop rotations betwenn 2009 and 2016

Crop rotations (ASSOC) at 300 kg n7 soil Number of sites
mineral (t C ha' year?)

Continuous grassland 1.40£0.31 14

Annual crops rotation (without 0.82+0.26 26

grassland)

Annual crops rotation to Grassland 0.94+0.29 15

Grassland to annual crops rotation 0.42+0.18 6

Table 4. Summary statistics of stepwise MLR regregsn model

Coefficients

Estimate Standar error t-value Significance
Constant 0.9 0.31 2.86 0.005**
Annual crops rotation to -0.1 0.72 -0.14 0.88
Grassland
Continuous grassland 1.17 0.53 2.22 0.03*
Grassland to annual crops -1.08 0.51 -2.08 0.04*
rotation
Multiple R-squared: 0.20 Adjustes R-squared: 0.16
F-statistics: 4.82 p-value: 0.004

Signif. codes 0 *** 0.001 ** 0.01*"0.05'"0.1°"'1
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