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Introduction

Soil information derived from legacy maps is often at a spatial resolution too coarse to be useful for soil management decisions and for solving a variety of agricultural and environmental issues [START_REF] Bui | Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data[END_REF]. Spatial disaggregation of legacy soil polygon maps has been introduced recently to produce enhanced soil information at a finer scale than that of the original source (Yang et [START_REF] Zeraatpisheh | Disaggregating and updating a legacy soil map using DSMART, fuzzy cmeans and k-means clustering algorithms in Central Iran[END_REF]. Such disaggregation techniques are based on machine-learning algorithms modelling the relation between a soil class and a suite of environmental covariates, which are assumed to represent soil forming factors. This approach has been shown to be a powerful tool to deliver soil information over large areas where complex soil polygons, which contain several STU (Soil Typological Unit), are the only source of soil information [START_REF] Bui | Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data[END_REF]. Nevertheless, disaggregated digital soil maps, like available conventional soil maps, are inherently uncertain, and their quality has been insufficiently investigated.

To measure the quality of soil maps, it is recommended to compare predictions to independent data not used in the modelling [START_REF] Chatfield | Problem Solving. A statistician's guide[END_REF][START_REF] Brus | Sampling for validation of digital soil maps[END_REF]) (i.e. "external" or "test" accuracy). To this end, one needs to define the sampling scheme for validation, which comprises two important aspects: sampling design and sampling support.

For the validation strategy, three common approaches are usually found in the literature. The first consists of applying internal validation by splitting the data. This approach randomly selects validation subsamples from the calibration dataset to be used to estimate the accuracy of the fitted model. Generally, these "holdback" data represent a small part (20-30%) of the full dataset. This validation approach was used, for example, by [START_REF] Ramirez-Lopez | Sampling optimal calibration sets in soil infrared spectroscopy[END_REF] to assess the quality of digital soil maps across a study area covering a total area of 5 km² in Sao Paulo state in Brazil. It was also used by [START_REF] Veronesi | Mapping soil compaction in 3D with depth functions[END_REF] to validate 3D soil compaction maps of the Czech University of life Sciences farm (21 ha) located in the Czech Republic. The second approach consists of using a k-fold cross-validation. It differs from the previous method in that the splitting procedure is repeated several times, which makes it more efficient [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF][START_REF] Stoorvogel | Implementation and evaluation of existing knowledge for digital soil mapping in Senegal[END_REF][START_REF] Biswas | Sampling Designs for Validating Digital Soil Maps: A Review[END_REF]). Leave-one-out cross-validation is the most common form of cross-validation, ensuring that each sample point can be used as a validation dataset: one sample point is left, while the rest is used to calibrate the model. This approach was explored by [START_REF] Malone | Mapping continuous depth functions of soil carbon storage and available water capacity[END_REF] to validate digital soil maps depicting soil organic carbon (SOC) content and available water capacity across a 1500 km² area in Sydney, Australia. Lacoste et al. (2014) also used cross-validation on their training datasets to assess the quality of highresolution 3D maps of SOC content over a heterogeneous agriculture landscape in Brittany, France. In contrast to the two previous methods, the third method involves collecting new samples using probability sampling to assess model accuracy.

The first two approaches are often used because quality measures and their standard errors can be obtained easily without additional sampling. However, they may provide unbiased and valid estimates of map accuracy only if the locations of sampling sites are selected by probability sampling, even if the subset is randomly selected from the dataset [START_REF] Brus | Sampling for validation of digital soil maps[END_REF]. Indeed, spatial auto-correlation will generally occur within the prediction errors, and the calibration dataset itself can be biased because the splitting process is not statistically optimised. Therefore, [START_REF] Brus | Sampling for validation of digital soil maps[END_REF] recommended collecting additional independent data according to a probability sampling strategy. Nevertheless, due to the high expense of additional resampling, few studies have validated the accuracy of spatial model using independent sampling as done by Walter (1990), [START_REF] Kempen | Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach[END_REF], [START_REF] Brus | Sampling for validation of digital soil maps[END_REF] and [START_REF] Keskin | Regression kriging as a workhorse in the digital soil mapper's toolbox[END_REF] Another important aspect for validating a digital soil map is the type of sampling units and sample support. In most digital soil mapping studies, using a point support is the standard practice to assess the quality of the soil maps produced. Therefore, even at large areal extents, digital soil maps are validated over a small area using bulk soil samples and soil cores rather than management-related spatial supports (e.g. entire fields or management units). In the digital soil mapping literature, few studies have considered a non-point support in the validation procedure.

For example, [START_REF] Bishop | Validation of digital soil maps at different spatial supports[END_REF] assessed the quality of digital soil maps depicting clay content using an independent validation dataset collected following stratified random sampling. They investigated three spatial supports: i) point, ii) 48 m blocks and iii) soil-land use complexes. They found that point supports yielded the lowest measures for assessing digital soil map quality, while soil-land use complexes achieved the highest. In another study, [START_REF] Stoorvogel | Implementation and evaluation of existing knowledge for digital soil mapping in Senegal[END_REF] validated a map of topsoil SOC content in Senegal using validation samples collected at a block support of 30 x 30 m, which corresponds to the mean size of fields in their study area. Each composite soil sample had a support of 900 m² and was derived by thoroughly mixing five subsamples taken within a 12 m radius to capture soil short-range variability. [START_REF] Saby | Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content?[END_REF] clearly showed a strong relation between within-site variability and site area for soil monitoring sites in Europe. To integrate short-range spatial variation, soil inventory programs usually follow a composite sampling approach. For example, in the framework of the Land Use and Cover Area frame Statistical survey (LUCAS) a harmonized soil dataset was collected over the extent of the European Union following a composite sampling approach [START_REF] Ballabio | Mapping topsoil physical properties at European scale using the LUCAS database[END_REF]. At the national scale, the French soil monitoring network (RMQS) adopted a composite sampling strategy as well [START_REF] Saby | National soil information and potential for delivering GlobalSoilMap products in France: A review[END_REF].

The quality of digital soil maps can be assessed by several measures, which depend mainly on whether the soil information is categorical or continuous. To assess the quality of soil maps in the Netherlands, Marsman and De Gruijter (1986) calculated multiple quality indicators for categorical information such as the partial purity (the degree of concordance between observed and predicted of a classification criterion) of several classification criterion (subgroup, sand classes, loam classes and groundwater classes), the mean purities of soil classification criterion and the strict purity. The accuracy of continuous soil property predictions by soil maps is generally depicted by common statistics of the cumulative spatial error such as the mean error, the variance error, absolute error and the mean squared error.

The objective of this study was to develop a method to measure the accuracy of a 50 m resolution disaggregated soil maps and their derived soil properties maps over a large area (6,848 km²), using an independent validation dataset whose sampling locations were selected using a probability sampling strategy. Like Odgers et al. (2015) continuous soil properties were derived from disaggregated soil maps to address the spatial distribution of continuous soil properties (pH, SOC content, soil distribution size, Cation Exchange Capacity (CEC)) over regular depths up to 200 cm. Moreover, the accuracy of disaggregated maps depicting predicted STU (Odgers et al., 2015;Chaney et al., 2016[START_REF] Møller | Improved disaggregation of conventional soil maps[END_REF] as well as categorical soil attributes (soil type, soil drainage class, parent material and soil depth class) were assessed to determine how the accuracy of soil maps varies with classification criteria selected. In our context, some classification criterion like soil depth and soil drainage behaviour are relevant to characterize the agronomic potential of soils. For example, insufficient soil drainage increases the risk of soil compaction and reduces nutrient availability. In addition, predictions of soil properties are the main inputs of decision-making tools to sustainably manage and solve environmental issues. Thus, maps of functional soil properties with known accuracy are needed to provide a simple guide for non-soil specialist agriculture and stockholders. Overall, two approaches were developed to validate both categorical maps depicting predicted soil typological units (STUs) with their associated classification criterion and continuous maps depicting soil properties at two soil depths.

Materials and methods

Study area

The study area is the Ille-et-Vilaine department, in eastern Brittany, France (NW France, 47° 40' to 48° 40' N, 1° to 2° 20' W) (Fig. 1). It has a total area of 6,848 km², which is drained mainly by its major rivers (Ille and Vilaine rivers ) and their tributaries. The central and coastal parts of the study area have low elevation, usually less than 50 m above sea level in the coastal zone and the valleys and less than 100 m elsewhere. The western part of the department has higher elevations, peaking at 256 m. The mean annual rainfall is about 650 mm and the annual temperatures average 11.4 °C. The study area is part of the Armorican Massif (BRGM, 2009), whose geology is complex: intrusive rocks (granite, gneiss and micaschist) in northern and north-western zones, sedimentary rocks (sandstone, Brioverian schist) in central and southern zones, and superficial deposits (aeolian loam, alluvial and colluvium deposits) overlaying bedrock formations with decreasing thickness from north to south. This high geological heterogeneity generates high soil variability over short distances. The soils in the study area include Cambisols, Stagnic Fluvisols, Histosols, Podzols, Luvisols and Leptosols according to the World Reference Base of Soil Resources (IUSS Working Group WRB, 2014). The main land uses are annual crops (e.g. maize, wheat, barley) and temporary or permanent grasslands, but the study area also includes woods and natural areas. In this study, the built environment was not considered.

Disaggregated soil map

To address soil spatial distribution in Brittany, a regional database at 1:250,000 scale called the "Référentiel Régional Pédologique" was developed in 2012 in the "Sols de Bretagne" project. This regional database defines a set of polygons with crisp boundaries commonly called Soil Map Units (SMUs). SUM are complex, namely each SMU contains several soil types called Soil Type Units (STUs) in known proportions. SMUs are defined as areas with homogeneous soil-forming factors, such as morphology, geology, and climate. Each STU is vertically organized into strata.

The strata are spatial horizons describing the vertical structuration of STUs. Pedological features of SMU, STU and strata including depth and thickness, soil organic carbon content, CEC, pH, and 5-particle size fractions are collated in a relational database called Donesol (INRA Infosol, 2014). The Brittany coarse soil map contains 341 soil map units and 320 STUs

In an earlier study [START_REF] Vincent | Spatial disaggregation of complex Soil Map Units at the regional scale based on soil-landscape relationships[END_REF], the existing 1:250,000 legacy soil map of Brittany was disaggregated at 50 m resolution using the algorithm DSMART and soil-landscape relations. This study yielded a set of rasters depicting the three most probable STUs and their probability of occurrence within each pixel of 0.25 ha. These three most probable STU allowed capturing the most variability in predictions. The most probable STU in a grid cell is the one that was most frequently predicted based on 50 iterations (Fig. 2). Similarly, the 2 nd STU and the 3 rd STU were respectively, the 2 nd and the 3 rd most frequently predicted STU in a grid cell. Therefore, the three most probable STUs are those predicted with the three highest probabilities of occurrence.

Restricted to the study area, 98 SMUs were disaggregated to spatially delineate 158 STUs occurring within the SMUs. In our study, independent soil data was used to validate the three most probable soil maps with their derived soil properties maps, covering the study area.

Soil property estimation

Continuous soil properties were mapped at the regional scale from the 1:250,000 disaggregated map [START_REF] Vincent | Spatial disaggregation of complex Soil Map Units at the regional scale based on soil-landscape relationships[END_REF] according to GlobalSoilMap depth intervals (0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm). The first step of our study standardized the depth of STU horizons by fitting equal-area spline functions [START_REF] Bishop | Modelling soil attribute depth functions with equal-area quadratic smoothing splines[END_REF] using the R package GSIF (Hengl., 2006). The equal-area spline function respects mean values of soil properties and ensures continuous variation in soil properties with depth [START_REF] Malone | Mapping continuous depth functions of soil carbon storage and available water capacity[END_REF]. The result is, for each STU, a set of interpolated values of soil properties for the required depth intervals up to 200 cm that equals the mean of the intervals.

Soil properties were estimated as the weighted mean of modal values of the reference soil property, whose weights were the probabilities of occurrence of the relevant STU (Eq 1). In our study, we estimated soil properties in space using the property values and probabilities of occurrence of the three most probable STUs, as follows:

y ( ) = ∑ ( , ) * ( , ) ∑ ( , ) [1] 
where y ( ) is the predicted soil property for grid cell (xi), ( , ) is the reference soil property value associated with STU k=1, 2, 3 predicted at all (xi) and ( , ) is the probability of occurrence of STUk at the given grid cell (xi).

Development of soil dataset for map validation

Sampling locations were selected using a stratified simple random sampling strategy, in which the mapped area was subdivided into subareas called strata, and from each stratum a simple random sample was selected. Eleven strata were obtained by grouping the 96 SMUs of the original soil map by similar dominant soil parent material: granite or gneiss, Aeolian loam, soft schist, sandstone, gritty schist, alluvial terrace, alluvial deposits, continental alluvium, and alluvial marsh (Fig. 3). A total of 45 sampling locations were selected with a per-stratum sample size proportional to the area of each stratum. Each stratum had a minimum of two sampling locations (Table 1). Locations for which sampling permission was denied or which proved otherwise impossible to sample were replaced with randomly selected locations within the same stratum.

At each selected site, a transect along the hillslope was defined and divided into three sections: upslope, midslope and downslope (Fig. 3). A principal sampling location was then randomly selected within each section and two additional points were selected in a random direction at 20 m distance from the main (principal) location. This approach was followed to capture the local short-range spatial variability. The set of three locations, characterising each section, defined a plot in our study (Fig. 3). The validation dataset comprises a total of 135 plots.

Validation sites were located using a global positioning system (GPS) with a mean absolute error of 2 m in each direction. Within each section, the main site was described from auger borings up to 200 cm in depth, and the two other soil profiles were described up to 120 m in depth. Soil morphology was described at each sampling site to determine each horizon: upper and lower limits, organic matter content, soil moisture, compacity, matrix and mottle colours according to Munsell soil colour chart, coarse fragment percentage, and soil texture class according to the GEPPA texture triangle [START_REF] Baize | Guide des analyses en pédologie[END_REF]. Finally, soil depth, soil type, soil drainage class and soil parent material were defined according to [START_REF] Rivière | Méthode tarière Massif Armoricain[END_REF] and the French soil classification system [START_REF] Baize | Référentiel pédologique 2008[END_REF]. The soil type refers to the identification of diagnostic horizons depicting pedogenetic processes. The soil type can be for example Cambisol, Fuvisol, Albeluvisol. Meanwhile, the STU nomenclature reflects different information at the same time as the weathering degree of soil parent material, the redoximorphic conditions, and the soil depth. In our study, three drainage classes were distinguished: well drained, moderately drained and poorly drained. Similarly, only two soil depth classes were distinguished: deep (≥ 60 cm) and shallow (< 60 cm). After field description, each of the 405 soil profiles was individually allocated to a suitable STU.

Soil samples for physico-chemical analyses were collected at six depth intervals according to GlobalSoilMap specifications: 0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm. For each plot and each soil depth interval, a composite soil sample was collected from the three points sampled within the 20 m radius.

Laboratory analysis

In our study, for budgetary raisons, only two soil layers were considered (5-15 cm and 30-60 cm).

The 5-15 cm soil layer allowed characterizing soil properties of topsoil genetic horizons while the second soil layer 30-60 cm allowed characterizing soil properties of deeper soil horizons. Overall, considering the maximum soil depth, a total of 260 soil samples were air dried then sieved to 2 mm; the resulting fine earth and gravel were weighed to determine the percentage of coarse material present in soils. All samples were analysed according to standard methods to determine their particle-size distribution in five classes (NF X 31-107), SOC content by dry combustion (Thermoscientific Finnigan EA 1112 Flash elemental analyser) (NF ISO 10694), CEC (NF X 31-130) and pH 1:5 H2O (soil pH in water with 1:5 soil-to-water ratio, NF ISO 10390).

Measures of map quality

Fig. 4 shows the general diagram followed to compute different maps quality measures according to the type of soil property map produced. The following sections detailed each approach as well as the quality indicators retained.

Quality measures for continuous soil properties

The prediction performance of continuous soil properties was assessed by several quality measures relating the observed value of a soil property derived from in situ sampling to its corresponding prediction for each depth interval. These statistics comprise the root-mean-squared error (RMSE) (Eq 2), relative-root-mean-squared error (RRMSE) (Eq 3), mean error (ME) (Eq 4), and coefficient of determination (R²) (Eq 5).

For stratified simple random sampling (De Gruijter et al., 2006), the quality indicator is estimated as the weighted mean per stratum:

RMSE = ∑ % & '()* & + , &-. = ∑ % & , &-. / . 0 1 ∑ (y ( ) -( ))² 4& -.
[2]

RRMSE = ∑ % & ''()* & + = , &-. / . 0 1 ∑ . ( )² (y ( ) -( ))² 4& -.
[3]

ME = ∑ % & (* & 5 = , &-. . 4& ∑ (y (x ) -( )) 4& -.
[4]

For R², there is no estimator for stratified simple random sampling.

R² = /

∑ ( ( )7 ( 8))² 9 ∑ ( ( )7 ( : ;;;;;; ))² 9

[5]

where Wh denotes the relative area of stratum h, h=1….H=11, ( ) denotes the observed value of the soil property at validation site (xi), < ( ) denotes the predicted value of the soil property for the 50 m cell containing xi and nh is the number of validation soil samples collected at each depth interval within each stratum.

Quality measures for categorical soil properties

Validation supports

In our study, quality measures of categorical soil attributes were estimated at three different scales:

• Section, to detect whether the quality of soil maps varied by hillslope position

• Mapping stratum, the basis of the stratified simple random sampling

• Global considering the entire study area.

Thus, we calculated measures both globally over the entire study area and on average within each stratum. This procedure provided an overall assessment of predictive performance according to the type of support.

Quality measures

Categorical soil attributes were validated using three disaggregated soil maps depicting the 1 st , 2 nd or 3 rd most probable STUs, respectively. We used several methods to calculate purity values, considering four classification criteria: parent material, soil type, soil drainage class (i.e. redoximorphic conditions of soils) and soil depth class. All quality measures were detailed in the following section:

• Partial purity: the percentage of field observations of a given criterion that equal the value on the disaggregated map. Partial purity was calculated for each soil profile and equalled 1 if the predicted classification criterion equalled the observed classification criterion or 0 if not.

• Strict purity: the percentage of field observations for which all four-classification criteria equal those of the disaggregated map. This measure was calculated for each soil profile.

• Mean purity: the arithmetic mean of the partial purities of the four criteria.

The partial purity of each classification criterion equalled 1 if correctly predicted for at least one of the three profiles prospected within a 20 m radius. Hence, each section had a single purity value for each criterion, corresponding to a binary value of 0 or 1.

At the transect level, the partial, strict and mean purities were calculated by averaging the purity values of all sections included.

At the stratum level, partial purities were calculated for each of the four criteria by averaging the corresponding purity values of all n transects included in a given stratum. As with partial purity, the strict purity of the 1 st , 2 nd and 3 rd STU maps equalled the mean of all strict purities for all n transects within the stratum. Mean purity was derived from the partial purities and equals the arithmetic mean of the four partial purities. The standard deviation (Se) of each partial purity within strata was also computed using Eq 6:

Se ( & ) = / ∑ . (4 > 7.) ( & -; & )² 4 > -.
[6]

where & denotes the partial purity of stratum h for a given map k (1 st , 2 sd and 3 rd predicted STU), & denotes the purity value of all transects within stratum h of map k, nh denotes the number of sections in stratum h and ; & denotes the mean purity value in the given stratum.

For the stratified simple random sampling, the overall partial purity of each classification criterion (parent material, soil type, soil drainage class, and soil depth class), the overall strict purity and the overall mean purity were estimated as the mean of the strata purities weighted by their respective area using Eq 7 (De Gruijter et al., 2006):

; = ∑ % & & , &-.
[7]

where ; denotes the overall purity, wh= Ah/A where A denotes the study site area and Ah denotes the stratum area, & denotes the mean of purity values (partial, average and strict) in stratum h and k denotes the STU map. The associated standard error (Se) was estimated using Eq 8:

Se ( ; ) = / ∑ . (4 > ) (%² & )² & ) ? &-.
[8]

where )² & denotes the variance of purity values in stratum h calculated using Eq 6.

Results

Soil spatial variability over short distances

Overall, 92% of the plots showed only one parent material, thus short-range variability appeared less pronounced for this criterion; similar percentages were observed for soil drainage class and soil depth class (Fig. 5). In contrast, STUs generally appeared highly variable, as only 40% of the validation plots had a single STU, while 55% and 5% of the validation plots had two or three STUs, respectively. Overall, short-range spatial variation in STU allocated was higher than for the other classification criteria.

Purity measures

In general, the 1 st most probable STU map had the highest overall purities (Table 2). For instance, overall purity of soil parent material was estimated at 78%, 44% and 31% for the 1 st , 2 nd and 3 rd STU maps, respectively. Likewise, overall purity of soil depth class was higher for the 1 st STU maps (78%) than for the 2 nd (56%) or 3 rd STU maps (48%). For overall purity of soil type, the 1 st STU map reached 60% and those of the 2 sd and 3 rd STU maps reached 31% and 26%, respectively. For drainage class purity, the 1 st STU map remained the most accurate (65%), followed by the 2 sd (35%) and 3 rd STU maps (29%). STU purity appeared to be low for the three STU maps, being 23%, 5% and 3% for the 1 st , 2 sd and 3 rd STU maps, respectively.

Over the entire study area, strict and mean purities had a positive linear relation with the mean probability of STU occurrence (Fig. 6). For the three soil maps, strict purity appeared to be relatively low (Table 2, Fig. 6). The highest strict purity (34%) was reached by the most probable STU map followed by the 2 sd STU map (12%). The 3 rd most probable STU map had the lowest strict purity (5%). Meanwhile, mean purity was almost three times that of strict purity for all soil maps except for the 1 st STU map, for which it was only two times that of strict purity. Mean purity equalled 70%, 42% and 34% for the 1 st , 2 sd and 3 rd STU map, respectively.

Aeolian loam, hard schist and alluvial terrace strata had the lowest strict purities (< 20%) (Table 3). In contrast, medium schist, continental alluvium and alluvial marsh strata had the highest strict purities (> 67%). Mean purity exceeded 65% for all strata except hard schist and alluvial deposits, for which it was 54% and 58%, respectively. Continental alluvium (92%) and alluvial marsh strata (96%) had the highest mean purities. For drainage class, the partial purity for granite or gneiss, soft schist, medium schist, sandstone, alluvial terrace, continental alluvium and alluvial marsh strata were the highest (> 65%). Aeolian loam, gritty schist and alluvial deposit strata had partial purities ≥ 50%, while that of hard schist was estimated at 33%.

For soil type purity, soil type was generally predicted well, except for alluvial terrace strata, considering both the 1 st and 2 nd probable STU (Fig. 7). Alluvial terrace strata had the lowest purity (17%), which markedly affected the strict purity (17%), whereas the mean purity remained high (71%). For alluvial marsh and continental alluvium strata, the distribution functions were on the maximum, indicating that all soils developed from these parent materials were correctly predicted by the 1 st most probable STU.

When comparing the distribution functions of soil type purity within strata, medium schist and gritty schist strata had similar distributions for the 1 st STU. Meanwhile, medium schist and alluvial terrace strata had similar distributions for the 2 sd STU. Furthermore, hard schist, sandstone and alluvial deposit strata had a wide range of partial purities. This variation was more pronounced for granite or gneiss, hard schist and gritty schist strata for the 2 sd STU (Fig. 7).

At the local scale, the partial purity of each classification criterion did not vary significantly among hillslope positions (upslope, midslope and downslope) for any of the three disaggregated soil maps (Table 4). The χ 2 test comparing the proportions of good prediction of each classification criterion was not significant (α=0.05). This suggested that the effect of hillslope position in the disaggregation process is not important for all classification criteria (Table 4). In addition, confidence intervals of good soil type predictions overlapped for all sections and soil maps considered (Fig. 8); therefore, there was no significant effect of hillslope position (α=0.05).

Overall, the disaggregation algorithm predicted soil spatial distribution along hillslope positions with the same performance, and the 1 st most probable STU has the best validation measures over the study area.

Descriptive statistics of continuous soil properties for the validation dataset

In general, the validation dataset covered a wide range of soil property values. For instance, pH ranged from 3.95 to 8.58 (mean = 6.07) at 5-15 cm and from 4.41 to 8.9 (mean = 6.25) at 30-60 cm (Table 5). The variability expressed by the standard deviation was relatively constant for all texture fractions and for both depth intervals. SOC content varied more at 5-15 cm, particularly for alluvial deposits, medium schist, and granite or gneiss (Fig. 9). SOC content decreased sharply and varied less with increasing depth, except for alluvial marsh. The mean of SOC contents, except those of soil sampled from alluvial marsh, did not differ significantly at 5-15 cm even though they clearly differed among parent materials.

Considering both soil depth intervals, hard schist parent material had the lowest pH, whereas marsh parent material had the highest pH. In addition, for medium schist parent material, the distribution of associated pH values was wider at 5-15 cm than at 30-60 cm.

Clay content had a wider distribution for marsh parent material at 5-15 cm, and for medium schist and alluvial deposit parent materials at 30-60 cm. Overall, clay content increased slightly with increasing depth for all parent materials except aeolian loam, hard schist and alluvial marsh.

Validation of continuous soil property predictions

At 5-15 cm, MEs of the models were close to zero, suggesting unbiased predictions for pH (0.29), sand content (-0.20%) and fine silt content (-0.20%) (Table 6). The MEs of soil texture fractions increased slightly with increasing depth, but those of CEC and SOC content strongly decreased.

R² was larger for pH and clay content at both 5-15 and 30-60 cm. For instance, R 2 for clay content was moderate (0.65 and 0.37 at 5-15 and 30-60 cm, respectively). SOC content and coarse fragment percentage had the smallest R 2 . For SOC content, the R² was estimated at 0.07 at 5-15 cm and 0.05 at 30-60 cm soil layer. Meanwhile, the R² for coarse fragment percentage was estimated at 0.13 and 0.05 at 5-15 cm and 30-60 cm soil depths, respectively.

RRMSE was less than 1 for all soil properties except coarse fragments at 30-60 cm. RRMSE and R² were generally of opposite magnitude. For instance, R² was 0.43 for pH at 5-15 cm, with an RRMSE of about 0.13. An opposite trend characterised SOC content, which had the lowest R² (0.07) and an RRMSE of 0.65.

Overall, sand, fine silt and total silt contents were underestimated regardless of depth interval, whereas coarse fragments were consistently overestimated at both depth intervals. Therefore, the quality of soil property predictions depended on the property considered and was generally better at 30-60 cm than at 5-15 cm except for particle-size distribution.

Discussion

Soil map quality measures

In our study, the quality of disaggregated soil property maps was tested using the common accuracy measures of partial, strict and mean purity [START_REF] Wilding | Variation of Soil Morphological Properties within Miami, Celina, and Crosby Mapping Units in West-Central Ohio1[END_REF][START_REF] Beckett | Soil variability: A review[END_REF]Walter, 1990;[START_REF] Kempen | Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach[END_REF]. Partial purity reveals the percentage of the disaggregated map for which each classification criterion equals the field observation. This measure is a strict assessment in which each error in the validation set is given equal weight.

Moreover, it does not consider existing pedological similarities between categories of each classification criterion. For example, the partial purity of soil type is the same regardless of whether there is confusion in the prediction of two taxonomically distant or taxonomically similar soils. Even the limits of these quality measures, they remained relevant to assess the accuracy of disaggregated soil maps, which are mainly used in soil management decisions as well as in the decision-making tools.

The main shortcoming of strict purity is that incorrect prediction of a single classification criterion has the same influence as that of all classification criteria. The lowest strict purity reported in our study resulted from incorrect prediction of one or more classification criteria of soil profiles. For instance, strict purity for the alluvial terrace stratum was 17%, while its associated partial purities exceeded 83%, except for soil type purity (17%). The hard schist strata followed the same trend: its strict purity was 17%, while its partial purities were ≥ 50% except for drainage class purity (33%). Therefore, low strict purity was driven by the low partial purity of a single classification criterion although the partial purities for the three other criterion were high.

Performance of categorical soil attributes prediction by spatial disaggregation

As collecting new soil samples to validate disaggregated soil maps is expensive and time consuming, particularly for large areas, few studies have validated the digital soil maps produced [START_REF] Minasny | Digital Mapping of Soil Carbon[END_REF]. Most of the studies that did were based on relatively small datasets (e.g. and Thompson (2014). Although commonly used in digital soil mapping, this approach may have significant hidden sampling bias because rare soils are poorly represented, and legacy datasets were usually not designed probabilistically.

In our study, the overall purity of soil type was estimated at 60% by the 1 st most probable STU.

Similar findings were reached by Kempen et 2013) reported strict purity that reached 23% using decision trees and 26% using random forest model. However, comparing our partial purity results to those reported in previous studies remains difficult because of the complexity of soils in our study area and differences in the taxonomic classification system considered.

The accuracy of traditional soil maps is also assessed using statistics such as purity and the kappa index [START_REF] Kempen | Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach[END_REF]. Previously, using stratified random sampling, Marsman and De Gruijter (1986) reported strict purity values of 8.0-10.7% depending on the mapping method.

Much higher strict purities (39-95% depending on the level of classification) were reported by [START_REF] Wilding | Variation of Soil Morphological Properties within Miami, Celina, and Crosby Mapping Units in West-Central Ohio1[END_REF]. However, the comparison between digital soil maps and conventional maps remains unsatisfactory because the taxonomic classification systems differ, and the validation sampling design was not always defined in each study.

The accuracy of the disaggregated soil map appeared to be lower than that of local existing 1:25,000 soil maps (Walter, 1990). These maps depict the southern part of the Ille-et-Vilaine department and cover almost 2% of our study area. Accurate maps were obtained from field description of soil profiles selected following a dedicated sampling design and produced using the local Armorican Massif auger method [START_REF] Rivière | Méthode tarière Massif Armoricain[END_REF]. To assess the quality of existing 1:25,000 soil maps, Walter (1990) validated the three most abundant SMUs by randomly selecting 120 validation sites per SMU. Soils were described using the Armorican Massif auger method, and the quality of soil maps was assessed according to the partial purity of each classification criterion, and the strict and mean purities. The study of Walter (1990) and ours differed greatly in the partial purity of soil type. The partial purities of the existing map exceeded 84% for the three SMUs vs. 60% in our study. Despite differences in soil drainage and soil depth class categories, strict purities and mean purities were of the same order of magnitude as those in our study. The mean purities for the three SMUs ranged from 61-77% vs. 72% in our study, while the strict purities for three SMUs ranged from 12-37% vs. 32% in our study. Therefore, the disaggregated map cannot replace high-resolution soil maps based on intensive sampling but is an efficient way to address the spatial variability of dominant soil types across the study area. An important advantage of disaggregated soil maps is their ability to cover large areas even where soil data are scarce but environmental covariates are available at high spatial resolution. Thus, the disaggregated map is an effective way to produce maps of soil properties for large areas, with a measure of prediction uncertainty from the probability layers.

Accuracy of quantitative soil property predictions by spatial disaggregation

For soil maps depicting quantitative soil properties, the quality of prediction was assessed using the common statistical parameters R², RMSE, ME and RRMSE. In general, the variability of predicted soil properties within the study area seemed plausible when compared to those of previous studies, such as that of [START_REF] Lacoste | High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape[END_REF]. For SOC content, like Lacoste et al. (2014), results were better (lower absolute ME and RMSE) at 30-60 cm than at 5-15 cm. Using an independent validation dataset, these authors validated high-resolution 3D SOC distribution maps across a heterogeneous agricultural landscape in Brittany. Overall, they found an increase in SOC prediction accuracy with soil increasing depth. For example, the RMSE was 12.6 g kg -1 at 0-7.5 cm but markedly lower (2.2 g kg -1 ) at 60-75 cm. However, our results do not agree with those of The main shortcoming revealed by this research is that soil classes with low probabilities of occurrence have no influence on predictions of soil properties. Only the three most probable STUs were considered for validation and to derive quantitative soil property maps. Although DSMART attempts to predict the most probable STUs for a specific soil-landscape context, prediction accuracy varies greatly and depends strongly on the soil heterogeneity of the study area. In addition, the resulting rasters depicting the probability of occurrence of STU maps themselves depend greatly on polygon component proportions, which are derived from expert soil knowledge and brings more uncertainty to the predicted STUs. Thus, close examination of the soil regional database remains crucial to increase prediction performance for both disaggregated soil maps and derived soil maps depicting quantitative soil properties.

Improvement and future study

In this study, statistical validation of disaggregated soil maps provided good overall purities.

Each classification criterion was judged individually, and an overall measure (strict purity) assessed the overall accuracy of digital soil maps. However, expert soil knowledge was not included when calculating the validation statistics. Soil taxonomic distance, especially for soils occurring in similar environmental conditions or having similar morphological criteria, was not considered but is worth investigating in future mapping studies.

Conclusion

To validate a soil map, using an independent dataset is a safe option that leads to unbiased estimates of quality measures without using models to assess the uncertainty [START_REF] Brus | Sampling for validation of digital soil maps[END_REF].

This was applied at the regional scale in north-western France, where the three most probable disaggregated STU maps at 50 m resolution were available. A total of 260 soil samples, collected at 5-15 and 30-60 cm depths, were analysed to determine their particle-size distributions, CEC, pH, SOC content and coarse fragment percentages. For soil maps depicting quantitative soil properties derived from spatial disaggregation, soil texture fractions remained the least biased at both depth intervals. In general, validation statistics of soil properties depended on the soil property considered as well as on the soil depth interval. For categorical soil maps, the partial purity of soil class, and the strict and mean purities were informative. Overall, the predictive quality of disaggregated soil maps (1 st , 2 sd and 3 rd STUs) varied among strata, but continental alluvium and marsh strata were predicted well for the three soil maps. Furthermore, the 1 st most probable STU, with high probability of occurrence, had the best validation measures regardless of soil parent material. Differences in prediction accuracies among strata denote areas where more soil data or better soil prediction models have to be obtained or applied first to improve the disaggregation process. Table 2. Estimated partial, strict and mean purities (%) for the three soil maps over the entire study area.

Figure captions

Table 3. Design-based estimates of purities of soil classification criteria, strict purity and mean purity for selected strata for the 1 st most probable STU map.

Table 4. Results of the χ 2 test performed to compare proportions of good prediction of classification criteria along hillslope positions for the three soil typological unit (STU) maps (α=5%).

Table 5. Descriptive statistics of soil properties for the validation dataset at 5-15 and 30-60 cm (n = 135 and 125, respectively). 

  In 2009, Kempen et al. explored the use of multinomial logistic regression for digital soil mapping to update an existing soil map and used additional fieldwork to assess the quality of the updated soil map. Brus et al. (2011) validated a soil-class map of the Drenthe province of the Netherlands (268,000 ha) using 150 validation locations selected by stratified simple random sampling. Stoorvogel et al. (2009) also used random transect sampling to assess the accuracy of a quantitative soil map of the Nioro study area (81,600 ha), Senegal, depicting SOC content of the topsoil.

n=150(

  Kempen et al., 2009); n=123 (Collard et al., 2014), n=53 new + 10 legacy soil profiles (Nauman et al., 2014)), which may have limited their ability to cover all soil distributions. An alternative approach is to use legacy soil profiles, as done by Odgers et al. (2014) and Nauman

  [START_REF] Minasny | Digital Mapping of Soil Carbon[END_REF] or[START_REF] Malone | Mapping continuous depth functions of soil carbon storage and available water capacity[END_REF], which highlighted a decreasing accuracy of prediction with increasing depth. The influence of agriculture practices (e.g. tillage, fertilisation), differences in soils and the quality of legacy soil data might explain this difference. Even though human influences were proxied using land cover in the DSMART algorithm, this covariate appears to be too poor for large land use classes to represent human influences in our study.Spline functions fitted to STUs to estimate soil properties at GlobalSoilMap depth intervals might also explain some of the inaccuracy of predicted soil properties. Odgers et al. (2015a) performed a similar study in which they applied the Digital Soil Property Mapping Using Soil Class Probability Rasters algorithm (PROPR) to address the spatial pattern of clay content over their study area (South Australia) using soil class probability rasters. Interestingly, the R² of Odgers et al. (2015a) is 67% smaller (0.22) than that in our study (0.65) at 5-15 cm and 52% smaller (0.18) than that in our study (0.37) at 30-60 cm. The RMSE and ME are higher in our study than those of Odgers et al. (2015a) by a factor of ~2. In another study, Odgers et al. (2015b) mapped pH following the same method as the clay content over the Shire of Dalrymple in Australia.Their study yielded a small R² between observed and predicted pH at both 5-15 and 30-60 cm. R 2 reached 0.06 vs. 0.43 in our study at 5-15 cm and 0.10 vs. 0.54 in our study at 30-60 cm. However, the RMSE was relatively similar in the two studies even if the sampling design and strategy were different.
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 1 Fig. 1. Locations of the 45 transects selected by stratified simple random sampling based on dominant soil parent material strata.
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 23 Fig. 2. The 50 m resolution disaggregated soil map showing the most probable Soil Typological Unit and associated probability of occurrence.
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 6 Fig.6. Relation over the entire study area between strict and mean purities (%) and probability of occurrence of the three most probable soil typological units (STUs).
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 789 Fig. 7. Distribution functions of soil type purity and their mean values (black dots) by stratum for the (left) 1 st and (right) 2 sd soil typological unit (STU) predicted.
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 1236 Fig.1. Locations of the 45 transects selected by stratified simple random sampling based on dominant soil parent material strata.

  

  al., 2011; Kerry et al., 2012; Odgers et al., 2014; Subburayalu et al., 2014; Feng et al., 2016; Møller et al., 2019; Ellili et al., 2019;

  al. (2009, 58%) and Collard et al. (2014, 65.9%) using multinomial logistic regression and probabilistic sampling designs. The overall strict purity, assessed using independent soil data, was estimated at 34% (1 st STU) and reached 51% considering the three most probable STUs. Odgers et al. (2014) reported similar results using 285 validation legacy profiles and the DSMART algorithm; 22.5% of profiles were predicted correctly with the most probable STU and 50% were predicted as being one of the three most probable STUs. Other studies, such as Holmes et al. (2015), reported low strict purity (20%, 1 st STU), while Subburayalu and Salter (

Table headings Table 1 .

 headings1 Characteristics of the 11 strata used for stratified simple random sampling to produce the validation dataset, dominant parent material, percentage of the study area and number of transects sampled.

Table 6 .

 6 Accuracy indicators of soil property prediction at 5-15 and 30-60 cm (n = 135 and 125, respectively, root-mean-squared error (RMSE), relative-root-mean-squared error (RRMSE),

	mean error (ME) and coefficient of determination (R²)).

Table 2 :

 2 Estimated partial, strict and mean purities (%) for the three soil maps over the entire 835 study area. 836

				Partial purities			Strict	Mean
								purity	purity
		Soil	Parent material	Drainage class	Soil type	Soil depth	STU purity
		map	purity	purity	purity	class purity	
		STU1	78 (6.6)	65 (4.5)	60 (4.5)	78 (4)	23 (4.4)	34
		STU2	44 (4.7)	35 (3.3)	31 (3.6)	56 (4.9)	5 (2)	12
		STU3	31 (4.1)	29 (2.9)	26 (3.5)	48 (4.8)	3 (1.8)	5
	837	Numbers in brackets are design-based estimates of standard deviations for the 45 transect purity
	838	values					

Table 3 :

 3 Design-based estimates of purities of soil classification criteria, strict purity and mean 839 purity for selected strata for the 1 st most probable STU map 840

Table 6 :

 6 Accuracy indicators of soil property prediction at 5-15 and 30-60 cm (n = 135 and 125, respectively, root-mean-squared error (RMSE), relative-root-mean-squared error (RRMSE), mean error (ME) and coefficient of determination (R²))

	Depth interval (cm)	Soil property	ME	RMSE	RRMSE	R²
	5-15	CEC (cmol + kg -1 )	-3.95	5.12	0.90	0.28
		pH	0.29	0.80	0.13	0.43
		SOC content (g kg -1 )	2.15	14.00	0.65	0.07
		Coarse fragments (%)	9.53	12.84	0.86	0.13
		Sand (%)	-0.20	9.94	0.50	0.41
		Coarse silt (%)	0.74	9.20	0.41	0.25
		Fine silt (%)	-0.20	6.70	0.39	0.05
		Total silt (%)	-1.20	9.80	0.23	0.28
		Clay (%)	1.47	5.50	0.26	0.65
	30-60	CEC (cmol + kg -1 )	0.06	2.15	0.43	0.34
		pH	0.45	0.78	0.12	0.55
		SOC content (g kg -1 )	0.32	5.70	0.69	0.05
		Coarse fragments (%)	8.15	13.98	1.54	0.06
		Sand (%)	-2.06	10.32	0.59	0.39
		Coarse silt (%)	0.19	10.18	0.53	0.17
		Fine silt (%)	-1.88	6.00	0.39	0.25
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