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Abstract 33 

Spatial disaggregation of soil map units involves downscaling existing information to produce 34 

new information at a finer scale than that of the original source. Currently, it is becoming a 35 

powerful tool to address the spatial distribution of soil information over large areas, where legacy 36 

soil polygon maps are the only source of soil information. Because of the high expense of 37 

additional resampling, few studies have sought to validate disaggregated soil maps using 38 

independent sampling. This study implemented spatial disaggregation approach to measure the 39 

quality of soil property predictions derived from disaggregated soil maps, using stratified simple 40 

random sampling of a study area of 6 848 km² (11 strata and 135 soil profiles). In a previous 41 

study, the existing legacy soil polygon map of Brittany (France) at 1:250,000 scale was spatially 42 

disaggregated at 50 m resolution using an algorithm called Disaggregation and Harmonisation of 43 

Soil Map Units Through Resampled Classification Trees (DSMART), which uses soil-landscape 44 

expert rules of soil distribution in space. By fitting equal-area spline functions, soil properties 45 

were then estimated at six depth intervals according to GlobalSoilMap specifications. To validate 46 

disaggregated soil maps, two approaches were developed according to the soil attribute nature 47 

(continuous or categorical). For categorical soil properties (soil parent material, soil drainage 48 

class, soil type and soil depth class), the overall strict purity (the degree to which all classification 49 

criterion are respected) by the most probable STU (Soil Typological Unit) map was estimated at 50 

34%, while the overall average purity reached 70%. The overall partial soil-type purity reached 51 

60%, the overall partial parent material purity reached 78% and the overall partial soil drainage 52 
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class as well as soil depth class purities reached 65% and 78%, respectively. Continuous soil 53 

properties (clay content, fine silt content, coarse silt content, total silt content, fine sand content, 54 

coarse sand content, coarse fragments, Cation Exchange Capacity (CEC) and pH) were validated 55 

at two soil depth intervals (5-15 and 30-60 cm) using 260 soil samples. In general, soil property 56 

predictions were unbiased except for coarse fragments and CEC in the 5-15 cm layer. Validation 57 

statistics (R², RMSE, RRMSE and ME) were better for the 30-60 cm layer except for soil 58 

particle-size distribution. Thus, differences in prediction accuracies among strata (the validation 59 

support) denote areas where more soil data or better soil prediction models are needed to improve 60 

the disaggregation process. 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 
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1. Introduction 73 

Soil information derived from legacy maps is often at a spatial resolution too coarse to be useful 74 

for soil management decisions and for solving a variety of agricultural and environmental issues 75 

(Bui and Moran, 2001). Spatial disaggregation of legacy soil polygon maps has been introduced 76 

recently to produce enhanced soil information at a finer scale than that of the original source 77 

(Yang et al., 2011; Kerry et al., 2012; Odgers et al., 2014; Subburayalu et al., 2014; Feng et al., 78 

2016; Møller et al., 2019; Ellili et al., 2019; Zeraatpisheh et al., 2019). Such disaggregation 79 

techniques are based on machine-learning algorithms modelling the relation between a soil class 80 

and a suite of environmental covariates, which are assumed to represent soil forming factors. This 81 

approach has been shown to be a powerful tool to deliver soil information over large areas where 82 

complex soil polygons, which contain several STU (Soil Typological Unit), are the only source 83 

of soil information (Bui and Moran, 2001). Nevertheless, disaggregated digital soil maps, like 84 

available conventional soil maps, are inherently uncertain, and their quality has been 85 

insufficiently investigated.  86 

To measure the quality of soil maps, it is recommended to compare predictions to independent 87 

data not used in the modelling (Chatfield, 1995, Brus et al., 2011) (i.e. “external” or “test” 88 

accuracy). To this end, one needs to define the sampling scheme for validation, which comprises 89 

two important aspects: sampling design and sampling support. 90 

For the validation strategy, three common approaches are usually found in the literature. The first 91 

consists of applying internal validation by splitting the data. This approach randomly selects 92 

validation subsamples from the calibration dataset to be used to estimate the accuracy of the fitted 93 

model. Generally, these “holdback” data represent a small part (20-30%) of the full dataset. This 94 

validation approach was used, for example, by Ramirez et al. (2014) to assess the quality of 95 
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digital soil maps across a study area covering a total area of 5 km² in Sao Paulo state in Brazil. It 96 

was also used by Veronesi et al. (2012) to validate 3D soil compaction maps of the Czech 97 

University of life Sciences farm (21 ha) located in the Czech Republic. The second approach 98 

consists of using a k-fold cross-validation. It differs from the previous method in that the splitting 99 

procedure is repeated several times, which makes it more efficient (Hastie et al., 2009; 100 

Stoorvogel et al., 2009; Biswas and Zhang, 2018). Leave-one-out cross-validation is the most 101 

common form of cross-validation, ensuring that each sample point can be used as a validation 102 

dataset: one sample point is left, while the rest is used to calibrate the model. This approach was 103 

explored by Malone et al. (2009) to validate digital soil maps depicting soil organic carbon 104 

(SOC) content and available water capacity across a 1500 km² area in Sydney, Australia. Lacoste 105 

et al. (2014) also used cross-validation on their training datasets to assess the quality of high-106 

resolution 3D maps of SOC content over a heterogeneous agriculture landscape in Brittany, 107 

France. In contrast to the two previous methods, the third method involves collecting new 108 

samples using probability sampling to assess model accuracy.  109 

The first two approaches are often used because quality measures and their standard errors can be 110 

obtained easily without additional sampling. However, they may provide unbiased and valid 111 

estimates of map accuracy only if the locations of sampling sites are selected by probability 112 

sampling, even if the subset is randomly selected from the dataset (Brus et al., 2011). Indeed, 113 

spatial auto-correlation will generally occur within the prediction errors, and the calibration 114 

dataset itself can be biased because the splitting process is not statistically optimised. Therefore, 115 

Brus et al. (2011) recommended collecting additional independent data according to a probability 116 

sampling strategy. Nevertheless, due to the high expense of additional resampling, few studies 117 

have validated the accuracy of spatial model using independent sampling as done by Walter 118 
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(1990), Kempen et al. (2009), Brus et al. (2011) and Keskin and Grunwald (2018). In 2009, 119 

Kempen et al. explored the use of multinomial logistic regression for digital soil mapping to 120 

update an existing soil map and used additional fieldwork to assess the quality of the updated soil 121 

map. Brus et al. (2011) validated a soil-class map of the Drenthe province of the Netherlands 122 

(268,000 ha) using 150 validation locations selected by stratified simple random sampling. 123 

Stoorvogel et al. (2009) also used random transect sampling to assess the accuracy of a 124 

quantitative soil map of the Nioro study area (81,600 ha), Senegal, depicting SOC content of the 125 

topsoil. 126 

Another important aspect for validating a digital soil map is the type of sampling units and 127 

sample support. In most digital soil mapping studies, using a point support is the standard 128 

practice to assess the quality of the soil maps produced. Therefore, even at large areal extents, 129 

digital soil maps are validated over a small area using bulk soil samples and soil cores rather than 130 

management-related spatial supports (e.g. entire fields or management units). In the digital soil 131 

mapping literature, few studies have considered a non-point support in the validation procedure. 132 

For example, Bishop et al. (2015) assessed the quality of digital soil maps depicting clay content 133 

using an independent validation dataset collected following stratified random sampling. They 134 

investigated three spatial supports: i) point, ii) 48 m blocks and iii) soil-land use complexes. They 135 

found that point supports yielded the lowest measures for assessing digital soil map quality, while 136 

soil-land use complexes achieved the highest. In another study, Stoorvogel et al. (2009) validated 137 

a map of topsoil SOC content in Senegal using validation samples collected at a block support of 138 

30 x 30 m, which corresponds to the mean size of fields in their study area. Each composite soil 139 

sample had a support of 900 m² and was derived by thoroughly mixing five subsamples taken 140 

within a 12 m radius to capture soil short-range variability. Saby et al. (2008) clearly showed a 141 
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strong relation between within-site variability and site area for soil monitoring sites in Europe. To 142 

integrate short-range spatial variation, soil inventory programs usually follow a composite 143 

sampling approach. For example, in the framework of the Land Use and Cover Area frame 144 

Statistical survey (LUCAS) a harmonized soil dataset was collected over the extent of the 145 

European Union following a composite sampling approach (Ballabio et al., 2016). At the national 146 

scale, the French soil monitoring network (RMQS) adopted a composite sampling strategy as 147 

well (Saby et al., 2014). 148 

The quality of digital soil maps can be assessed by several measures, which depend mainly on 149 

whether the soil information is categorical or continuous. To assess the quality of soil maps in the 150 

Netherlands, Marsman and De Gruijter (1986) calculated multiple quality indicators for 151 

categorical information such as the partial purity (the degree of concordance between observed 152 

and predicted of a classification criterion) of several classification criterion (subgroup, sand 153 

classes, loam classes and groundwater classes), the mean purities of soil classification criterion 154 

and the strict purity. The accuracy of continuous soil property predictions by soil maps is 155 

generally depicted by common statistics of the cumulative spatial error such as the mean error, 156 

the variance error, absolute error and the mean squared error.  157 

The objective of this study was to develop a method to measure the accuracy of a 50 m resolution 158 

disaggregated soil maps and their derived soil properties maps over a large area (6,848 km²), 159 

using an independent validation dataset whose sampling locations were selected using a 160 

probability sampling strategy. Like Odgers et al. (2015) continuous soil properties were derived 161 

from disaggregated soil maps to address the spatial distribution of continuous soil properties (pH, 162 

SOC content, soil distribution size, Cation Exchange Capacity (CEC)) over regular depths up to 163 

200 cm.  Moreover, the accuracy of disaggregated maps depicting predicted STU (Odgers et al., 164 
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2015; Chaney et al., 2016, Møller et al., 2019) as well as categorical soil attributes (soil type, soil 165 

drainage class, parent material and soil depth class) were assessed to determine how the accuracy 166 

of soil maps varies with classification criteria selected. In our context, some classification 167 

criterion like soil depth and soil drainage behaviour are relevant to characterize the agronomic 168 

potential of soils. For example, insufficient soil drainage increases the risk of soil compaction and 169 

reduces nutrient availability. In addition, predictions of soil properties are the main inputs of 170 

decision-making tools to sustainably manage and solve environmental issues. Thus, maps of 171 

functional soil properties with known accuracy are needed to provide a simple guide for non-soil 172 

specialist agriculture and stockholders. Overall, two approaches were developed to validate both 173 

categorical maps depicting predicted soil typological units (STUs) with their associated 174 

classification criterion and continuous maps depicting soil properties at two soil depths.  175 

2. Materials and methods 176 

2.1 Study area 177 

The study area is the Ille-et-Vilaine department, in eastern Brittany, France (NW France, 47° 40' 178 

to 48° 40' N, 1° to 2° 20' W) (Fig. 1). It has a total area of 6,848 km², which is drained mainly by 179 

its major rivers (Ille and Vilaine rivers ) and their tributaries. The central and coastal parts of the 180 

study area have low elevation, usually less than 50 m above sea level in the coastal zone and the 181 

valleys and less than 100 m elsewhere. The western part of the department has higher elevations, 182 

peaking at 256 m. The mean annual rainfall is about 650 mm and the annual temperatures 183 

average 11.4 °C. The study area is part of the Armorican Massif (BRGM, 2009), whose geology 184 

is complex: intrusive rocks (granite, gneiss and micaschist) in northern and north-western zones, 185 

sedimentary rocks (sandstone, Brioverian schist) in central and southern zones, and superficial 186 

deposits (aeolian loam, alluvial and colluvium deposits) overlaying bedrock formations with 187 
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decreasing thickness from north to south. This high geological heterogeneity generates high soil 188 

variability over short distances. The soils in the study area include Cambisols, Stagnic Fluvisols, 189 

Histosols, Podzols, Luvisols and Leptosols according to the World Reference Base of Soil 190 

Resources (IUSS Working Group WRB, 2014). The main land uses are annual crops (e.g. maize, 191 

wheat, barley) and temporary or permanent grasslands, but the study area also includes woods 192 

and natural areas. In this study, the built environment was not considered. 193 

2.2 Disaggregated soil map 194 

To address soil spatial distribution in Brittany, a regional database at 1:250,000 scale called the 195 

“Référentiel Régional Pédologique” was developed in 2012 in the “Sols de Bretagne” project. 196 

This regional database defines a set of polygons with crisp boundaries commonly called Soil Map 197 

Units (SMUs). SUM are complex, namely each SMU contains several soil types called Soil Type 198 

Units (STUs) in known proportions. SMUs are defined as areas with homogeneous soil-forming 199 

factors, such as morphology, geology, and climate. Each STU is vertically organized into strata. 200 

The strata are spatial horizons describing the vertical structuration of STUs. Pedological features 201 

of SMU, STU and strata including depth and thickness, soil organic carbon content, CEC, pH, 202 

and 5-particle size fractions are collated in a relational database called Donesol (INRA Infosol, 203 

2014). The Brittany coarse soil map contains 341 soil map units and 320 STUs  204 

In an earlier study (Vincent et al., 2018), the existing 1:250,000 legacy soil map of Brittany was 205 

disaggregated at 50 m resolution using the algorithm DSMART and soil-landscape relations. This 206 

study yielded a set of rasters depicting the three most probable STUs and their probability of 207 

occurrence within each pixel of 0.25 ha. These three most probable STU allowed capturing the 208 

most variability in predictions. The most probable STU in a grid cell is the one that was most 209 

frequently predicted based on 50 iterations (Fig. 2). Similarly, the 2nd STU and the 3rd STU were 210 
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respectively, the 2nd and the 3rd most frequently predicted STU in a grid cell. Therefore, the three 211 

most probable STUs are those predicted with the three highest probabilities of occurrence. 212 

Restricted to the study area, 98 SMUs were disaggregated to spatially delineate 158 STUs 213 

occurring within the SMUs. In our study, independent soil data was used to validate the three 214 

most probable soil maps with their derived soil properties maps, covering the study area.  215 

        2.3 Soil property estimation  216 

Continuous soil properties were mapped at the regional scale from the 1:250,000 disaggregated 217 

map (Vincent et al., 2018) according to GlobalSoilMap depth intervals (0-5 cm, 5-15 cm, 15-30 218 

cm, 30-60 cm, 60-100 cm and 100-200 cm). The first step of our study standardized the depth of 219 

STU horizons by fitting equal-area spline functions (Bishop et al., 1999) using the R package 220 

GSIF (Hengl., 2006). The equal-area spline function respects mean values of soil properties and 221 

ensures continuous variation in soil properties with depth (Malone et al., 2009). The result is, for 222 

each STU, a set of interpolated values of soil properties for the required depth intervals up to 200 223 

cm that equals the mean of the intervals. 224 

Soil properties were estimated as the weighted mean of modal values of the reference soil 225 

property, whose weights were the probabilities of occurrence of the relevant STU (Eq 1). In our 226 

study, we estimated soil properties in space using the property values and probabilities of 227 

occurrence of the three most probable STUs, as follows: 228 

 y� (��) =  ∑ (
��� ,��)���� ∗�(����,��)
∑ (
��� ,��)����

 [1] 229 
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where y� (��) is the predicted soil property for grid cell (xi), �(����, ��) is the reference soil 230 

property value associated with STU k=1, 2, 3 predicted at all (xi) and ( ���� , ��) is the 231 

probability of occurrence of STUk at the given grid cell (xi).  232 

        2.4 Development of soil dataset for map validation  233 

Sampling locations were selected using a stratified simple random sampling strategy, in which 234 

the mapped area was subdivided into subareas called strata, and from each stratum a simple 235 

random sample was selected. Eleven strata were obtained by grouping the 96 SMUs of the 236 

original soil map by similar dominant soil parent material: granite or gneiss, Aeolian loam, soft 237 

schist, sandstone, gritty schist, alluvial terrace, alluvial deposits, continental alluvium, and 238 

alluvial marsh (Fig. 3). A total of 45 sampling locations were selected with a per-stratum sample 239 

size proportional to the area of each stratum. Each stratum had a minimum of two sampling 240 

locations (Table 1). Locations for which sampling permission was denied or which proved 241 

otherwise impossible to sample were replaced with randomly selected locations within the same 242 

stratum. 243 

At each selected site, a transect along the hillslope was defined and divided into three sections: 244 

upslope, midslope and downslope (Fig. 3). A principal sampling location was then randomly 245 

selected within each section and two additional points were selected in a random direction at 20 246 

m distance from the main (principal) location. This approach was followed to capture the local 247 

short-range spatial variability. The set of three locations, characterising each section, defined a 248 

plot in our study (Fig. 3). The validation dataset comprises a total of 135 plots. 249 

Validation sites were located using a global positioning system (GPS) with a mean absolute error 250 

of 2 m in each direction. Within each section, the main site was described from auger borings up 251 
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to 200 cm in depth, and the two other soil profiles were described up to 120 m in depth. Soil 252 

morphology was described at each sampling site to determine each horizon: upper and lower 253 

limits, organic matter content, soil moisture, compacity, matrix and mottle colours according to 254 

Munsell soil colour chart, coarse fragment percentage, and soil texture class according to the 255 

GEPPA texture triangle (Baize, 2000). Finally, soil depth, soil type, soil drainage class and soil 256 

parent material were defined according to Rivière et al. (1992) and the French soil classification 257 

system (Baize and Girard, 2008). The soil type refers to the identification of diagnostic horizons 258 

depicting pedogenetic processes. The soil type can be for example Cambisol, Fuvisol, 259 

Albeluvisol. Meanwhile, the STU nomenclature reflects different information at the same time as 260 

the weathering degree of soil parent material, the redoximorphic conditions, and the soil depth. In 261 

our study, three drainage classes were distinguished: well drained, moderately drained and poorly 262 

drained. Similarly, only two soil depth classes were distinguished: deep (≥ 60 cm) and shallow (< 263 

60 cm). After field description, each of the 405 soil profiles was individually allocated to a 264 

suitable STU. 265 

Soil samples for physico-chemical analyses were collected at six depth intervals according to 266 

GlobalSoilMap specifications: 0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm. For each plot 267 

and each soil depth interval, a composite soil sample was collected from the three points sampled 268 

within the 20 m radius. 269 

       2.5 Laboratory analysis  270 

In our study, for budgetary raisons, only two soil layers were considered (5-15 cm and 30-60 cm). 271 

The 5-15 cm soil layer allowed characterizing soil properties of topsoil genetic horizons while the 272 

second soil layer 30-60 cm allowed characterizing soil properties of deeper soil horizons. Overall, 273 

considering the maximum soil depth, a total of 260 soil samples were air dried then sieved to 2 274 
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mm; the resulting fine earth and gravel were weighed to determine the percentage of coarse 275 

material present in soils. All samples were analysed according to standard methods to determine 276 

their particle-size distribution in five classes (NF X 31-107), SOC content by dry combustion 277 

(Thermoscientific Finnigan EA 1112 Flash elemental analyser) (NF ISO 10694), CEC (NF X 31-278 

130) and pH 1:5 H2O (soil pH in water with 1:5 soil-to-water ratio, NF ISO 10390).  279 

      2.6 Measures of map quality 280 

Fig. 4 shows the general diagram followed to compute different maps quality measures according 281 

to the type of soil property map produced. The following sections detailed each approach as well 282 

as the quality indicators retained.  283 

2.6.1 Quality measures for continuous soil properties  284 

The prediction performance of continuous soil properties was assessed by several quality 285 

measures relating the observed value of a soil property derived from in situ sampling to its 286 

corresponding prediction for each depth interval. These statistics comprise the root-mean-squared 287 

error (RMSE) (Eq 2), relative-root-mean-squared error (RRMSE) (Eq 3), mean error (ME) (Eq 288 

4),  and coefficient of determination (R²) (Eq 5). 289 

For stratified simple random sampling (De Gruijter et al., 2006), the quality indicator is estimated 290 

as the weighted mean per stratum: 291 

RMSE =  ∑ %& '()*&+,&-. = ∑ %&,&-. / .
01

∑ (y�(��) − �(��))²4&�-.  [2] 292 

RRMSE =  ∑ %& ''()*&+ =,&-. / .
01

∑ .
�(��)² (y�(��) − �(��))²4&�-.  [3] 293 

ME = ∑ %& (*&5 =,&-.  .
4& ∑ (y�(x�) − �(��))4&�-.  [4] 294 
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For R², there is no estimator for stratified simple random sampling. 295 

R² =  /∑ (�(��)7�(8��))²9���
∑ (�(��)7�(�:;;;;;;))²9���

 [5] 296 

where Wh denotes the relative area of stratum h, h=1….H=11,  �(��) denotes the observed value 297 

of the soil property at validation site (xi),  �< (��) denotes the predicted value of the soil property 298 

for the 50 m cell containing xi and nh is the number of validation soil samples collected at each 299 

depth interval within each stratum. 300 

 2.6.2 Quality measures for categorical soil properties  301 

    2.6.2.1 Validation supports  302 

In our study, quality measures of categorical soil attributes were estimated at three different 303 

scales:  304 

• Section, to detect whether the quality of soil maps varied by hillslope position 305 

• Mapping stratum, the basis of the stratified simple random sampling 306 

• Global considering the entire study area.  307 

Thus, we calculated measures both globally over the entire study area and on average within each 308 

stratum. This procedure provided an overall assessment of predictive performance according to 309 

the type of support. 310 

       2.6.2.2 Quality measures  311 

Categorical soil attributes were validated using three disaggregated soil maps depicting the 1st, 312 

2nd or 3rd most probable STUs, respectively. We used several methods to calculate purity values, 313 

considering four classification criteria: parent material, soil type, soil drainage class (i.e. 314 
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redoximorphic conditions of soils) and soil depth class. All quality measures were detailed in the 315 

following section: 316 

• Partial purity: the percentage of field observations of a given criterion that equal the 317 

value on the disaggregated map. Partial purity was calculated for each soil profile and 318 

equalled 1 if the predicted classification criterion equalled the observed classification 319 

criterion or 0 if not.  320 

• Strict purity: the percentage of field observations for which all four-classification criteria 321 

equal those of the disaggregated map. This measure was calculated for each soil profile.  322 

• Mean purity: the arithmetic mean of the partial purities of the four criteria.  323 

The partial purity of each classification criterion equalled 1 if correctly predicted for at least one 324 

of the three profiles prospected within a 20 m radius. Hence, each section had a single purity 325 

value for each criterion, corresponding to a binary value of 0 or 1. 326 

At the transect level, the partial, strict and mean purities were calculated by averaging the purity 327 

values of all sections included.  328 

At the stratum level, partial purities were calculated for each of the four criteria by averaging the 329 

corresponding purity values of all n transects included in a given stratum. As with partial purity, 330 

the strict purity of the 1st, 2nd and 3rd STU maps equalled the mean of all strict purities for all n 331 

transects within the stratum. Mean purity was derived from the partial purities and equals the 332 

arithmetic mean of the four partial purities. The standard deviation (Se) of each partial purity 333 

within strata was also computed using Eq 6: 334 

Se ( &�) =  /∑ .
(4>7.) ( �&� −  ;&�)²4>�-.                                                                                  [6] 335 
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where  &� denotes the partial purity of stratum h for a given map k (1st, 2sd and 3rd predicted 336 

STU),  �&� denotes the purity value of all transects within stratum h of map k, nh denotes the 337 

number of sections in stratum h and  ;&� denotes the mean purity value in the given stratum. 338 

For the stratified simple random sampling, the overall partial purity of each classification 339 

criterion (parent material, soil type, soil drainage class, and soil depth class), the overall strict 340 

purity and the overall mean purity were estimated as the mean of the strata purities weighted by 341 

their respective area using Eq 7 (De Gruijter et al., 2006): 342 

 ;� =  ∑ %&  &� ,&-.  [7] 343 

where  ;� denotes the overall purity, wh= Ah/A  where A denotes the study site area and Ah denotes 344 

the stratum area,  &� denotes the mean of purity values (partial, average and strict) in stratum h 345 

and k denotes the STU map. The associated standard error (Se) was estimated using Eq 8: 346 

Se ( ;�) =  /∑ .
(4>) (%²&)²&)?&-.  [8] 347 

where )²& denotes the variance of purity values in stratum h calculated using Eq 6. 348 

3. Results 349 

3.1 Soil spatial variability over short distances  350 

Overall, 92% of the plots showed only one parent material, thus short-range variability appeared 351 

less pronounced for this criterion; similar percentages were observed for soil drainage class and 352 

soil depth class (Fig. 5). In contrast, STUs generally appeared highly variable, as only 40% of the 353 

validation plots had a single STU, while 55% and 5% of the validation plots had two or three 354 
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STUs, respectively. Overall, short-range spatial variation in STU allocated was higher than for 355 

the other classification criteria. 356 

3.2 Purity measures  357 

In general, the 1st most probable STU map had the highest overall purities (Table 2). For instance, 358 

overall purity of soil parent material was estimated at 78%, 44% and 31% for the 1st, 2nd and 3rd 359 

STU maps, respectively. Likewise, overall purity of soil depth class was higher for the 1st STU 360 

maps (78%) than for the 2nd (56%) or 3rd STU maps (48%). For overall purity of soil type, the 1st 361 

STU map reached 60% and those of the 2sd and 3rd STU maps reached 31% and 26%, 362 

respectively. For drainage class purity, the 1st STU map remained the most accurate (65%), 363 

followed by the 2sd (35%) and 3rd STU maps (29%). STU purity appeared to be low for the three 364 

STU maps, being 23%, 5% and 3% for the 1st, 2sd and 3rd STU maps, respectively. 365 

Over the entire study area, strict and mean purities had a positive linear relation with the mean 366 

probability of STU occurrence (Fig. 6). For the three soil maps, strict purity appeared to be 367 

relatively low (Table 2, Fig. 6). The highest strict purity (34%) was reached by the most probable 368 

STU map followed by the 2sd STU map (12%). The 3rd most probable STU map had the lowest 369 

strict purity (5%). Meanwhile, mean purity was almost three times that of strict purity for all soil 370 

maps except for the 1st STU map, for which it was only two times that of strict purity. Mean 371 

purity equalled 70%, 42% and 34% for the 1st, 2sd and 3rd STU map, respectively.  372 

Aeolian loam, hard schist and alluvial terrace strata had the lowest strict purities (< 20%) (Table 373 

3). In contrast, medium schist, continental alluvium and alluvial marsh strata had the highest 374 

strict purities (> 67%). Mean purity exceeded 65% for all strata except hard schist and alluvial 375 

deposits, for which it was 54% and 58%, respectively. Continental alluvium (92%) and alluvial 376 

marsh strata (96%) had the highest mean purities. For drainage class, the partial purity for granite 377 
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or gneiss, soft schist, medium schist, sandstone, alluvial terrace, continental alluvium and alluvial 378 

marsh strata were the highest (> 65%). Aeolian loam, gritty schist and alluvial deposit strata had 379 

partial purities ≥ 50%, while that of hard schist was estimated at 33%.  380 

For soil type purity, soil type was generally predicted well, except for alluvial terrace strata, 381 

considering both the 1st and 2nd probable STU (Fig. 7). Alluvial terrace strata had the lowest 382 

purity (17%), which markedly affected the strict purity (17%), whereas the mean purity remained 383 

high (71%). For alluvial marsh and continental alluvium strata, the distribution functions were on 384 

the maximum, indicating that all soils developed from these parent materials were correctly 385 

predicted by the 1st most probable STU. 386 

When comparing the distribution functions of soil type purity within strata, medium schist and 387 

gritty schist strata had similar distributions for the 1st STU. Meanwhile, medium schist and 388 

alluvial terrace strata had similar distributions for the 2sd STU. Furthermore, hard schist, 389 

sandstone and alluvial deposit strata had a wide range of partial purities. This variation was more 390 

pronounced for granite or gneiss, hard schist and gritty schist strata for the 2sd STU (Fig. 7). 391 

At the local scale, the partial purity of each classification criterion did not vary significantly 392 

among hillslope positions (upslope, midslope and downslope) for any of the three disaggregated 393 

soil maps (Table 4). The χ2 test comparing the proportions of good prediction of each 394 

classification criterion was not significant (α=0.05). This suggested that the effect of hillslope 395 

position in the disaggregation process is not important for all classification criteria (Table 4). In 396 

addition, confidence intervals of good soil type predictions overlapped for all sections and soil 397 

maps considered (Fig. 8); therefore, there was no significant effect of hillslope position (α=0.05). 398 

Overall, the disaggregation algorithm predicted soil spatial distribution along hillslope positions 399 
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with the same performance, and the 1st most probable STU has the best validation measures over 400 

the study area. 401 

3.3 Descriptive statistics of continuous soil properties for the validation dataset 402 

In general, the validation dataset covered a wide range of soil property values. For instance, pH 403 

ranged from 3.95 to 8.58 (mean = 6.07) at 5-15 cm and from 4.41 to 8.9 (mean = 6.25) at 30-60 404 

cm (Table 5). The variability expressed by the standard deviation was relatively constant for all 405 

texture fractions and for both depth intervals. SOC content varied more at 5-15 cm, particularly 406 

for alluvial deposits, medium schist, and granite or gneiss (Fig. 9). SOC content decreased 407 

sharply and varied less with increasing depth, except for alluvial marsh. The mean of SOC 408 

contents, except those of soil sampled from alluvial marsh, did not differ significantly at 5-15 cm 409 

even though they clearly differed among parent materials.  410 

Considering both soil depth intervals, hard schist parent material had the lowest pH, whereas 411 

marsh parent material had the highest pH. In addition, for medium schist parent material, the 412 

distribution of associated pH values was wider at 5-15 cm than at 30-60 cm. 413 

Clay content had a wider distribution for marsh parent material at 5-15 cm, and for medium schist 414 

and alluvial deposit parent materials at 30-60 cm. Overall, clay content increased slightly with 415 

increasing depth for all parent materials except aeolian loam, hard schist and alluvial marsh. 416 

3.4 Validation of continuous soil property predictions 417 

At 5-15 cm, MEs of the models were close to zero, suggesting unbiased predictions for pH 418 

(0.29), sand content (-0.20%) and fine silt content (-0.20%) (Table 6). The MEs of soil texture 419 

fractions increased slightly with increasing depth, but those of CEC and SOC content strongly 420 

decreased. 421 
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R² was larger for pH and clay content at both 5-15 and 30-60 cm. For instance, R2 for clay 422 

content was moderate (0.65 and 0.37 at 5-15 and 30-60 cm, respectively). SOC content and 423 

coarse fragment percentage had the smallest R2. For SOC content, the R² was estimated at 0.07 at 424 

5-15 cm and 0.05 at 30-60 cm soil layer. Meanwhile, the R² for coarse fragment percentage was 425 

estimated at 0.13 and 0.05 at 5-15 cm and 30-60 cm soil depths, respectively.   426 

RRMSE was less than 1 for all soil properties except coarse fragments at 30-60 cm. RRMSE and 427 

R² were generally of opposite magnitude. For instance, R² was 0.43 for pH at 5-15 cm, with an 428 

RRMSE of about 0.13. An opposite trend characterised SOC content, which had the lowest R² 429 

(0.07) and an RRMSE of 0.65. 430 

Overall, sand, fine silt and total silt contents were underestimated regardless of depth interval, 431 

whereas coarse fragments were consistently overestimated at both depth intervals. Therefore, the 432 

quality of soil property predictions depended on the property considered and was generally better 433 

at 30-60 cm than at 5-15 cm except for particle-size distribution. 434 

4 Discussion 435 

4.1 Soil map quality measures 436 

In our study, the quality of disaggregated soil property maps was tested using the common 437 

accuracy measures of partial, strict and mean purity (Wilding et al., 1965; Beckett and Webster, 438 

1971; Walter, 1990; Kempen et al., 2009). Partial purity reveals the percentage of the 439 

disaggregated map for which each classification criterion equals the field observation. This 440 

measure is a strict assessment in which each error in the validation set is given equal weight. 441 

Moreover, it does not consider existing pedological similarities between categories of each 442 

classification criterion. For example, the partial purity of soil type is the same regardless of 443 
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whether there is confusion in the prediction of two taxonomically distant or taxonomically similar 444 

soils. Even the limits of these quality measures, they remained relevant to assess the accuracy of 445 

disaggregated soil maps, which are mainly used in soil management decisions as well as in the 446 

decision-making tools.  447 

The main shortcoming of strict purity is that incorrect prediction of a single classification 448 

criterion has the same influence as that of all classification criteria. The lowest strict purity 449 

reported in our study resulted from incorrect prediction of one or more classification criteria of 450 

soil profiles. For instance, strict purity for the alluvial terrace stratum was 17%, while its 451 

associated partial purities exceeded 83%, except for soil type purity (17%). The hard schist strata 452 

followed the same trend: its strict purity was 17%, while its partial purities were ≥ 50% except 453 

for drainage class purity (33%). Therefore, low strict purity was driven by the low partial purity 454 

of a single classification criterion although the partial purities for the three other criterion were 455 

high.  456 

4.2  Performance of categorical soil attributes prediction by spatial disaggregation  457 

As collecting new soil samples to validate disaggregated soil maps is expensive and time 458 

consuming, particularly for large areas, few studies have validated the digital soil maps produced 459 

(Minasny et al., 2013). Most of the studies that did were based on relatively small datasets (e.g. 460 

n=150 (Kempen et al., 2009); n=123 (Collard et al., 2014), n=53 new + 10 legacy soil profiles 461 

(Nauman et al., 2014)), which may have limited their ability to cover all soil distributions. An 462 

alternative approach is to use legacy soil profiles, as done by Odgers et al. (2014) and Nauman 463 

and Thompson (2014). Although commonly used in digital soil mapping, this approach may have 464 

significant hidden sampling bias because rare soils are poorly represented, and legacy datasets 465 

were usually not designed probabilistically. 466 
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In our study, the overall purity of soil type was estimated at 60% by the 1st most probable STU. 467 

Similar findings were reached by Kempen et al. (2009, 58%) and Collard et al. (2014, 65.9%) 468 

using multinomial logistic regression and probabilistic sampling designs. The overall strict purity, 469 

assessed using independent soil data, was estimated at 34% (1st STU) and reached 51% 470 

considering the three most probable STUs. Odgers et al. (2014) reported similar results using 285 471 

validation legacy profiles and the DSMART algorithm; 22.5% of profiles were predicted 472 

correctly with the most probable STU and 50% were predicted as being one of the three most 473 

probable STUs. Other studies, such as Holmes et al. (2015), reported low strict purity (20%, 1st 474 

STU), while Subburayalu and Salter (2013) reported strict purity that reached 23% using decision 475 

trees and 26% using random forest model. However, comparing our partial purity results to those 476 

reported in previous studies remains difficult because of the complexity of soils in our study area 477 

and differences in the taxonomic classification system considered. 478 

The accuracy of traditional soil maps is also assessed using statistics such as purity and the kappa 479 

index (Kempen et al., 2009). Previously, using stratified random sampling, Marsman and De 480 

Gruijter (1986) reported strict purity values of 8.0-10.7% depending on the mapping method. 481 

Much higher strict purities (39-95% depending on the level of classification) were reported by 482 

Wilding et al. (1965). However, the comparison between digital soil maps and conventional maps 483 

remains unsatisfactory because the taxonomic classification systems differ, and the validation 484 

sampling design was not always defined in each study. 485 

The accuracy of the disaggregated soil map appeared to be lower than that of local existing 486 

1:25,000 soil maps (Walter, 1990). These maps depict the southern part of the Ille-et-Vilaine 487 

department and cover almost 2% of our study area. Accurate maps were obtained from field 488 

description of soil profiles selected following a dedicated sampling design and produced using 489 
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the local Armorican Massif auger method (Rivière et al., 1992). To assess the quality of existing 490 

1:25,000 soil maps, Walter (1990) validated the three most abundant SMUs by randomly 491 

selecting 120 validation sites per SMU. Soils were described using the Armorican Massif auger 492 

method, and the quality of soil maps was assessed according to the partial purity of each 493 

classification criterion, and the strict and mean purities. The study of Walter (1990) and ours 494 

differed greatly in the partial purity of soil type. The partial purities of the existing map exceeded 495 

84% for the three SMUs vs. 60% in our study. Despite differences in soil drainage and soil depth 496 

class categories, strict purities and mean purities were of the same order of magnitude as those in 497 

our study. The mean purities for the three SMUs ranged from 61-77% vs. 72% in our study, 498 

while the strict purities for three SMUs ranged from 12-37% vs. 32% in our study. Therefore, the 499 

disaggregated map cannot replace high-resolution soil maps based on intensive sampling but is an 500 

efficient way to address the spatial variability of dominant soil types across the study area. An 501 

important advantage of disaggregated soil maps is their ability to cover large areas even where 502 

soil data are scarce but environmental covariates are available at high spatial resolution. Thus, the 503 

disaggregated map is an effective way to produce maps of soil properties for large areas, with a 504 

measure of prediction uncertainty from the probability layers. 505 

4.3 Accuracy of quantitative soil property predictions by spatial disaggregation 506 

For soil maps depicting quantitative soil properties, the quality of prediction was assessed using 507 

the common statistical parameters R², RMSE, ME and RRMSE. In general, the variability of 508 

predicted soil properties within the study area seemed plausible when compared to those of 509 

previous studies, such as that of Lacoste et al. (2014). For SOC content, like Lacoste et al. (2014), 510 

results were better (lower absolute ME and RMSE) at 30-60 cm than at 5-15 cm. Using an 511 

independent validation dataset, these authors validated high-resolution 3D SOC distribution maps 512 
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across a heterogeneous agricultural landscape in Brittany. Overall, they found an increase in SOC 513 

prediction accuracy with soil increasing depth. For example, the RMSE was 12.6 g kg-1 at 0-7.5 514 

cm but markedly lower (2.2 g kg-1) at 60-75 cm. However, our results do not agree with those of 515 

Minasny et al. (2013) or Malone et al. (2009), which highlighted a decreasing accuracy of 516 

prediction with increasing depth. The influence of agriculture practices (e.g. tillage, fertilisation), 517 

differences in soils and the quality of legacy soil data might explain this difference. Even though 518 

human influences were proxied using land cover in the DSMART algorithm, this covariate 519 

appears to be too poor for large land use classes to represent human influences in our study. 520 

Spline functions fitted to STUs to estimate soil properties at GlobalSoilMap depth intervals might 521 

also explain some of the inaccuracy of predicted soil properties. 522 

Odgers et al. (2015a) performed a similar study in which they applied the Digital Soil Property 523 

Mapping Using Soil Class Probability Rasters algorithm (PROPR) to address the spatial pattern 524 

of clay content over their study area (South Australia) using soil class probability rasters. 525 

Interestingly, the R² of Odgers et al. (2015a) is 67% smaller (0.22) than that in our study (0.65) at 526 

5-15 cm and 52% smaller (0.18) than that in our study (0.37) at 30-60 cm. The RMSE and ME 527 

are higher in our study than those of Odgers et al. (2015a) by a factor of ~2. In another study, 528 

Odgers et al. (2015b) mapped pH following the same method as the clay content over the Shire of 529 

Dalrymple in Australia. Their study yielded a small R² between observed and predicted pH at 530 

both 5-15 and 30-60 cm. R2 reached 0.06 vs. 0.43 in our study at 5-15 cm and 0.10 vs. 0.54 in our 531 

study at 30-60 cm. However, the RMSE was relatively similar in the two studies even if the 532 

sampling design and strategy were different. 533 

The main shortcoming revealed by this research is that soil classes with low probabilities of 534 

occurrence have no influence on predictions of soil properties. Only the three most probable 535 
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STUs were considered for validation and to derive quantitative soil property maps. Although 536 

DSMART attempts to predict the most probable STUs for a specific soil-landscape context, 537 

prediction accuracy varies greatly and depends strongly on the soil heterogeneity of the study 538 

area. In addition, the resulting rasters depicting the probability of occurrence of STU maps 539 

themselves depend greatly on polygon component proportions, which are derived from expert 540 

soil knowledge and brings more uncertainty to the predicted STUs. Thus, close examination of 541 

the soil regional database remains crucial to increase prediction performance for both 542 

disaggregated soil maps and derived soil maps depicting quantitative soil properties. 543 

4.4 Improvement and future study 544 

In this study, statistical validation of disaggregated soil maps provided good overall purities. 545 

Each classification criterion was judged individually, and an overall measure (strict purity) 546 

assessed the overall accuracy of digital soil maps. However, expert soil knowledge was not 547 

included when calculating the validation statistics. Soil taxonomic distance, especially for soils 548 

occurring in similar environmental conditions or having similar morphological criteria, was not 549 

considered but is worth investigating in future mapping studies. 550 

5. Conclusion  551 

To validate a soil map, using an independent dataset is a safe option that leads to unbiased 552 

estimates of quality measures without using models to assess the uncertainty (Brus et al., 2011). 553 

This was applied at the regional scale in north-western France, where the three most probable 554 

disaggregated STU maps at 50 m resolution were available. A total of 260 soil samples, collected 555 

at 5-15 and 30-60 cm depths, were analysed to determine their particle-size distributions, CEC, 556 

pH, SOC content and coarse fragment percentages. For soil maps depicting quantitative soil 557 
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properties derived from spatial disaggregation, soil texture fractions remained the least biased at 558 

both depth intervals. In general, validation statistics of soil properties depended on the soil 559 

property considered as well as on the soil depth interval. For categorical soil maps, the partial 560 

purity of soil class, and the strict and mean purities were informative. Overall, the predictive 561 

quality of disaggregated soil maps (1st, 2sd and 3rd STUs) varied among strata, but continental 562 

alluvium and marsh strata were predicted well for the three soil maps. Furthermore, the 1st most 563 

probable STU, with high probability of occurrence, had the best validation measures regardless of 564 

soil parent material. Differences in prediction accuracies among strata denote areas where more 565 

soil data or better soil prediction models have to be obtained or applied first to improve the 566 

disaggregation process. 567 
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 724 

Figure captions  725 

Fig. 1. Locations of the 45 transects selected by stratified simple random sampling based on 726 

dominant soil parent material strata. 727 

Fig.  2. The 50 m resolution disaggregated soil map showing the most probable Soil Typological  728 

Unit and associated probability of occurrence. 729 

 730 

Fig.  3. Diagram of the transect sampling strategy along the hillslope.  731 

Fig.  4. Diagram of the validation strategy to compute quality measures of digital soil maps and 732 

their derived soil properties maps   733 

Fig.  5. Percentage of validation plots in which 1, 2 or 3 categories of a given soil classification. 734 

criterion (soil depth, soil drainage class, parent material, soil type, soil typological unit) were 735 

observed within a 20 m radius. 736 

Fig.  6. Relation over the entire study area between strict and mean purities (%) and probability of 737 

occurrence of the three most probable soil typological units (STUs).  738 
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Fig.  7. Distribution functions of soil type purity and their mean values (black dots) by stratum for 739 

the (left) 1st and (right) 2sd soil typological unit (STU) predicted. 740 

Fig.  8. Mean percentage of good soil type prediction and their 95% confidence intervals for the 741 

three most probable soil typological units (STUs) according to hillslope position. Dashed lines 742 

denote the overall soil type purity for the entire study area. 743 

Fig.  9. Distribution of SOC content, pH and clay content according to observed parent material 744 

from the validation dataset. G: granite, I: gneiss, L: aeolian loam, N: soft schist, O: medium 745 

schist, P: hard schist, Q: sandstone, R: gritty schist, T: alluvial terrace, U: colluvium deposits, V: 746 

alluvial deposits, Vm: marsh. Whiskers represent 1.5 times the interquartile range. The number in 747 

brackets is the number of soil samples collected from each parent material. Means of groups 748 

sharing a letter in the group label do not differ significantly at α=5%. 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 



33 
 

 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

Table headings 773 

Table 1. Characteristics of the 11 strata used for stratified simple random sampling to produce the 774 

validation dataset, dominant parent material, percentage of the study area and number of transects 775 

sampled. 776 

Table 2. Estimated partial, strict and mean purities (%) for the three soil maps over the entire 777 

study area. 778 

Table 3. Design-based estimates of purities of soil classification criteria, strict purity and mean 779 

purity for selected strata for the 1st most probable STU map. 780 

Table 4. Results of the χ2 test performed to compare proportions of good prediction of 781 

classification criteria along hillslope positions for the three soil typological unit (STU) maps 782 

(α=5%). 783 

Table 5. Descriptive statistics of soil properties for the validation dataset at 5-15 and 30-60 cm (n 784 

= 135 and 125, respectively). 785 
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Table 6. Accuracy indicators of soil property prediction at 5-15 and 30-60 cm (n = 135 and 125, 786 

respectively, root-mean-squared error (RMSE), relative-root-mean-squared error (RRMSE), 787 

mean error (ME) and coefficient of determination (R²)). 788 

  789 
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 790 

Fig.1. Locations of the 45 transects selected by stratified simple random sampling based on 791 

dominant soil parent material strata. 792 

Dominant soil parent material strata  

• Transect (n=45) 

COTES D’ARMOR  

FINISTERE  

MORBIHAN  

ILLE ET VILAINE  

Study area of Vincent et al. (2018)  
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 794 

 795 

 796 

 797 

Fig.2. The 50 m resolution disaggregated soil map showing the most probable soil typological 
unit and associated probability of occurrence. 
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Fig. 5. Percentage of validation plots in which 1, 2 or 3 categories of a given soil classification criterion 
(soil depth, drainage class, parent material, soil type, soil typological unit) were observed within a 20 m 
radius 
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Fig.3.  Diagram of the transect sampling strategy along the hillslope  

Fig. 4: Diagram of the validation strategy to compute quality measures of digital soil maps and their 
derived soil properties maps   
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Fig. 6. Relation over the entire study area between strict and mean purities (%) and probability of 
occurrence of the three most probable soil typological units (STUs) 
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 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

Fig. 7. Distribution functions of soil type purity and their mean values (red dots) by stratum 
for the (left) 1st and (right) 2sd soil typological unit (STU) predicted 

          Partial purity of soil type (1st STU)            Partial purity of soil type (2sd STU)  

 

Fig. 8.  Mean percentage of good soil type prediction and their 95% confidence intervals for the 
three most probable soil typological units (STUs) according to hillslope position. Dashed lines 
denote the overall soil type purity for the entire study area. 



40 
 

829 

SOC content (g kg-1) 

5-15 cm 30-60 cm 

g 
kg

-1
 

30-60 cm 
pH 

5-15 cm 

g 
kg

-1
 

5-15 cm 30-60 cm 
Clay content (g kg-1) 

Fig. 9. Distribution of SOC content, pH and clay content according to observed parent material for the validation dataset. 
G: granite, I: gneiss, L: aeolian loam, N: soft schist, O: medium schist, P: hard schist, Q: sandstone, R: gritty schist, T: 
alluvial terrace, U: colluvium deposits, V: alluvial deposits, Vm: marsh. Whiskers represent 1.5 times the interquartile 
range. The number in brackets is the number of soil samples collected from each parent material. Means of groups 
sharing a letter in the group label do not differ significantly at α=5% 
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Table1: Characteristics of the 11 strata used for stratified simple random sampling to produce the 830 

validation dataset, dominant parent material, percentage of the study area and number of transects 831 

sampled. 832 

Stratum Dominant parent 

material 

Percentage  

of study area (%) 

Transects 

(n=45) 

1 Granite or gneiss 12 5 

2 Aeolian loam 17 7 

3 Soft schist 35 13 

4 Medium schist 5 2 

5 Hard schist 4 2 

6 Sandstone 14 6 

7 Gritty schist 5 2 

8 Alluvial terrace 2 2 

9 Alluvial deposits 3.6 2 

10 Continental alluvium 0.4 2 

11 Alluvial marsh 2 2 

 833 

  834 
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Table 2: Estimated partial, strict and mean purities (%) for the three soil maps over the entire 835 

study area. 836 

 Partial purities  Strict 

purity 

Mean 

purity 

Soil 

map 

Parent material 

purity 

Drainage class 

purity 

Soil type 

purity 

Soil depth 

class purity 

STU purity    

STU1 78 (6.6) 65 (4.5) 60 (4.5) 78 (4) 23 (4.4) 34 70 

STU2 44 (4.7) 35 (3.3) 31 (3.6) 56 (4.9) 5 (2) 12 42 

STU3 31 (4.1) 29 (2.9) 26 (3.5) 48 (4.8) 3 (1.8) 5 34 

Numbers in brackets are design-based estimates of standard deviations for the 45 transect purity 837 

values 838 

Table 3: Design-based estimates of purities of soil classification criteria, strict purity and mean 839 

purity for selected strata for the 1st most probable STU map 840 

Stratum 
Parent 

material purity 

Drainage class 

purity 

Soil type 

purity 

Soil depth 

class purity 

Strict 

purity 

Mean 

purity 

Granite or gneiss 72 (46) 72 (25) 67 (21) 78 (17) 39 72 

Aeolian loam 81 (40) 52 (37) 52 (32) 81(37) 20 66 

Soft schist 77 (42) 67 (19) 59 (27) 80 (25) 33 71 

Medium schist 100 (0) 83 (23) 83 (23) 83 (23) 67 87 

Hard schist 83 (40) 33 (0) 50 (23) 50 (23) 17 54 

Sandstone 73 (45) 73 (43) 53 (38) 67 (0) 40 67 

Gritty schist 67 (51) 50 (23) 83 (23) 83 (23) 33 71 

Alluvial terrace 100 (0)  83 (23) 17 (23) 83 (23) 17 71 

Alluvial deposits 83 (40) 50 (23) 33 (0) 67 (0) 33 58 

Continental alluvium 100 (0) 67 (47) 100 (0) 100 (0) 67 92 

Alluvial marsh 100 (0) 83 (23) 100 (0) 100 (0) 83 96 

Numbers in brackets are design-based estimates of standard errors for the 45 transect purity 841 

values 842 

 843 
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Table 4: Results of the χ2 test performed to compare proportions of good prediction of 844 

classification criteria along hillslope positions for the three soil typological unit (STU) maps 845 

(α=5%) 846 

 1st STU map 2sd STU map 3rd STU map 

Classification criterion Probability (p value) 

Parent material 0.40 0.41 0.65 

Soil type 0.80 0.30 0.14 

Drainage class 0.96 0.68 0.25 

Soil depth class 0.30 0.48 0.51 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 
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Table 5: Descriptive statistics of soil properties for the validation dataset at 5-15 and 30-60 cm (n 863 

= 135 and 125, respectively) 864 

Depth 

interval (cm) 

Soil property minimum median mean maximum standard 

deviation 

5-15 CEC (cmol+ kg-1) 2.33 7.03 9.52 112 11.58 

pH 3.95 5.99 6.07 8.58 0.99 

SOC content (‰) 10.40 23.30 30.34 275 2.97 

Coarse fragments (%) 0.00 12.63 13.40 49.81 9.93 

Coarse sand (%) 0.20 9.30 12.38 48.20 10.90 

Fine sand (%) 1.20 11.90 13.00 40.60 6.24 

Coarse silt (%) 0.70 25.90 26.90 52.30 11.27 

Fine silt (%) 0.25 25.40 24.78 40.50 7.30 

Clay (%) 6.80 19.20 20.90 62.20 8.05 

30-60 CEC (cmol+ kg-1) 1.49 4.88 5.90 34.4 4.20 

pH 4.41 6.18 6.25 8.90 1.00 

SOC content (‰) 2.55 7.53 11.84 56.90 12.19 

Coarse fragments (%) 0.00 14.39 16.11 52.37 12.62 

Coarse sand (%) 0.00 9.90 13.47 5.78 12.46 

Fine sand (%) 0.30 11.70 12.87 54.00 6.65 

Coarse silt (%) 0.40 25.00 26.30 49.80 11.44 

Fine silt (%) 0.21 24.80 24.00 42.00 7.92 

Clay (%) 6.00 19.10 20.50 51.40 8.20 

  865 
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 866 

Table 6: Accuracy indicators of soil property prediction at 5-15 and 30-60 cm (n = 135 and 125, 867 

respectively, root-mean-squared error (RMSE), relative-root-mean-squared error (RRMSE), mean error 868 

(ME) and coefficient of determination (R²)) 869 

Depth interval (cm) Soil property ME 

 

RMSE  RRMSE  R² 

5-15 CEC (cmol+ kg-1) -3.95 5.12 0.90 0.28 

pH 0.29 0.80 0.13 0.43 

SOC content (g kg-1) 2.15 14.00 0.65 0.07 

Coarse fragments (%) 9.53 12.84 0.86 0.13 

Sand (%) -0.20 9.94 0.50 0.41 

Coarse silt (%) 0.74 9.20 0.41 0.25 

Fine silt (%) -0.20 6.70 0.39 0.05 

Total silt (%) -1.20 9.80 0.23 0.28 

Clay (%) 1.47 5.50 0.26 0.65 

30-60 

 

CEC (cmol+ kg-1) 0.06 2.15 0.43 0.34 

pH 0.45 0.78 0.12 0.55 

SOC content (g kg-1) 0.32 5.70 0.69 0.05 

Coarse fragments (%) 8.15 13.98 1.54 0.06 

Sand (%) -2.06 10.32 0.59 0.39 

Coarse silt (%) 0.19 10.18 0.53 0.17 

Fine silt (%) -1.88 6.00 0.39 0.25 
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Total silt (%) -1.69 10.95 0.28 0.13 

Clay (%) 3.75 7.53 0.27 0.37 

 870 




