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Toxigenic potential and antimicrobial
susceptibility of Bacillus cereus group
bacteria isolated from Tunisian foodstuffs
Maroua Gdoura-Ben Amor1,2*, Sophie Jan2, Florence Baron2, Noël Grosset2, Antoine Culot2,3, Radhouane Gdoura1,
Michel Gautier2 and Clarisse Techer3

Abstract

Background: Despite the importance of the B. cereus group as major foodborne pathogens that may cause
diarrheal and/or emetic syndrome(s), no study in Tunisia has been conducted in order to characterize the
pathogenic potential of the B. cereus group. The aim of this study was to assess the sanitary potential risks of
174 B. cereus group strains isolated from different foodstuffs by detecting and profiling virulence genes (hblA,
hblB, hblC, hblD, nheA, nheB, nheC, cytK, bceT and ces), testing the isolates cytotoxic activity on Caco-2 cells
and antimicrobial susceptibility towards 11 antibiotics.

Results: The entertoxin genes detected among B. cereus isolates were, in decreasing order, nheA (98.9%),
nheC (97.7%) and nheB (86.8%) versus hblC (54.6%), hblD (54.6%), hblA (29.9%) and hblB (14.9%), respectively
encoding for Non-hemolytic enterotoxin (NHE) and Hemolysin BL (HBL). The isolates are multi-toxigenic,
harbouring at least one gene of each NHE and HBL complexes associated or not to bceT, cytK-2 and ces
genes. Based on the incidence of virulence genes, the strains were separated into 12 toxigenic groups.
Isolates positive for cytK (37,9%) harbored the cytK-2 variant. The detection rates of bceT and ces genes were
50.6 and 4%, respectively. When bacteria were incubated in BHI-YE at 30 °C for 18 h and for 5 d, 70.7 and
35% of the strains were shown to be cytotoxic to Caco-2 cells, respectively. The cytotoxicity of B. cereus
strains depended on the food source of isolation. The presence of virulence factors is not always consistent
with cytotoxicity. However, different combinations of enterotoxin genetic determinants are significantly
associated to the cytotoxic potential of the bacteria. All strains were fully sensitive to rifampicin,
chloramphenicol, ciprofloxacin, and gentamycin. The majority of the isolates were susceptible to streptomycin,
kanamycin, erythromycin, vancomycin and tetracycline but showed resistance to ampicillin and novobiocin.

Conclusion: Our results contribute data that are primary to facilitate risk assessments in order to prevent
food poisoning due to B. cereus group.
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Background
B. cereus group bacteria, given their widespread nature,
can be found in different types of foodstuffs. These bac-
teria are usually associated with two types of issues, one
related to foodborne outbreaks and another one related
to food spoilage. The contamination of foods with B. ce-
reus group bacteria may lead to food poisoning events
that usually occur under the emetic and/or the diarrheal
syndromes [1]. These foodborne outbreaks are generally
benign and spontaneously resolved. However, B. cereus
group bacteria may also occasionally lead to
hospitalization or even death of immunosuppressed
people [2–6]. The emetic type of food poisoning is
caused by the ingestion of cereulide, which is preformed
in food. This toxin is a small cyclic dodecadepsipeptide
encoded by the ces gene. The cereulide is heat and pH
stable, highly resistant to protease activity and it remains
active through the gastro-intestinal passage [7]. The
diarrheal type of food poisoning is caused by one or sev-
eral heat-labile enterotoxins that can be formed in in the
small intestine. The enterotoxins produced by B. cereus
group bacteria that are recognized as playing a major
role in the diarrheal disease are the Hemolysin BL (HBL)
encoded by hblA, hblB, hblC, and hblD; the Non-
Hemolytic Enterotoxin (NHE) encoded by nheA, nheB
and nheC, and the Cytotoxin K (CytK) encoded by cytK
[8, 9]. Two CytK variants encoded by cytK-1 and cytK-2
genes, have been described by Guinebretière et al. [10]
and Castiaux et al. [11]. CytK-1 shows 89% protein se-
quence homology with that of CytK-2, but carries much
higher toxicity.
Apart from HBL, NHE and CytK, also Enterotoxin T

that is encoded by the bceT gene, belongs to the group
of diarrhoeal enterotoxins. Contribution to food poison-
ing of BceT enterotoxin [12], could never be confirmed
and as a result of later studies the reported activity and
identity of BceT as entertoxin is questionable [13, 14]. It
was suggested that the bceT gene product does not pos-
sess biological activity and cannot contribute to
outbreaks [13], and seems to be a cloning artifact [14].
The actual risk of food poisoning due to the B. cereus

group depends on the level of expression of the
virulence genes [15–18]. The emetic and the diarrheal
syndromes can occur when the bacterial cell concentra-
tion reaches a level of 5 to 8 log10 CFU/g and of 5 to 7
log10 CFU/g, respectively [19, 20]. Therefore, it is gener-
ally advised to food industries that foods with 105 CFU/g
of B. cereus are considered unsafe for consumption [21].
With the aim to better evaluate the in vivo conditions

of toxinogenesis, several studies assessed the cytotoxicity
of B. cereus strains on CHO, Vero, Hep-2 or Caco-2
cells [22–25]. In recent years, the accelerated emergence
of foodborne pathogens resistant to a variety of antibi-
otics is one of the most serious threats for public health

and clinical perspectives, which can cause perturbation
in the empirical therapy during outbreaks. Many previ-
ous reports have shown that B. cereus group bacteria
isolated from different foods are resistant to several anti-
biotics such as ampicillin, penicillin streptomycin,
tetracycline, trimethoprim, and ceftriaxone [26–29].
Therefore, it is important to evaluate the resistance of
foodborne B. cereus group bacteria to a variety of antibi-
otics for a better management of infectious diseases. The
objective of the present work was to investigate the toxi-
genic potential of a collection of 174 B. cereus group
strains coming from Tunisian foodstuffs, (i) by detecting
the presence of virulence genes, (ii) by assaying the cyto-
toxic activity of bacterial supernatants on Caco-2 cells,
and (iii) by assessing their antimicrobial resistance pat-
tern towards selected antibiotics.

Methods
Bacterial isolation and identification
The collection analysed comprised 174 B. cereus group
strains. They were previously isolated from 687 Tunisian
food samples (cereals, spices, cooked food, canned
products, seafood products, dairy products, fresh-cut
vegetables, raw and cooked poultry meats), collected
randomly from supermarkets, hotels, restaurants and
private companies during the period from April 2014 to
April 2015 [30]. Ten grams of each food sample were
homogenized for 1 min with 90ml of buffered peptone
water (VWR, Strasbourg, France) containing 5 g/l of lith-
ium chloride (Prolabo, Fontenay sur bois, France) in a
BagMixer stomacher (AES Laboratory, Combourg,
France). After serial dilution, 0.1 ml of each diluted sam-
ple was streaked in Mannitol Egg Yolk Polymixin agar
medium (MYP) (Oxoid, Basingstoke, England) and plates
were incubated for 24 h at 30 °C. The presumptive iden-
tification of B. cereus group bacteria was based on the
appearance of rough colonies with a violet-red back-
ground, and surrounded by a white egg yolk precipitate.
One typical colony from each sample was subcultured
and preserved as cryoculture at − 80 °C after addition of
glycerol (Sigma Aldrich, Saint Quentin Fallavier, France)
at a final concentration of 25%. To verify whether B. ce-
reus-like isolates belonged to the B. cereus group, a PCR
test targeting the sspE gene sequence specific of the
group was carried out [31].

DNA extraction
Extraction of DNA was performed according to the Che-
lex extraction method [32]. Briefly, after twice overnight
propagation of each frozen isolate in BHI-YE (Fisher
Bioblock, Illkirch, France) at 30 °C without agitation, 5
ml of each culture was transferred into à 15ml falcon
tube containing 300 μl of 25% (m/v) sterile suspension of
Chelex beads (Grosseron, Saint-Herblain, France)
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prepared in sterile Milli-Q water (Sigma Aldrich). Mix-
ture was vortexed and centrifuged at 7000 rpm for 7 min
at 4 °C. The cell pellet was resuspended in 200 μl sterile
Milli-Q water (Sigma Aldrich) and lysed by heating at
100 °C for 10 min. After centrifugation at 7000 rpm at
4 °C for 7 min, 150 μl of supernatant was collected and
re-centrifuged under the same conditions. The concen-
tration of DNA was determined with a NanoDrop ND −
1000 spectrophotometer (Nanodrop Technologies, Wil-
mington, USA) and the sample was diluted to a final
concentration of approximately 100 ng/μl.

Detection of virulence genes
Confirmed B. cereus group strains were screened for the
emetic (ces) and the enterotoxigenic genes (hblA, B, C,
and D, nheA, B, and C, bceT and cytK and its variants
cytK-1 and cytK-2) genes. All primers used as well as
their annealing temperatures and the size of the ampli-
fied fragment for each gene are shown in Table 1. The
detection of the ces cluster was tested with two different
primer pairs [34, 35]. PCR amplification was systematic-
ally performed in a 28 μl reaction volume. Each reaction
mixture contained 5 μl of 100 ng DNA template, 2 μl of
each primer (Sigma Aldrich) with a concentration of
10 μM, 0.3 μl of Taq polymerase (5000 U/ml) (Biolabs,
Evry, France), 0.5 μl of 10 mM deoxyribonucleotide

triphosphate (Eurogentec, Seraing, Belgium), 1.12 μl of
50 mM MgCl2 (Biolabs), 2.5 μl of 10X AmpliTaq buffer
(Biolabs) and 14.5 μl of sterile Milli-Q water (Sigma
Aldrich). The amplification reactions were carried out in
a PCR thermocycler (iCycler optical module 584BR; Bio-
Rad, Marnes-la-Coquette, France). For the ces cluster,
the amplification conditions were 5 min at 95 °C,
followed by 30 cycles of 15 s at 95 °C, 30 s at 58 °C and
30 s at 72 °C and a final extension at 72 °C for 8 min. For
hblB, the amplification conditions were 2 min at 94 °C
followed by 10 cycles of 10 s at 94 °C, 30 s at 58 °C, and
2min at 68 °C. The ten cycles were followed by 20 cycles
of 10 s at 94 °C, 30 s at 58 °C, and 2min (plus 20 s per
cycle) at 68 °C; and a final extension at 68 °C for 7 min
[33]. For the remaining toxin genes (hblA, hblC, hblD,
nheA, nheB, nheC, bceT and cytK and its variants cytK-1
and cytK-2), the amplification conditions were 4 min at
95 °C followed by 30 cycles of 30 s at 95 °C, 30 s at the
annealing temperatures (Table 1) and 1min at 72 °C,
and a final extension of 7 min at 72 °C. For each run, the
whole PCR mix without any DNA template was used as
a negative control. The positive controls for PCR ampli-
fication of virulence genes were the same as the ones
used in Techer et al. study [36]. The mesophilic strain
(TIAC 1095), harbouring the ces cluster, isolated from a
Belgian emetic food poisoning event was used as positive

Table 1 Primers used in the simplex PCR for the detection of virulence genes in B. cereus

Targeted Gene Primer name Sequence (5′- 3′) Product Size (bp) Annealing Temp (°C) Reference

hblA HA F
HA R

AAGCAATGGAATACAATGGG
AGAATCTAAATCATGCCACTGC

1154 56 [33]

hblB HA F
HB R

AAGCAATGGAATACAATGGG
AATATGTCCCAGTACACCCG

2684 58 [33]

hblC HC F
HC R

GATACTCAATGTGGCAACTGC
TTGAGACTGCTCGTCTAGTTG

740 58 [33]

hblD HD F
HD R

ACCGGTAACACTATTCATGC GAGTCCATATGCTTAGATGC 829 58 [33]

nheA NA F
NA R

GTTAGGATCACAATCACCGC
ACGAATGTAATTTGAGTCGC

755 56 [33]

nheB NB F
NB R

TTTAGTAGTGGATCTGTACGC
TTAATGTTCGTTAATCCTGC

743 54 [33]

nheC NC F
NC R

TGGATTCCAAGATGTAACG ATTACGACTTCTGCTTGTGC 683 54 [33]

bceT bceT-f
bceT-r

GCTACGCAAAAACCGAGTGGTG
AATGCTCCGGACTATGCTGACG

679 57 [12]

cytK CK F
CK R

ACAGATATCGG(G,T)CAAAATGC
TCCAACCCAGTT(A,T)(G,C) CAGTTC

809 54 [11]

cytK-1 CK1 F
CK1 R

CAATTCCAGGGGCAAGTGTC
CCTCGTGCATCTGTTTCATGAG

426 57 [11]

cytK-2 CK2 F
CK2 R

CAATCCCTGGCGCTAGTGCA
GTGIAGCCTGGACGAAGTTGG

585 57 [11]

ces EM1F
EM1R

GACAAGAGAAATTTCTACGAGCAAGTAAT
GCAGCCTTCCAATTACTCCTTCTGCCACAGT

635 58 [34]

CesF1
CesR2

GGTGACACATTATCATATAAGGTG
GTAAGCGAACCTGTCTGTAACAACA

1271 58 [35]

Gdoura-Ben Amor et al. BMC Microbiology          (2019) 19:196 Page 3 of 12



control for PCR amplification of the emetic toxin gene.
The strain C43, isolated from a food product [33], har-
bours hblA, hblB, hblC, hblD, nheA, nheB, nheC, and
cytK, and was used as positive control for PCR amplifi-
cation of enterotoxigenic genes.

Cytotoxic activity
Cytotoxic activity of bacterial supernatants on Caco-2
cells were performed according to Jan et al. [24]. Briefly,
after a defrosting step, Caco-2 cells were cultivated on
96-well microplates at 37 °C under 5% CO2 atmosphere
for 3 to 4 d in Dulbecco modified Eagle medium (Sigma
Aldrich) supplemented with 10% (v: v) fetal calf serum
(Cambrex, North Brunswick, N.J.), 100 UI/ml penicillin
(Sigma Aldrich), 100 μg/ml streptomycin (Sigma
Aldrich) and 2.5 μg/ml amphotericin B (Sigma Aldrich).
Bacteria were grown for 18 h or 5 d at 30 °C in BHI-YE,
without agitation (Fisher Bioblock). After centrifugation
(10 min, 7000 rpm, 4 °C), the supernatants were filtered
through 0.2 μm sterile filter units (Starstedt, Nümbrecht,
Germany). After removal of the culture medium, Caco-2
cells were washed 3 times with phosphate buffered saline
(PBS) (Gibco, Paisley, UK), incubated during 3 h with
50 μl of each bacterial filtrate and then rinsed with PBS
(Gibco) and fixed with 2% (w: v in PBS) paraformalde-
hyde (Sigma Aldrich) at 4 °C for 30 min. After removal
of the paraformaldehyde, the remaining cells were
stained for 20 min at room temperature with 80 μl of
crystal violet solution (Sigma Aldrich,). Cells were rinsed
three times with distilled water, and the crystal violet
solution was released from the cells by adding 200 μl of
50% (v: v) ethanol in water and shaking the microplates
at room temperature for 45 min. After transfer into new
microplates, the amount of released dye was measured
at 630 nm and was inversely related to the cytotoxic ac-
tivity of culture filtrates. The cytotoxic activity was
expressed as a percentage of inhibition compared with
the control (BHI-YE alone), calculated as follows: (Op-
tical Density (OD) control – OD assay)/OD control ×
100. Filtrates were considered cytotoxic whenever the
OD represented less than 50% of that of the control
(percentage of inhibition higher than 50%). Tests and
controls were done in triplicate on the same microplate.

Antibiotic susceptibility testing
The antibiotic susceptibility of the isolates was studied
using the Kirby–Bauer disk diffusion method [37]. Muel-
ler-Hinton Agar (Merck, Darmstadt, Germany) was used
for this test. All isolates were grown in BHI-YE (Fisher
Bioblock) for 24 h at 30 °C, without agitation, followed
by spreading on Mueller-Hinton agar plates. Eleven anti-
microbials were chosen for antibiotic sensitivity testing,
including ampicillin (10 μg), vancomycin (30 μg), genta-
mycin (10 μg), erythromycin (15 μg), tetracycline (30 μg),

ciprofloxacin (5 μg), chloramphenicol (30 μg), novobio-
cin (30 μg), streptomycin (10 μg), kanamycin (30 μg) and
rifampicin (5 μg). All Muller-Hinton plates were incu-
bated at 30 °C for 18–24 h. The inhibition zones were
measured and interpreted referring to the Clinical and
Laboratory Standards Institute (CLSI) [38], which con-
tains measurement ranges and their equivalent qualita-
tive categories of susceptible, intermediately susceptible
or resistant.

Statistical analyses
The statistical analyses, including t-tests, and ANOVA
F-test, were performed using the R - 3.4.2. statistic soft-
ware. A p-value < 0.05 was considered as statistically
significant for all the parameters evaluated. The F-test
was used to assess the potential relationship between (i)
the origin of the strains and their cytotoxity and (ii) the
type of virulence factors they harbour and their level of
cytotoxity. The t-tests were used to assess the level of
cytotoxicity of each strain inside the collection as well as
the potential correlation between the type of virulence
factors they harbour and their level of cytotoxicity.

Results
Distribution of enterotoxin and emetic toxin-encoding
genes among B. cereus collection
In order to characterize the virulence potential of food-
borne B. cereus group bacteria in Tunisia, 174 isolates
from different kinds of foods were screened by PCR for
the presence of nine diarrhoeal toxin-encoding genes
(hblABCD complex, nheABC complex, bceT, and cytK
and its variants) and one emetic toxin-encoding gene
(ces). At least one gene of each NHE and HBL com-
plexes was detected in 100 and 59.2% of strains, respect-
ively. The enterotoxin genes detected among B. cereus
isolates were, in decreasing order, nheA (98.9%), nheC
(97.7%) and nheB (86.8%) versus hblC (54.6%), hblD
(54.6%), hblA (29.9%) and hblB (14.9%), respectively for
the NHE and HBL complexes.
The genetic determinants of the NHE complex were

shown to be the most common genes detected inside
the collection. All three genes of the NHE complex were
detected in 84.5% (147/174) of the collection. The pres-
ence of two genes was observed in 14.4% (25/174) of the
collection, while 1.1% (2/174) of the collection
harboured only one gene (Table 2). The four genes en-
coding the HBL complex were detected in 13.8% (24/174)
of the collection, three genes were present in 22.4% (39/
174) of the collection; 14.4% (25/174) were positive for
two genes, 8.6% (15/174) had a single gene of the complex,
while 40.8% (71/174) had no HBL genes (Table 2). The
cytK gene was present in 37.9% of the strains but further
testing revealed that strains harbouring the cytK gene
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belonged to the cytK-2 type. None of the B. cereus strains
haboured the cytK-1 variant.
The bceT and ces genes were present in 50.6 and 4%

of the collection, respectively (Table 2).
The virulence genes were widely distributed regardless

the origin of the strains, except for the emetic toxin-en-
coding gene (ces) that was only detected in the strains
coming from cooked poultry meat, cooked food, pastry
products and spices. All isolates presented at least one
of the genes investigated. The virulence genes distribu-
tion revealed a toxigenic diversity among B. cereus group

isolates (Table 3). Twelve groups (G1 to G12) are com-
piled in Table 3.

Cytotoxic activity of B. cereus strains on Caco-2 cells
Each of the 174 isolates was able to grow in BHI-YE.
The average bacterial population was 8 ± 0.3 and 7 ± 0.5
log10 CFU/ ml after 18 h and 5 d incubation at 30 °C,
respectively (results not shown). The percentage of cyto-
toxic strains observed after 18 h incubation (70.7%) was
twice the one observed after 5 d incubation (35%) in
BHI-YE at 30 °C (results not shown).

Table 2 Total distribution of virulence genes in B. cereus strains collection (n = 174) isolated from foodstuffs in Tunisia

Toxigenic
genes

No. (%) of strains positive for target gene(s)

Cooked
food
(n = 42)

Pastry
products
(n = 37)

Cereal
products
(n = 23)

Cooked
poultry meat
(n = 18)

Spices
(n = 17)

Seafood
products
(n = 11)

Canned
products
(n = 9)

Raw poultry
meat
(n = 8)

Fresh-cut
vegetables
(n = 5)

Dairy
products
(n = 4)

Total
(n = 174)

HBL gene complexes

hblC 1 (2.4) 4 (10.8) 1 (4.3) 1(5.6) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 7 (4.0)

hblD 3 (7.1) 0 (0.0) 1(4.3) 0 (0.0) 1 (5.9) 1 (9.1) 0 (0.0) 2 (25.0) 0 (0.0) 0 (0.0) 8 (4.6)

hblA+
hblC

1 (2.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.6)

hblC+
hblD

7 (16.7) 8 (21.6) 2 (8.7) 0 (0.0) 0 (0.0) 1 (9.1) 2 (22.2) 0 (0.0) 3 (60.0) 1 (25.0) 24 (13.8)

hblA+
hblC+
hblD

5 (11.9) 4(10.8) 2 (8.7) 3 (16.7) 7 (41.2) 4 (36.4) 0 (0.0) 1 (12.5) 1 (20.0) 0 (0.0) 27 (15.5)

hblB+
hblC+
hblD

2 (4.8) 3 (8.1) 1(4.3) 2 (11.1) 1 (5.9) 1 (9.1) 1 (11.1) 1 (12.5) 0 (0.0) 0 (0.0) 12 (6.9)

hblA+
hblB+
hblC+
hblD

6 (14.3) 8 (21.6) 5 (21.8) 2(11.1) 3 (17.6) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 24 (13.8)

None
detected

17 (40.4) 10 (27.0) 11 (47.8) 10 (55.6) 5 (29.4) 4 (36.4) 6 (66.7) 4 (50.0) 1 (20.0) 3 (75.0) 71 (40.8)

NHE gene complexes

nheA 1 (2.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.6)

nheB 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (5.9) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.6)

nheA+
nheB

9 (21.4) 4(10.8) 1(4.3) 1(5.6) 1 (5.9) 2 (18.2) 0 (0.0) 3 (37.5) 0 (0.0) 1 (25.0) 22 (12.6)

NheA+
nheC

2 (4.8) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (1.1)

nheB+
nheC

1 (2.4) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.6)

nheA+
nheB+
nheC

29 (69.0) 33 (89.2) 22 (95.7) 17 (94.4) 15
(88.2)

9 (81.8) 9 (100.0) 5 (62.5) 5 (100.0) 3 (75.0) 147
(84.5)

None
detected

0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Other genes

cytK 13 (30.1) 15 (40.54) 9 (39.1) 6 (33.3) 9 (52.9) 8 (72.7) 3 (33.3) 1 (12.5) 1 (20.0) 1 (25.0) 66 (37.9)

bceT 17 (40.4) 20 (54.1) 14 (60.9) 9 (50.0) 10
(58.8)

10 (90.9) 2 (22.2) 5 (62.5) 1 (20.0) 0 (0.0) 88 (50.6)

ces 2 (4.8) 1 (2.7) 0 (0.0) 3 (16.7) 1 (5.9) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 7 (4.0)
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Cytotoxicity and strains origins
A significant correlation is found regarding the cytotox-
icity and the source of strains (F- test, p < 0.05). As
compared to strains isolated from spices, a significant
dispersion of cytotoxic activity has been reported for
strains isolated from fresh cut vegetables, cereals or dairy
products (p < 0.05). Cytotoxic activity was comparable in
all strains when isolated from cooked and raw poultry
meat, canned products, pastry products and cooked
foods (p > 0.05). For strains isolated from seafood and
spices, the level of cytotoxicity was significantly influ-
enced by the incubation time of the bacterial culture
(p = 0.0004). After 18 h of incubation, a significant differ-
ence in cytotoxic activity was observed. However, after 5
days of incubation, cytotoxicity was found to be compar-
able (p > 0.05, p = 0.09) (results not shown).

Cytotoxicity and virulence gene profiles
The involvement of several known virulence factors in
the cytotoxicity on Caco-2 cells was evaluated. The pres-
ence of the HBL genetic determinants was not related to
the cytotoxicity. Indeed, among strains possessing or not
possessing the four genetic determinants of the HBL
complex, cytotoxic and non-cytotoxic strains were
found. The percentage of cytotoxic strains harbouring
the four genes was higher after 18 h than after 5 d incu-
bation. Therefore, among the 24 strains possessing the
whole HBL genetic determinants, 79.2 and 41.7%
displayed toxicity on Caco-2 cells after 18 h and 5 d in-
cubation, respectively. Although 147 strains carried the
three genetic determinants of the NHE complex, only
68.7 and 36.7% of them were shown to be cytotoxic after
18 h and 5 d incubation, respectively. Moreover, among
the strains that lacked one or two of the genetic deter-
minants of the NHE complex, both cytotoxic and non-

cytotoxic strains were highlighted at both time of
incubation.
Several combinations of NHE and HBL genetic deter-

minants were significantly associated (t-test, p < 0.05)
with the cytotoxic activity of culture supernatants
(Table 4). The level of cytotoxicity increased significantly
(+ 12% and + 14% after 18 h and 5 d incubation, respect-
ively) when strains harbored simultaneously hblC and
nheC. The presence of hblC and nheB had a significant
positive incidence on the cytotoxicity (+ 27% and + 23%
after 18 h and 5 d, respectively). However, the presence
of nheB and the absence of hblC was associated with a
decrease of the cytotoxicity after 5 d incubation (− 17%).
The simultaneous presence of hblB and nheA signifi-
cantly correlated with the cytotoxic activity after 5 d
incubation (+ 11%). The cytotoxity of supernatent after 5
d incubation decrease by 29% when strains harbored
hblB but not nheA. The simultaneous carriage of hblD
and nheC was inversely associated with cytotoxicity. It
decreased by 8% and − 14% after 18 h and 5 d incuba-
tion, respectively.
Among the isolates that possess the cytK gene, there

were both cytotoxic and non-cytotoxic strains after 18 h
and 5 d incubation. As shown in Table 4, a significant
correlation was shown between cytotoxicity and the
combination of cytK: hblD as well as with the combin-
ation of cytK: hblB with the absence of nheC, after 18 h
incubation. Both cytK: nheC and cytK: hblC combina-
tions were inversely correlated with the cytotoxic activity
after 18 h incubation.
bceT was present in cytotoxic strains as well as in safe

strains. The simultaneous presence of bceT, nheC and
hblB was significantly associated with a lower cytotoxic
activity after 18 h (− 17%) (Table 4). However, when
bceT was present with nheC or hblD, the cytotoxicity
after 18 h incubation decreased by 12 and 6%,

Table 3 Distribution of different combinations of virulence genes in B. cereus group isolates in different groups

Group Genes presents Number of isolates % isolates in each group

G1 HBL complex, NHE complex, bceT, cytK 36(8+ 26a + 1b + 1c) 20.7

G2 HBL complex, NHE complex, bceT 29(9+ 15a + 1b + 4c) 16.7

G3 HBL complex, NHE complex, cytK 7(1+ 3a + 3c) 4.0

G4 HBL complex, NHE complex 30(4+ 16a + 10c) 17.2

G5 NHE complex, bceT, cytK 8 4.6

G6 NHE complex, bceT 13(10+ 3b) 7.5

G7 NHE complex, cytK 12(11+ 1b) 6.9

G8 NHE complex 32(30+ 2b) 18.4

G9 NHE complex, HBL complex, ces 1c 0.6

G10 NHE complex, cytK, ces 3 1.7

G11 NHE complex, bceT, ces 2 1.1

G12 NHE complex, ces 1 0.6
aLacked at least one gene of HBL complex; bLacked at least one gene of NHE complex; cLacked at least one gene of NHE & HBL complex
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respectively. After 18 h incubation, the cytotoxicity in-
creased significantly (18%) when strains harbored bceT
and hblB. When strains carried hblB but lacked bceT,
the cytotoxicity decreased significantly by 16% (Table 4).
The absence of bceT was associated with a higher cyto-
toxic activity after 18 h (+ 9%) when strains harbored
simultaneously nheC and hblB, whereas it was lower (−
17%) when strains harbored simultaneously nheC, hblB
and nheC and hblB.

After 5 d, the cytotoxicity was higher when strains
possessed simultaneously bceT and hblB (+ 10%) and
when carried bceT and nheC but not hblB (+ 6%)
(Table 4). However, the cytotoxicity was lower when
strains harbored simultaneously bceT and hblA (−
7%).
All the strains harbouring the ces gene have cytotoxic

activity against Caco-2 cells after 18 h incubation. When
ces was associated with hblC, the cytotoxicity was

Table 4 Statistical analyses of associations between the presence or absence of virulence factors and cytotoxicity on Caco-2 cells

F-test t-test

Significant
association
tested
Cytotoxicity
versus
virulence
factors

Sum Sq p-value Significant
association
tested
Cytotoxicity
versus
Presenceb/
Absencea of
virulence factors

Estimate p-value

Cytotoxicity after Cytotoxicity after Cytotoxicity after Cytotoxicity after

18 h 5d 18 h 5d 18 h 5d 18 h 5d

hblC:hblD 5562 20,994 0.0032 ** 4.57E-08 *** hblCb:hblDb ND 14 ND 4.75E-08 ***

hblCa:hblDb -10 ND 0.0034 * ND

hblC:nheB 13,568 10,441 1.58E-07 *** 0.0005 *** hblCb:nheBb 27 24 1.58E-07 *** 0.0073 **

hblCa:nheBb ND −17 ND 0.0058 **

hblC:nheC 6497 11,695 0.0002 *** 4.08E-05 *** hblCb:nheCb 12 14 0.0003 *** 4.08E-05 ***

hblD:nheC 3675 11,106 0.0058 ** 6.33E-05 *** hblDb:nheCb −8 −14 0.0058 ** 6.33E-05 ***

bceT: hblB 23,036 8048 1.12E-10 *** 0.0006 *** bceTb:hblBb 18 10 0.0002 *** 0.0006 ***

bceTa:hblBb −16 ND 3.07E-07 *** ND

nheC:bceT:hblB 11,787 6560 6.14E-06 *** 0.0085 ** nheCb:bceTb:hblBb −17 ND 0.0004 *** ND

nheCb:bceTa:hblBb 9 ND 0.004 ** ND

nheCb:bceTb:hblBa ND 6 ND 0.012 *

bceT:hblD 11,867 ND 8.99E-07 *** ND bceTb:hblDb −6 ND 8.99E-07 *** ND

bceT:nheC 4733 ND 0.0017 ** ND bceTb:nheCb −12 ND 0.0017 ** ND

ces:hblC 9828 ND 7.46E-06 *** ND cesb:hblCb −17 ND 7.46E-06 *** ND

cytK:hblD 19,045 ND 6.51E-10 *** ND cytKb:hblDb 14 ND 6.51E-10 *** ND

cytK:nheC 6617 ND 0.0002 *** ND cytKb:nheCb −12 ND 0.0002 *** ND

cytK:nheC:hblB 4501 ND 0.0095 ** ND cytKb:nheCa:hblBb 12 ND 0.011 * ND

hblC:cytK 15,874 ND 1.53E-08 *** ND hblCb:cytKb −12 ND 1.53E-08 *** ND

hblD:hblA 2417 ND 0.025 * ND hblDb:hblAb −8 ND 0.025 * ND

nheB:nheC 6500 ND 0.0012 ** ND nheBa:nheCb 27 ND 0.01 * ND

nheBb:nheCb −9 ND 0.018 * ND

bceT:hblA ND 8530 ND 0.002 ** bceTb:hblAb ND −7 ND 0.0008 ***

hblC:hblB ND 5000 ND 0.007 ** hblCb:hblBb ND −11 ND 0.007 **

nheA:hblB ND 8433 ND 0.002 ** nheAa:hblBb ND −29 ND 0.047 *

nheAb:hblBb ND 11 ND 0.025 *

cytK:hblA 3400 ND 0.029 * ND cytKb:hblAb NS ND > 0.05 ND

cytKa:hblAb NS ND > 0.05 ND

cytK:nheC:hblA 3165 ND 0.0375 * ND cytKb:nheCb:hblAb NS ND > 0.05 ND

cytKa:nheCb:hblAb NS ND > 0.05 ND
aabsence; bpresence; ND Not determined; NS Not significant (p-value≥0.05); *: significant (p-value: 0.01 to 0.05); **: very significant (p-value: 0.001 to 0.01); ***: very
significant (p-value < 0.001)
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significantly lower (− 17%) (Table 4). Moreover, no cyto-
toxic activity was found for these strains after 5 d
incubation.

Antibiotic susceptibility
The susceptibility of 174 B. cereus isolates was tested for
11 different antibiotics. The results of the antimicrobial
tests are presented in Table 5. All B. cereus strains were
fully sensitive to rifampicin, chloramphenicol, ciprofloxa-
cin, and gentamycin. The majority of the isolates were
susceptible to streptomycin (98.9%), kanamycin (96.6%),
erythromycin (95.4%), vancomycin (92%) and tetracyc-
line (85.1%). In addition, all isolates were resistant to
ampicillin (90.8%) and novobiocin (88%).

Discussion
This study revealed the toxigenic potential of B. cereus
group strains collection isolated from different kinds of
foodstuffs collected in Tunisia. The pathogenic abilities
of B. cereus group strains were evaluated by examination
of the presence of virulence factors, the cytotoxic activity
and the antimicrobial resistance.
The isolates are multi-toxigenic, harbouring at least

one gene of each NHE and HBL complexes associated
or not to bceT, cytK-2 and ces genes. The inability to
detect all genes by PCR in most isolates is due to the ex-
istence of a polymorphism in the sequences of HBL and
NHE complexes genes rather than their absence [33].
According to our results, the genes of the HBL complex
were less common than that of the NHE complex. The
low prevalence of genetic determinants of the HBL com-
plex compared to those of the NHE complex has been
demonstrated in previous studies [22, 39–41]. The inci-
dence of nhe and hbl was within the ranges described by
Ceuppens et al. [15]. They reported that 84 to 100% of

B. cereus group strains possessed nhe while hbl was de-
tected in 29 to 92% of the isolates they studied. All
(100%) the B. cereus group strains harbored at least one
gene of the NHE complex. One hundred and three
isolates (59.2%) carried at least one of the HBL genetic
determinants. Similarly, Tewari et al. [39] reported that
55.2 and 89.7% of the B. cereus strains they studied were
positive for at least one of the HBL and NHE genetic de-
terminants, respectively. These results are in contrast to
those of Ngamwongsatit et al. [42] who reported that
none of the 411 B. cereus group strains they studied
showed the presence of only a single or two genes in ei-
ther the HBL or NHE complexes. cytK was detected in
37.9% of the collection. A similar occurrence was ob-
served for strains isolated from cooked chilled food and
vegetables [33], meat products [39] and cereal products
“sunsik” [43]. However, the occurrence reaches up to
77% for strains isolated from cereal products, “sunsik”
[44], and ready to eat meals, spices, dairy products,
starches and flours [45]. The percentage of strains carry-
ing bceT (50.6%) was in agreement with the results of
Bonerba et al. [46], who demonstrated that 52% of the
isolates coming from pastries, rice samples, potato
meals, mozzarella and meat meals possessed this gene.
According to Guinebretière, et al. [33], bceT appears as
widely distributed in food-borne strains isolated from
cooked chilled food and vegetables (71%), whereas a low
occurrence of this gene was highlighted by Yang et al.
[47] in food-related B. cereus group isolates (11.8%). As
stated above, the occurrence of enterotoxin genes varies
greatly depending on the study. This variability may be
ascribed to various geographical locations, various
sources of strains and the use of various primers for
PCR assays.
Among all the strains tested in this study, only seven

strains (4%) harboured the ces gene. These strains were
detected in cooked poultry products, pastry products,
cooked food and spices. The emetic intoxication is
frequently associated with starchy foods such as rice,
noodles, pasta and mashed potato [3, 48, 49]. Further-
more, similarly to our findings, López et al. [50] and
Messelhäusser et al. [51] reported that emetic B. cereus
group strains were detected in cooked chicken and foods
such as soups, sauces, and mixed or buffet meals. How-
ever, none of the B. cereus group strains isolated from
spices possessed the emetic toxin gene (ces) in the stud-
ies of Hariram and Labbé [52] and of Fogele et al. [53].
Therefore, the prevalence of emetic B. cereus group
bacteria in different types of foods need to be further
investigated in order to decipher the potential contamin-
ation sources.
Based on the incidence of all the virulence genes

(hblABCD, nheABC, cytK, bceT and ces), B. cereus group
strains were divided into 12 different groups (Table 3).

Table 5 Antibiotic susceptibility of 174 B. cereus strains isolated
from foodstuffs in Tunisia

Antibiotics Conc.
(μg/
disc)

No. of strains (%)

Resistant Intermediate Susceptible

Rifampicin 5 0 0 174 (100)

Erythromycin 15 2 (1.2) 6 (3.4) 166 (95.4)

Chloramphenicol 30 0 0 174 (100)

Novobiocin 30 153 (88) 13 (7.5) 8 (4.5)

Ampicillin 10 158 (90.8) 11 (6.3) 5 (2.9)

Ciprofloxacin 5 0 0 174 (100)

Streptomycin 10 2 (1.1) 0 172 (98.9)

Gentamycin 10 0 0 174 (100)

Vancomycin 30 7 (4) 7 (4) 160 (92)

Kanamycin 30 0 6 (3.4) 168 (96.6)

Tetracycline 30 10 (5.7) 16 (9.2) 148 (85.1)
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This finding indicates that the B. cereus group is likely
diverse in food. The detection at least of one gene from
the HBL and/or NHE complex indicates the presence of
both nhe and hbl operons [54]. The polymorphism
among HBL and NHE complexes is the likely explan-
ation of the failure to identify all genes in most B. cereus
isolates by PCR [33]. Therfore, when strains carried at
least one toxin gene, this later could be a target marker
for screening toxigenic B. cereus group strains in food.
Emetic B. cereus group strains were heterologous at a

genotypic level. They belonged to different toxigenic
groups (G9- G12). The emetic B. cereus group strain be-
longing to the G12 group carried NHE complex genes
and not those of the HBL complex. The virulence profile
of these strains is consistent with the studies of Ehling-
Schulz et al. [35], Lee et al. [43] and Yang et al. [55],
where an absence of correlation was observed between
the presence of the ces gene and of the HBL complex
that is common in non-emetic strains.
Noteworthy, the strains belonging to the G9 group

possessed the ces gene together with incomplete NHE
and HBL complexes. Our finding is in agreement with
previous studies that detected emetic strains positive for
both ces and HBL complex genes [56, 57].
In addition to the NHE complex and the ces genes, the

emetic strains belonging to the G10 and G11 groups
possessed cytK and bceT, respectively. Similarly, previ-
ous studies [55, 58] reported that emetic strains har-
boured cytK or bceT. Thus, emetic B. cereus group
strains containing various enterotoxin genes such as
those of the NHE and HBL complexes, cytK and/or bceT
could have the potential to cause diarrheal and emetic
food poisoning simultaneously.
The majority of the B. cereus strains of the collection

(70.7%) was cytotoxic after 18 h of incubation at 30 °C.
However, the cytotoxicity decreased after 5 d incubation.
Only 35% of strains were found cytotoxic at this time of
culture. The fact that the percentage of cytotoxic strains
was lower after 5 d of incubation than after 18 h was
probably the result of dying of cells [24] and/or toxin
degradation [59]. In our collection, the percentage of
cytotoxic strains was higher than those reported by
Choma et al. [23]; Jan et al. [24]; Stenfors et al. [25] and
Techer et al. [36]. However, the comparison with the re-
sults obtained by other authors is difficult because there
is a wide diversity in the methods used to test cytotox-
icity (various cellular types, incubation times and
temperatures, etc.) and the variety of tested foods (milk,
vegetables or laboratory collections).
Based on various cellular assays, cytotoxic activity of

CytK, NHE and HBL was proven in vitro in previous
studies [18, 60–63]. Enterotoxin T showed no cytotox-
icity and could probably not contribute to food
poisoning [13].

Several studies reported that none of the virulence
factor was able individually or in combination to fully
explain the cytotoxic potential of B. cereus group bac-
teria [22, 61, 64, 65]. In contrast, our study confirmed
that different combinations of enterotoxin genetic deter-
minants are significantly associated to the cytotoxic
potential of the bacteria. Therefore, the combined and
possibly synergistic action of multiple toxins can prob-
ably explain the diarrheal syndrome related to B. cereus
group bacteria.
Among the strains that possess all of the HBL genetic

determinants, the NHE genes, bceT or cytK, were found
in both toxic as well as non-toxic strains. Therefore, as
reported by Gilois et al. [66], the presence of a virulence
gene does not guaranty the production and secretion of
the corresponding protein. Several studies reported that
the importance of the enterotoxins is determined by
their expression levels and combinations, which is strain
dependent. For example, deletion of the hbl operon or
the cytK gene in B. thuringiensis strain 407 Cry- did not
affect its cytotoxicity [67], while inactivation of the hbl
operon in B. cereus ATCC 14579 reduced the cytotoxic
and hemolytic activity [68]. After elimination of hbl
genes expression the B. thuringiensis strain still pro-
duced Nhe and CytK, while B. cereus ATCC 14579 could
only rely on its low Nhe expression.
Virulence gene expression is not only influenced by

the genetic characteristics of the strain, but also by en-
vironmental parameters, such as the food composition,
the pH and the temperature. Food products with a neu-
tral to alkaline pH, high water and starch content and an
intermediate glucose concentration pose a potential
threat, as their nutrient composition stimulates entero-
toxin and cereulide expression in the food and/or in the
small intestine [15]. The inhibitory effect on enterotoxin
production might be indirect due to growth inhibition of
B. cereus cells. Both, mesophilic and psychrotolerant B.
cereus can produce diarrhoeal and emetic toxins. Some-
times, more emetic toxin is strains produced at lower
temperatures (12–15 °C) than at 30 °C if more
incubation time is granted [69]. Higher incubation tem-
peratures (30–32 °C) generally yield higher enterotoxin
concentrations, both for psychrotrophic as mesophilic
strains [59]. However, some strains show similar toxin
production at high (32 °C) and low (10 °C) temperatures
for cultures in BHI with similar biomass [70]. Future
studies investigating the effect of environmental parame-
ters on the expression of enterotoxin genes should be
conducted by preference under conditions mimicking
the human gastrointestinal environment, because the
enterotoxin production in food before consumption is
generally not considered a major concern. Indeed, these
enterotoxins are probably completely inactivated by
cooking and gastrointestinal passage because of their
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thermolability and their sensitivity to proteolytic en-
zymes and acid pH [15]. Moreover, Gilois et al. [66] have
demonstrated that certain toxins such as CytK are un-
stable and do not persist more than 2 h in B. cereus
group culture supernatants. Consequently, further stud-
ies should be undertaken to assess the expression as well
as the stability of the toxins after secretion.
The antibiotic susceptibility of bacteria is a public

health concern. Our study has shown that B. cereus
group strains exhibited various degrees of susceptibility
against the antimicrobial agents tested. The majority of
the studied strains was resistant to ampicillin, which is in
good agreement with previous studies showing a high re-
sistance of this group to ß-lactam antimicrobials [71–73].
This last property may be correlated to the ability of the
strains to synthesis ß-lactamase, enzymes involved in the
degradation of the antibiotic [73]. In B. cereus group, the
production of β-lactamases can lead to resistance even up
to the third generation of cephalosporins [74]. Eighty-
eight percent of strains were resistant to novobiocin.
While, Aklilu et al. [26] showed that all the B. cereus
group isolates they tested showed resistance toward
Novobiocin.
Ampicillin and Novobiocin are widely used in the ani-

mal production in Tunisia. Ampicillin is used in the
treatment of septicaemias, respiratory and urinary tract
infections. It was very important in the treatment of
many diseases in a broad range of animal species. Few
economical alternatives are available. Novobiocin is used
in the treatment of mastitis in the form of intramam-
mary creams. The indiscriminate use of such antimicro-
bial agents in animal husbandry has been linked to the
development and spread of resistant bacteria into the
environment and their further transmission to humans
via the food chain could lead to serious consequences on
public health [75]. In addition, there are also human
health concerns about the presence of antimicrobial resi-
dues in animal products [76]. With the emergence of
antimicrobial resistance, the pathogenicity and virulence
of these organisms have increased and treatment options
are diminishing and also more expensive. More than
85% of the studied strains were sensitive to tetracyclin.
This value is more or less consistent with those reported
in literature. Arslan et al. [77] reported, for a collection
of 29 B. cereus group strains, a susceptibility of 89.7% of
the strains to tetracyclin. Conversely, Ankolekar et al.
[27] found a resistance to tetracycline in 98% of the
tested strains. Since B. cereus group bacteria are wide-
spread foodborne pathogens, it is important to
emphasize that antimicrobial susceptibility testing allows
to screen effective antibiotics that warrant therapy in
cases of foodborne illness.
The evaluation of the antimicrobial susceptibility of B.

cereus group bacteria to a variety of antibiotics allows a

better control of these bacteria when they are involved
in infectious diseases and subsequently a better
protection of human health. In our study, susceptibility
to the ciprofloxacin was shown in all the isolates from
food. Similar to this, Banerjee et al. (2001) [78] received
100% sensitivity to cipro-floxacin in samples from pa-
tients, and other authors obtained the same result in
testing sensitivity to ciprofloxacin in samples from food
[74, 79]. Sensitivity to ciprofloxacin is confirmed by
Jensen et al. (2001) [80] in B. cereus strains isolated
from agricultural soil in Denmark. Therefore, these
data demonstrated that ciprofloxacin is relatively ef-
fective against B. cereus group strains from different
sources as single agent.

Conclusion
This is the first report which assesses the toxigenic po-
tential of B. cereus group strains isolated from different
food matrices in Tunisia. This study evaluates the
sanitary risk potential of B. cereus group strains by
detecting and profiling virulence genes, as well as by
testing their cytotoxic activity on Caco-2 cells and their
antimicrobial susceptibility. The results showed that this
B. cereus group collection has a significant toxigenic
potential and could become problematic. In order to
prevent food poisoning due to this microorganism, fur-
ther studies could be devoted to the evaluation of the
cytotoxicity potential of the strains in more complex mi-
crobial environments such as food products stored
under different conditions.
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