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Abstract: The shoot branching pattern is a determining phenotypic trait throughout plant development.
During shoot branching, BRANCHED1 (BRC1) plays a master regulator role in bud outgrowth, and
its transcript levels are regulated by various exogenous and endogenous factors. RhBRC1 (the
homologous gene of BRC1 in Rosa hybrida) is a main branching regulator whose posttranscriptional
regulation in response to sugar was investigated through its 3′UTR. Transformed Rosa calluses
containing a construction composed of the CaMV35S promoter, the green fluorescent protein (GFP)
reporter gene, and the 3′UTR of RhBRC1 (P35S:GFP::3′UTRRhBRC1) were obtained and treated with
various combinations of sugars and with sugar metabolism effectors. The results showed a major role
of the 3′UTR of RhBRC1 in response to sugars, involving glycolysis/the tricarboxylic acid cycle (TCA)
and the oxidative pentose phosphate pathway (OPPP). In Rosa vegetative buds, sequence analysis of
the RhBRC1 3′UTR identified six binding motifs specific to the Pumilio/FBF RNA-binding protein
family (PUF) and probably involved in posttranscriptional regulation. RhPUF4 was highly expressed
in the buds of decapitated plants and in response to sugar availability in in-vitro-cultured buds.
RhPUF4 was found to be close to AtPUM2, which encodes an Arabidopsis PUF protein. In addition,
sugar-dependent upregulation of RhPUF4 was also found in Rosa calluses. RhPUF4 expression
was especially dependent on the OPPP, supporting its role in OPPP-dependent posttranscriptional
regulation of RhBRC1. These findings indicate that the 3′UTR sequence could be an important target
in the molecular regulatory network of RhBRC1 and pave the way for investigating new aspects of
RhBRC1 regulation.
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1. Introduction

Throughout their life cycle, plants have to continually adjust to the various environmental
conditions in which they are growing. The regulation of shoot branching is one important strategy
among others to preserve plant survival and optimize the yield potential of agricultural, horticultural,
and forestry crops [1,2]. Shoot branching involves a complex regulatory network based on systemic
and local interactions of many endogenous and exogenous cues that converge into the bud to modulate
its ability to remain dormant or to grow into a new shoot [3–5]. Teosinte branched1 (TB1)/BRANCHED1
(BRC1) and its orthologous genes act as integrators of branching signals within axillary buds [6].
Other so-far unidentified master regulators could exist [7].
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In monocots, Teosinte branched1 (TB1) from Zea mays [8] and its respective homologs in Oryza
sativa (OsTB1) [9] and in Sorghum bicolor (SbTB1) [10] were found to influence tillering. They encode
transcription factors containing a TCP domain, a domain composed of around fifty-nine amino acids
that allows for nuclear targeting, DNA binding, and protein–protein interactions [11–13]. TB1 and
OsTB1 are mainly expressed in axillary bud meristems, where they promote bud growth arrest [9,14]
and their respective knock-out mutants tb1 and fine culm exhibit an over-branching phenotype [8,9,15].
Similarly, BRANCHED1 (BRC1) and BRANCHED2 (BRC2) are closely related to TB1 and regulate
the branching process in Arabidopsis [16]. BRC1 expression patterns are mostly restricted to axillary
buds, anti-correlated with bud outgrowth, and brc1 mutant phenotypes are non-pleiotropic and
exclusively affect axillary bud development [16]. BRC1-like genes have also been identified in other
plant species [5].

Sugar-dependent bud growth promotion has been reported in many species including peach [16],
walnut tree [17], Rosa sp. [18,19], and sorghum [20–22]. Exogenous supply of sugars was also found
necessary to sustain bud outgrowth of one-node cuttings [19,23,24] and in planta [25,26], while plant
defoliation impaired bud growth [20,21]. Mason et al. (2014) showed that apical dominance strongly
correlated with sugar allocation to axillary buds in intact plants, revealing that apical dominance
is predominantly maintained by the intense demand of the shoot tip for sugars, and exogenous
sucrose supply through the cut petiole mimics plant decapitation and stimulates bud outgrowth [25].
Sucrose could act as a signaling entity because some non-metabolizable sucrose analogs, including
lactulose, can trigger bud outgrowth [23,27], probably via the trehalose-6-phosphate pathway in
pea [24]. Despite these findings, our knowledge is very limited regarding the molecular bases of
sugar-dependent bud outgrowth promotion. The only available data suggest that sugar might be
a central component of the branching regulatory network, since sucrose negatively regulates the
expression level of BRC1 [3,25,27]. Kebrom and Mullet (2015) demonstrated that small changes
in the photosynthetic leaf area positively affected the expression of TB1 and consequently the
propensity of tiller buds for outgrowth [28]. Using one-node cuttings of Rosa sp., Barbier et al. (2015)
demonstrated that sucrose-dependent bud outgrowth stimulation could be linked to down- and
up-regulation of strigolactone (SL, a branching-repressor hormone) signaling genes and to cytokinin
(CK, a branching-inducer hormone) synthesis, respectively [27]. CK and SL are two secondary
messengers antagonistically controlled by polarized auxin transport in the stem [29,30], and partly
integrated in the bud by the transcription factor BRC1 [3,5,16,31].

In plants, sugars also serve as signal molecules and act through an array of signaling pathways
including the sucrose, hexokinase, glycolysis/TCA-cycle, and OPPP (oxidative pentose phosphate)
pathways [32–36]. In this context, sugars regulate the expression of a large number of genes at
different levels, including the transcriptional, posttranscriptional, and posttranslational levels [36].
Many regulation processes relying on the 3′UTR sequence are considered as a powerful strategy for
many organisms to flexibly adjust their functioning in response to different inputs. In rice, analysis
of reporter mRNA half-lives of αAmy3 (α-amylase 3) demonstrated that the entire 3′UTR and the two
subdomains each functioned as destabilizing determinants in the turnover of mRNA in response to
sugar supply, and this response was assigned to the “UAUAUAUGUA” motif [37,38]. In maize, Incw1,
which encodes a cell-wall invertase, has two types of transcripts that differ by their 3′UTR length and
seemingly act as regulatory sensors of carbon starvation [39]. The 3′UTR may constitute a link between
sink metabolism and cellular translation activity in plants, although no specific 3′UTR-related motif has
been identified to date. Nicolai et al. (2006) identified 224 mRNAs, most of them posttranscriptionally
repressed by sucrose starvation, allowing the cell to quickly respond to a general decrease of its
metabolic activity [40]. Diverse RNA-binding proteins, which regulate many aspects of the RNA
metabolism, such as RNA splicing, polyadenylation, capping, modification, transport, localization,
translation, and stability, are particularly important for successful posttranscriptional regulation [41,42].
The Pumilio/FBF RNA-binding protein family (PUF family) is a large family of RNA-binding proteins
found in most eukaryotes, represented in the genomes of model organisms by multigenic families [43].
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The PUF family members take part in posttranscriptional control by binding to specific regulatory
cis-elements of their mRNA targets, and thereby lead to mRNA decay and translational repression [44].
They also act by promoting ribosome stalling and facilitating the recruitment of microRNAs (miRNAs)
and chromosomal instability [45–48].

In plants, only few investigations have been led to discover the role of the PUF protein in growth
and development. Tam et al. (2010) showed that APUM2, an Arabidopsis PUF protein, bound the RNA
of Drosophila Nanos Response Element I (NRE1) 5′-UGUAUAUA-3′ located in its 3′UTR, and that APUM1
to APUM22 could shuttle between the nucleus and the cytoplasm through an exportin1-mediated
pathway, while APUM23 and APUM24 were exclusively localized in the nucleus [44]. They also
indicated that the PUF protein was involved in many processes in plants, such as the osmotic stress
response, sugar signaling, nutrient metabolism, the drought stress response, or abscisic acid (ABA)
signaling. Using three-hybrid screening assays, Francischini and Quaggio (2009) showed that among
the 25 identified PUF members in Arabidopsis, APUM1 to APUM6 could specifically bind to the Nanos
response element sequence, which is also recognized by Drosophila Pumilio proteins [49]. They also
identified an APUM-binding consensus sequence, i.e., a UGUR tetranucleotide, which is present in all
targets of the PUF family [43]. The “non-canonical” Arabidopsis PUM23 (APUM23) binding sequence is
ten nucleotides long, contains a 5′-UUGA-3′ core sequence, and preferentially contains a cytosine in
nucleotide position 8 [50]. These investigations showed that the consensus PUF-binding motif might
be ubiquitous among eukaryotes.

The objective of the present study was to investigate whether sucrose-mediated downregulation
of RhBRC1 could involve posttranscriptional regulation through its 3′UTR sequence. Sequence analysis
of the 3′UTR of RhBRC1 showed the presence of 6 putative PUF binding core motifs (UGUR); one
of them was found in the “UAUAUAUGUA” motif similar to the motif previously reported for the
3′UTR of α-amylase 3 [37,38]. Then, the responsiveness of the RhBRC1 3′UTR to metabolizable sugars,
non-metabolizable sugars and the main effectors of glycolysis/the TCA-cycle and the OPPP was
investigated using Rosa calluses transformed with the P35S:GFP::3′UTRRhBRC1 reporter construct. We
demonstrated that the 3′UTR sequence prevailed in sugar-mediated RhBRC1 regulation. Next, twelve
PUF protein members were isolated from the Rosa chinensis genomic sequence; among them only
RhPUF4 was highly expressed in the buds of decapitated plants and in sugar-supplied in vitro-cultured
buds, indicating that RhPUF4 RNA accumulation is positively related to sugar-mediated bud outgrowth.
RhPUF4 expression was mainly and positively responsive to signals from the OPPP. RhPUF4 is quite
close to APUM2, which is highly expressed in the shoot meristem. Taken together, these results
indicate that transcription of RhBRC1 could occur in response to sucrose via its 3′UTR, partly through
OPPP-dependent upregulation of RhPUF4.

2. Results

2.1. Sucrose and Glucose Influence the Expression of RhBRC1 through Its 3′UTR

Chan and Yu. (1998a,b) showed that the abundance of α-Amylase 3in Oryza sativa was sugar-repressive
and associated with the presence of one of the two UAUAUAUGUA or UAUAUAAUGUA motifs
in its 3′UTR [38,51] (Figure S1). Based on the sugar-dependent downregulation of RhBRC1 [27], we
investigated whether its 3′UTR was also involved in this regulation. Its 3′UTR sequence contained
the same motif (UAUAUAUGUA) as the one previously reported for α-Amylase 3 as well as six
PUF-binding motifs, while the 3′UTRs of AtBRC1 and OsTB1 contain two and four PUF-binding
motifs, respectively (Figure S1). Rosa calluses were thus transformed with a construction composed
of the CaMV35S promoter, the green fluorescent protein (GFP) reporter gene upstream of the 3′UTR
of RhBRC1 (P35S:GFP::3′UTRRhBRC1, Figure 1B). A P35S:GFP::T’NOS construct was also used as a
control (Figure 1B). T’NOS is the 3′UTR of the agrobacterial nopaline synthetase gene. For this
construct, a modified NOS terminator (T’NOS) without any putative PUF-binding motif was used
(Figure 1A). The transformed calluses were first selected based on antibiotic resistance, and the
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presence of the targeted 3′UTR was confirmed by PCR-mediated DNA amplification. The transformed
calluses were then transferred to the incubation medium containing different concentrations of sugars
ranging from 10 to 200 mM, and fluorescence intensity was assessed using ImageJ software after 8 h
incubation. The 3′UTRRhBRC1-transformed calluses (P35S:GFP::3′UTRRhBRC1) were incubated on a
medium containing a soluble sugar (sucrose or glucose) for 8 h, and fluorescence strongly decreased as
sugar concentrations increased (Figure 2B). Fluorescence was highest in response to 10 mM sucrose
(the lowest sugar concentration) and lowest in response to 100 mM sucrose and 200 mM glucose.
Incubation on lactulose, a non-metabolizable sucrose analog, decreased GFP intensity (Figure 2D).
Meanwhile, the fluorescence level of the control remained almost stable in response to these sugar
concentrations, supporting that the 3′UTRRhBRC1 could be a sugar-sensitive sequence (Figure 2B,C).
Mannitol (the osmotic control) did not cause any dramatic change in the fluorescence intensity of
either the control or the 3′UTRRhBRC1-transformed calluses, except when its concentration was as high
as 200 mM (Figure 2A). These findings support our initial assumption that the 3′UTR sequence of
RhBRC1 could mediate sugar-dependent RhBRC1 repression through a posttranscriptional process.
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Figure 2. Levels of 3′UTRRhBRC1-transformed calluses (P35S:GFP::3′UTRRhBRC1) as compared to T’NOS-
transformed calluses (P35S:GFP::T’NOS) following different sugar treatments. (A–C) Fluorescence levels
of 3′UTRRhBRC1- and T’NOS-transformed calluses treated with different mannitol, sucrose or glucose
concentrations, respectively. (D–F) Fluorescence levels of 3′UTRRhBRC1- and T’NOS-transformed
calluses treated with different lactulose, mannose, and 3-OMG concentrations, respectively. Data are
means ± SEs of three measurements, and each measurement was performed on six Rosa calluses. The
letters indicate significant differences between the different treatments with p < 0.05.

2.2. The 3′UTR of RhBRC1 Responds to Glycolysis/TCA-Cycle and OPPP Signaling

When the 3′UTRRhBRC1-transformed calluses were incubated on a medium containing different
concentrations of mannose (a slowly metabolizable glucose analog) for 8 h, no significant decrease of
fluorescence intensity was observed as the mannose concentration increased (mannose is a marker of
the hexokinase dependent pathway) (Figure 2E). Similar results were found with 3-O-methyl-glucose
(3-OMG, Figure 2F), a marker of the hexokinase-independent pathway [23]. Hexokinase is an
important enzyme that catalyzes the transformation of glucose into glucose-6-phosphate. We then
checked whether the downstream hexokinase pathway, glycolysis/the TCA-cycle, and the OPPP
were involved in sugar-mediated posttranscriptional regulation of RhBRC1 through its 3′UTR. The
regulation of 3′UTRRhBRC1 callus activity by sucrose metabolism pathways was investigated using
2-deoxyglucose (2-DOG), an inhibitor of glycolysis [52,53], and 6-aminonicotinamide (6-AN), an
inhibitor of the OPPP [35,54,55] on sucrose-supplied media [35,56]. Were also tested glycerol that
fuels the downstream part of glycolysis while inhibiting glucose-6-phosphate isomerase to form
glucose-6-phosphate that is required for the OPPP (Figure 3A), and 6-phosphogluconate that fuels
the downstream part of glycolysis and the OPPP (Figure 3A). Sucrose is required to produce glucose
and glucose-6-phosphate, the precursors of glycolysis/the TCA-cycle and the OPPP, respectively
(Figure 3A). When the 3′UTR RhBRC1-transformed calluses were co-treated with 100 mM sucrose
+ 0.5 mM 2-DOG, fluorescence was significantly lower and increased progressively, but not very
sharply, to reach its highest level with 100 mM sucrose + 5 mM 2-DOG (Figure 3B). Glycerol treatment
confirmed these results: The fluorescence of the 3′UTRRhBRC1-transformed calluses decreased slightly
and significantly to reach its lowest level under 30 mM glycerol, but increased slightly again under
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50 mM glycerol (Figure 3C). Under the same experimental conditions, the control transformed calluses
exhibited no significant change in fluorescence intensity, supporting a potential role of the 3′UTR in
the mediation of glycolysis/TCA-cycle-dependent downregulation of RhBRC1. The treatment of the
3′UTRRhBRC1-transformed calluses with different concentrations of pyruvate, derived from glycolysis,
also confirmed this conclusion (Figure S2A).
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of RhBRC1 through its 3′UTR. (A) Different effectors function at the level of different enzymes in
the primary metabolism; (B,D) fluorescence levels of 3′UTRRhBRC1- and T’NOS-transformed calluses
in response to 100 mM sucrose and different 2-DOG or 6-AN concentrations, respectively; (C,E)
fluorescence levels of 3′UTRRhBRC1- and T’NOS-transformed calluses in response to different glycerol
or 6-AN concentrations, respectively. GPI, glucose-6-phosphate isomerase; GPD, glucose-6-phosphate
dehydrogenase; 6-PG, 6-phosphogluconate, Suc, sucrose. Data are means ± SEs of three measurements,
and each measurement was performed on six Rosa calluses. The letters indicate significant differences
between the different treatments with p < 0.05.
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To determine whether the OPPP could lead to the posttranscriptional regulation of RhBRC1
through its 3′UTR, 6-AN and 6-phosphogluconate (6-PG) were selected to treat the transformed
calluses. When the 3′UTRRhBRC1 calluses were placed on 100 mM sucrose + different concentrations
of 6-AN (from 0.5 to 5 mM), fluorescence increased as the 6-AN concentration increased. With
the same sucrose concentration (100 mM), the highest fluorescence corresponded to the calluses
incubated on 5 mM 6-AN and the lowest one to the calluses incubated on 0.5 mM 6-AN (Figure 3D).
The opposite fluorescence pattern was found when 3′UTRRhBRC1 calluses were supplied with 6-PG,
a substrate of the OPPP: Fluorescence increased as the 6-PG concentration decreased (Figure 3E).
More interestingly, when the calluses were co-treated with 1mM 2-DOG and different concentrations
of glucose-6-phosphate (glycolysis/the TCA-cycle are blocked by 2-DOG, and glucose-6-phosphate
preferentially fuels the OPPP), the fluorescence level of the 3′UTRRhBRC1 calluses changed significantly,
and consistently decreased as the glucose-6-phosphate concentration increased (Figure S2B). Under the
same experimental conditions, no significant changes in the fluorescence level of the control-transformed
calluses was found, supporting that this regulation was specific to the 3′UTR of RhBRC1, which plays
a major role in the OPPP-dependent posttranscriptional regulation of RhBRC1.

2.3. Identification of PUF Family Members in Rosa Chinensis

The PUF family is mainly involved in posttranscriptional control by binding to specific regulatory
cis-elements that contain a UGUR (R: purine) flanked by an AU-rich sequence. Through this interaction,
they govern RNA decay and translational repression [44]. Based on the presence of 6 putative
PUF-binding core motifs in the 3′UTR of RhBRC1 (Figure 1A), we hypothesized that PUF proteins
might mediate the posttranscriptional regulation of RhBRC1 in response to sugar. The phylogenetic
analysis of the identified RcPUF (Rosa chinensis PUF) proteins was performed using MEGA7.0 software.
According to previous studies, the PUF family includes 26 members in Arabidopsis, which can be
grouped into five subfamilies through phylogenetic analysis [44] (Figure 4A). In Rosa chinensis, we only
identified twelve PUF members based on the genome sequence from GDR database [57–59], which is
far less than in Arabidopsis. The PUF protein members can be classified into four groups (Figure 4A),
and their gene length varies from 2000 bp to 5000 bp (Figure 4B). Moreover, out of these twelve PUF
members, eleven of them contain eight PUF repeats, and only RC7G0558100 contains seven PUF
repeats (Figure S3).

2.4. The Transcription Level of RhPUF4 Is Regulated by Sugar

To check whether PUF family proteins could be involved in sucrose-induced bud outgrowth,
the expression patterns of all twelve RhPUFs (Rosa hybrida PUFs) were investigated by RT-PCR in
in vitro-cultured buds supplied with 100 mM sucrose (for non-dormant buds) or 100 mM mannitol (for
dormant buds) for 24 h. We identified a homologous gene of Arabidopsis PUF genes from the complete
sequence of Rosa chinensis, and we named it RhPUF. Using specific primers for each PUF member
(Table 1), only RhPUF4 (RC5G0568300) showed a high expression level in 100 mM sucrose-supplied
buds, while hardly any expression was observed in 100 mM mannitol-supplied buds (Figure S4).
Furthermore, the expression level of RhPUF4 increased in a sucrose concentration-dependent manner,
supporting the presence of a sugar-inducible gene in growing buds (Figure 5C). Then, we checked
the transcription pattern in sucrose- and mannitol-treated calluses. The result confirmed that the
transcription level of RhPUF4 was also dependent on the sucrose concentration, but not on the mannitol
concentration (Figure S5A,B). The time course of RhPUF4 expression in the early stage, prior the
onset of rapid bud growth, showed that RhPUF4 was early (highest level after 10 h) and temporarily
expressed in 100 mM sucrose-supplied buds (non-dormant ones), as compared to those supplied with
100 mM mannitol (dormant buds, Figure 5B). In line with this, RhPUF4 was found more expressed in
non-dormant buds (released from apical dominance) than in dormant buds (under apical dominance)
(Figure 5A). The RhPUF4 transcription pattern was inversely correlated with the transcription level of
RhBRC1 in the early stage of bud outgrowth: Its level was lowest in the buds with a high expression
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level of RhBRC1 and highest in the buds with a low expression level of RhBRC1 (Figure 5). Taken
together, these findings show that RhPUF4 expression is early and highly expressed in non-dormant
axillary buds, and is negatively correlated with RhBRC1 expression.
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Figure 4. Identification of PUF members in Rosa chinensis. (A) Phylogenetic tree of PUF members
in Arabidopsis thaliana and Rosa chinensis. The maximum likelihood analysis in the MEGA program
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databases, respectively. (B) Gene structure dynamics of PUF members in Rosa chinensis. The gene
structures of RcPUF members were obtained using GSDS software (http://gsds.cbi.pku.edu.cn/).

Table 1. Specific PCR primers of each RhPUF member.

Gene Name Sequence

PrRhPUF1.
Forward 5′ GAGGAACATGAGTGGAGGTCT 3′

Reverse 5′ CATTTGAAGGCTAAGGGTCAG 3′

PrRhPUF2
Forward 5′ TGCCCTACCAGAACGGTTTA 3′

Reverse 5′ CAGCAAGAGCCTGACAACACT 3′

PrRhPUF3
Forward 5′ ATGGCTTAGGTGGGTTTGGT 3′

Reverse 5′ ACTGACAATGCCGTCTGGAA 3′

PrRhPUF4
Forward 5′ CTTGAAACAGCCACTACGGA 3′

Reverse 5′ GGTCATCACAAGTCTCCAACAC 3′

https://www.rosaceae.org/
https://www.arabidopsis.org/
http://gsds.cbi.pku.edu.cn/
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Table 1. Cont.

Gene Name Sequence

PrRhPUF5
Forward 5′ TCAGGTCCTCTTCTTGTCCG 3′

Reverse 5′ TCCCTTTCAGTGCCTTATTCC 3′

PrRhPUF6
Forward 5′ ATGCAGCACATGCTCTGG 3′

Reverse 5′ TAAGTTGGTTCGTCAATTCGT 3′

PrRhPUF7
Forward 5′ AGCGTCCAATCATGCCACTAG 3′

Reverse 5′ ATACTGGTCCTGAGCAAGAGCA 3′

PrRhPUF8
Forward 5′ TAGTGGCAGTTCAGGCAATC 3′

Reverse 5′ TCCATCCGTCCCTGTTAGTC 3′

PrRhPUF9
Forward 5′ TCTTGCACTAAGATGCCAATG 3′

Reverse 5′ CAGCTTATCTCGATGTCTCCC 3′

PrRhPUF10
Forward 5′ ATACAAAGCCATTGCCTCAG 3′

Reverse 5′ CTTGCAGATCAATCGGTCTC 3′

PrRhPUF11
Forward 5′ TGCACAATATGGTGCGAGTG 3′

Reverse 5′ CCTCTTTGAAAACAGACGCCT 3′

PrRhPUF12
Forward 5′ GCAGCGATAACCAGTTAGGC 3′

Reverse 5′ TCTCTCAGCTCCAAACATATGC 3′
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Figure 5. RhPUF4 expression is under the control of sucrose and the sucrose metabolism, and has
an opposite expression pattern to RhBRC1. (A) Transcription levels of RhPUF4 and RhBRC1 in buds
before decapitation (BD) or after decapitation (AD); (B) transcription levels of RhPUF4 and RhBRC1
in in vitro-cultured buds after 0 h, 10 h, and 24 h under 100 mM of sucrose or 100 mM mannitol; (C)
transcription levels of RhPUF4 and RhBRC1 in buds treated with different sucrose concentrations.
Mtl, mannitol; Suc, sucrose. Data are means ± SEs of three replicates. The letters indicate significant
differences between the different treatments with p < 0.05.
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2.5. The Transcript Level of RhPUF4 Is More Likely to Be Sensitive to OPPP Signaling

To further investigate the relationship between RhPUF4 and sugar-dependent posttranscriptional
regulation of RhBRC1, we investigated its transcript levels in buds treated with the glycolysis/TCA-cycle
effector 2-DOG, as we did for the transformed Rosa calluses (Figure 3B). When buds were co-supplied
with sucrose and 2-DOG, the RhPUF4 level did not significantly change under 10 mM sucrose, while
it unexpectedly decreased under 100 mM sucrose (Figure 6A). In accordance with this, buds only
supplied with glycerol or pyruvate, two compounds in glycolysis/the TCA-cycle, did not exhibit
significant changes in RhPUF4 transcript levels (Figure 6B,C). In order to check whether RhPUF4
regulation was dependent on OPPP signaling, RhPUF4 transcription levels were investigated in buds
directly in response to OPPP inhibition (sucrose-fed buds supplied with 5 mM 6-AN) or to OPPP
activation (buds supplied with 6-PG, a direct substrate of the OPPP). The in-vitro-cultured buds treated
with 5 mM 6-AN exhibited higher downregulation of RhPUF4 under a low (10 mM) than under an
elevated (100 mM) sucrose concentration (Figure 6D). Furthermore, 6-PG treated buds displayed a
concentration-dependent response of RhPUF4 transcript levels. The highest level of RhPUF4 was
indeed found when the buds were supplied with 10 mM 6-PG, relatively to 0.1 mM 6-PG (Figure 6F).
To confirm this result, the transcript levels of RhPUF4 were assessed in in-vitro-cultured buds co-treated
with 2-DOG (a blocker of glycolysis/the TCA-cycle) and glucose-6-phosphate (used in the OPPP). When
1 mM 2-DOG-supplied buds were supplied with a gradient of concentrations of glucose-6-phosphate
(from 0 to 5 mM) to preferentially activate the OPPP, the transcript level of RhPUF4 increased in
a concentration-dependent manner and reached its maximum under 5 mM glucose-6-phosphate
(Figure 6E). Moreover, the transcription level of RhPUF4 in calluses was also more sensitive to the
OPPP than to glycolysis (Figure S5C). In addition, exogenous addition of glycerol to 6-PG treated buds
did not affect the RhPUF4 level (Figure 6G), supporting once again that the transcript level of RhPUF4
could be highly sensitive to the OPPP.

2.6. RhPUF4 Could Bind to the 3′UTR of RhBRC1 and Promote Plant Growth

In order to know whether RhPUF4 could bind to the 3′UTR of RhBRC1, the NCBI database was
used to find the homologous gene of RhPUF4 in Arabidopsis. The BLAST result showed that APUM2
(AT2G29190) was a homologous gene of RhPUF4, with a high query cover (99%), a high percent identity
(61.76%), and a low E-value (0.0). Moreover, our phylogenetic tree also confirmed that RhPUF4 and
APUM2 belong to a same cluster (Figure 4A). APUM2 is involved in cell differentiation and highly
expressed in the shoot meristem in Arabidopsis [60]. It has a high binding affinity to a conserved
sequence that contains a core UGUR motif flanked with an NRKR motif [49,50]. Moreover, we also
found the UGURNRKD motif in the 3′UTR of RhBRC1 (Figure 1A). In order to know whether RhPUF4
could also respond to the same motif, we used the SWISS-MODEL database [61,62] to predict the
tertiary structure of RhPUF4 and APUM2. The result showed that its structure had a high QMEAN
(qualitative model energy analysis) value (−1.47 and −1.45, respectively, Figure 7A,B), and both of
them had a conserved eight-pumilio-repeats domain (Figure 7A,B). Furthermore, the WoLF PSORT
database was used to predict the subcellular localization of RhPUF4 [63]. This analysis indicated that
RhPUF4 was located in the nucleus and the cytoplasm. Both results supported that RhPUF4 and
APUM2 could bind to the same motif in the 3′UTR, probably based on their conserved PUF motif. In
order to get an insight into the function of RhPUF4 during plant development, we overexpressed its
close homolog APMU2 in Arabidopsis. The transgenic Arabidopsis plant was more elongated and had a
thicker and longer stem than the wild type (Figure 7C). Lastly, the apum2 knockout mutant exhibited a
thinner and shorter stem and no bud outgrowth as compared to the wild type (Figure 7C).
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sensitive to the OPPP in in-vitro-cultured buds. (A,D) Transcript levels of RhPUF4 in buds treated with
10 mM and 100 mM sucrose in the presence or in the absence of 5 mM 2-DOG or 6-AN, respectively;
(B,C) transcript levels of RhPUF4 in buds treated with different concentrations of glycerol or pyruvate,
respectively; (E) transcript levels of RhPUF4 in buds treated with 1 mM 2-DOG and different concentrations
of glucose-6-phosphate; (F) transcript levels of RhPUF4 in buds treated with different concentrations of
6-PG. (G) Transcript levels of RhPUF4 in buds treated with different combinations of glycerol and 6-PG.
Glc-6P, glucose-6-phosphate; 6-PG, 6-phosphogluconate. Data are means ± SEs of three replicates. The
letters indicate significant differences between the different treatments with p < 0.05.

3. Discussion

3.1. Involvement of the 3′UTR Region in Sugar-Mediated Downregulation of RhBRC1

BRC1 and its homologous genes play a central role in shoot branching and are downregulated by
sugars [5]. We showed that one of the mechanisms behind the sucrose-dependent downregulation of
RhBRC1 occurred through its 3′UTR sequence, which contains six putative PUF motifs, with one of
them present in the reported sugar-related motif (UAUAUAUGUA) (Figure 1A). BRC1 is regulated
at different levels, including the posttranscriptional level, as evidenced by microRNA393-dependent
repression of OsTB1 and stimulation of tillering in rice [64]. Protein interactions also participates in
this process: BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of
the axillary meristems [65], and TIE1 (TCP interactor containing EAR motif protein 1) can directly
interact with BRC1 and repress its binding efficiency [66]. In addition, the expression of some TCP
transcription factors belonging to the same family as BRC1 is regulated through posttranscriptional
regulation [67,68]. In Arabidopsis, miRNA319 can target many TCP transcription factors in response to
ABA and CK [69,70]. The 3′UTRs of certain genes are also under SL control. For example, miR156
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targets the 3′UTR of the SL-related genes SPL3, SPL9, and SPL15, to regulate shoot branching [71–73].
In the present study, exogenous supply of sucrose or glucose indeed decreased the fluorescence of
the P35S:GFP::3′UTRRhBRC1-transformed calluses in a concentration-dependent manner (Figure 2A),
while no effect was observed on the control P35S:GFP::T’NOS-transformed calluses (Figure 2A). In
line with this, no effect of mannitol was found in either type of transformed callus (Figure 2A). The
involvement of the 3′UTR in sugar signaling is limited to cases related to sugar abundance [39,51], and
the 3′UTR may constitute a link between the organ metabolism and sugar availability in plants. The
exact motif involved in sugar-mediated posttranscriptional regulation is still unknown, but a role of
the UAUAUAUGUA sequence has been reported in posttranscriptional sugar-dependent regulation
of α-amylase 3 [38]. Interestingly, this 3′UTR motif exists in RhBRC1, supporting that it is conserved
between monocots (Oryza sativa) and dicots (Rosa hybrida). However, it is absent in AtBRC1 and
OsTB1 (Figure S1). It will be more informative to further test whether AtBRC1/TB1 could be under
sugar-dependent post-transcriptional regulation.
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3.2. Posttranscriptional Regulation of RhBRC1 by Sucrose Is Mainly Mediated through the OPPP

The 3′UTR of RhBRC1 is sensitive to sucrose and lactulose (its non-metabolizable analog), which
both induce bud outgrowth and repress RhBRC1 expression in Rosa buds [27]. While a significant
decrease occurred in the P35S:GFP::3′UTRRhBRC1 -transformed calluses in response to glucose, no
significant decrease occurred in response to mannose, a glucose analog linked to the hexokinase
(HXK) signaling pathway [23]. This suggests a minor role of this pathway in the glucose-mediated
posttranscriptional regulation of RhBRC1. Downstream of HXK, glycolysis/the TCA-cycle and the OPPP
are the two most important sugar metabolism pathways. They provide energy for plant development,
precursors for amino acid synthesis, and signaling molecules for modulating certain pathways [74,75].
Moreover, they are also involved in the regulation of microRNAs, transcription factors, and in the
crosstalk with hormonal, oxidative, and defense signaling [76]. We show here that the two sucrose
metabolism pathways (glycolysis/the TCA-cycle and the OPPP) regulate RhBRC1 abundance at different
magnitudes at the posttranscriptional level. The fluorescence level of the P35S:GFP::3′UTRRhBRC1
-transformed calluses indicated that the 3′UTR of RhBRC1 was slightly but significantly sensitive to
glycolysis/the TCA-cycle (Figure 3B,C). Although the sucrose- and 2-DOG- co-treated 3′UTRRhBRC1
calluses displayed increased fluorescence in a 2-DOG-concentration-dependent manner, this difference
remained only slightly statistically significant. The same results were also found in the glycerol-
and pyruvate-treated 3′UTRRhBRC1-transformed calluses, indicating that glycolysis and the related
TCA-cycle-dependent RhBRC1 expression could be mildly mediated through its 3′UTR. By contrast to
glycolysis, the 3′UTR of RhBRC1 was found to be significantly responsive to the OPPP (Figure 3D,E).
The fluorescence of the 3′UTRRhBRC1-transformed calluses was indeed activated or inhibited by 6-AN
(an OPPP blocker) and 6-PG (an OPPP substrate), respectively. In accordance with this, the combination
of 2-DOG (a blocker of glycolysis) and glucose-6-phosphate (preferentially used by the OPPP in the
presence of 2-DOG) reduced the fluorescence of the 3′UTRRhBRC1 calluses. All these findings were
specific to the 3′UTRRhBRC1 calluses; no significant modification of fluorescence was found in the control
transformed calluses. In eukaryote cells, many factors are related to posttranscriptional regulation,
such as RNA-binding proteins, microRNAs, protein phosphorylation, or methylation [41,77,78]. Some
posttranscription-related mechanisms are believed to be involved in the OPPP. For example, TOR kinase
can mediate the upregulation of G6PD (glucose-6-phosphate dehydrogenase, one of key enzymes of
the OPPP) and the activity of TOR kinase is probably under the positive regulation of NADPH, a
product of the OPPP [79,80]. A recent study showed that TOR kinase could phosphorylate APUM2 in
Arabidopsis [81]. Moreover, microRNA124 and Hsp27 in Homo sapiens have also been reported to be
involved in the OPPP [82,83]. To date, the involvement of the OPPP in posttranslational control has
not been documented in plants; our results open the way onto this novel mechanism in relation with
shoot branching.

3.3. Involvement of RhPUF4 in Posttranscription of RhBRC1 Mediated by the OPPP

The OPPP and glycolysis decreased the expression of RhBRC1 through its 3′UTR, even if glycolysis
had a weak effect (Figure 3). However, the posttranscriptional regulation between sugar metabolism
signaling and the 3′UTR of RhBRC1 still remains unknown. The regulatory regions within the
3′UTR can influence mRNA polyadenylation, translation efficiency, localization, and stability [84].
RNA-binding proteins that can bind to those cis-elements are key players in the control of mRNA
stability, translation, and localization [43]. In addition, the functional characterization of RNA-binding
proteins has showed that these proteins possess several conserved motifs and domains such as
RNA-recognition motifs (RRMs), zinc fingers, K homology (KH) domains, DEAD/DEAH boxes (highly
conserved (Asp-Glu-Ala-Asp) motifs in RNA helicases), pentatricopeptide-repeat (PPR) domains, and
PUF domains [42]. Among the domains mentioned above, the PUF protein can bind cis-elements
that contain a UGUR (R: purine) motif [85,86]. Sucrose-supplied in-vitro-cultured buds exhibited a
high ability to grow out, coupled with downregulation of RhBRC1 [27] and upregulation of RhPUF4
(Figure 5). At the plant scale, RhPUF4 was more abundant in non-dormant buds than in dormant
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ones. This sucrose-mediated RhPUF4 was tightly linked to the OPPP in buds (Figure 6D–F) as well
as in calluses (Figure S5). These findings support that the RhPUF4 level is more likely controlled
by an OPPP signal, and is stimulated when the OPPP is active and buds can grow out. It is thus
tempting to speculate that RhPUF4 may act as a mediator between the OPPP and the 3′UTR of RhBRC1
(Figure 8). This is supported by the fact that RhPUF4 is closely related to APUM2 (Figure 4A), which
has a high binding affinity to a conserved sequence containing a core motif of UGUR flanked by an
NRKR motif [49,50]. Moreover, that motif also exists in the 3′UTR of RhBRC1 (Figure 1A). In that
condition, OPPP-mediated upregulation of RhPUF4 can reduce mRNA stability and/or translation of
RhBRC1 by binding to its own 3′UTR.

While the transcription level of RhPUF4 is regulated by the OPPP, it might not be
regulated by glycolysis. Buds treated with sucrose + 2-DOG, glycerol, or pyruvate exhibited
no significant modification of RhPUF4 levels. It seems that RhPUF4 may not be mediated by
glycolysis/TCA-cycle-dependent signals, and this arises the question of the involvement of another
posttranscriptional player. One possible candidate could be a microRNA; in Homo sapiens some
microRNAs are regulated by glycolysis and regulate their target genes [87,88].
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Figure 8. RhPUF4 could bind the 3′UTR of RhBRC1 to regulate its expression. There exist putative
PUF-binding sites in the 3′UTR of RhBRC1. APUM2 proteins can recruit the Ccr4-Not complex to
the 3′UTR of target mRNAs and enhance the degradation of target mRNAs by cutting the poly(A)
tail [89–91]. Moreover, the transcription of RhPUF4 is stimulated by the OPPP, which is itself enhanced
by sucrose. Blue line means protein interaction. Dashed line means indirect effect.

Our findings highlight a new mechanistic link between sugar availability and the regulation of
BRC1, a major hub of shoot branching regulation, and pave the way for investigating the prevalence of
this regulation in interaction with the main shoot-branching-related hormones.

4. Materials and Methods

4.1. Cloning and Transformation

To isolate the 3′UTR of RhBRC1 (207 bp), genomic DNA was extracted from leaves of a
Rosa hybrida knock out mutant using a NucleoSpin Plant II kit (Machery-Nagel Inc., Düren,
Germany). A primer pair (Pr3′UTRs: 5′-CACCTAACACCGCGATGAATATCGATC-3′ and
Pr3′UTRas: 5′-AATGAGAAAGGTGGAAATTAGGTAG-3′) was designed to amplify the 3′UTR
sequence. The 4-base-pair sequence (CACC) required for directional cloning in pENTR was
added on the 5′ end of the forward primer. To isolate the NOS-terminator-modified sequence,
a 256-bp sequence was designed with two modifications within NOS terminator: G103C and
G117C. The sequence was cloned into a pEx-A2 vector provided by EUROFINS (Luxembourg,
Luxembourg). A primer pair (NOS-Ts: 5′-CACCTAAGATCGTTCAAACATTTGGCA-3′ and NOS-Tas:
5′-GATCTAGTAACATAGATGACACCGC-3′) was designed to amplify the sequence from the modified
pEx-A2-Nos-T. The 4-base-pair sequence (CACC) required for directional cloning in pENTR was added
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on the 5′ end of the forward primer. To isolate CDS of APUM2 (2033 bp), total Arabidopsis RNAs
were extracted from two-week-old Arabidopsis thaliana Col-0 seedlings using an RNeasy Plant Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. cDNA was obtained by
reverse transcription performed on 1 µg of RNA using SuperScript III Reverse Transcriptase (Invitrogen,
Carlsbad, USA). cDNAs from two-week-old Arabidopsis thaliana Col-0 seedlings were used as templates
to amplify APUM2 with a specific primer pair (APUM2_F: 5′-CACCATGATACCGGAACTGGGGAG-3′

and APUM2_R: 5′-TTACGCCATCTGAGGCTGG-3′). PCR amplifications were carried out by initial
denaturation at 98 ◦C for 30 s followed by 35 cycles of 98 ◦C denaturation for 30 s, 60 ◦C annealing for
30 s, and 72 ◦C elongation for 2 min, with a final extension step at 72 ◦C for 10 min. The 20-µL reaction
mixture for the PCR consisted of an aliquot of 35 ng of DNA template, 0.2 mM of each dNTP, 0.4 unit
of Phusion DNA polymerase, and 10 pmol of each of the primers. The PCR products were separated in
1% (w/v) agarose gel and purified using a Wizard SV Gel and a PCR Clean-Up System kit (Promega,
Madison, USA).

The PCR products of the RhBRC1 3′UTR, T’NOS, and APUM2 were sub-cloned into an entry vector
using a pENTR Directional TOPO Cloning Kit (Invitrogen). The ligation products were transferred
into One Shot TOP10 Competent E. coli by thermal shock at 42 ◦C. The plasmids of several bacterial
clones were extracted using a NucleoSpin plasmid extraction kit (Macherey-Nagel, Germany), and
confirmed by sequencing using two different primers (M13F: 5′-GTAAAACGACGGCCAG-3′ and
M13R: 5′-CAGGAAACAGCTATGAC-3′). From positive entry vectors, the three sequences were then
cloned into the pGWB6 destination vector [92], using an LR Clonase II kit (Invitrogen). The ligation
products were transferred into One Shot TOP10 Competent E. coli by thermal shock at 42 ◦C.

4.2. Rosa Callus and Arabidopsis Transformation

In vitro-propagated shoots of Rosa were used as starting material. They were repeatedly
sub-cultured every 6 weeks on shoot multiplication medium [93] consisting of Murashige and
Skoog [MS] salts and vitamins with 0.1 g·L−1 Fe-EDDHA, 30 g·L−1 sucrose, 0.1 g·L−1 myo-inositol,
4.44 µM 6-benzyladenine, solidified by 3 g·L−1 Phytagel. Young leaves were injured by several cuts
and inoculated with Agrobacterium (EHA105) suspended in re-suspension medium until DO600 =

1 for 5 min. The inoculated leaves were blot-dried on sterile paper and transferred to the callus
induction medium [94] completed with cefotaxime (500 mg·L−1) and kanamycin (100 mg·L−1). Leaf
discs were sub-cultured every 6 weeks on the same medium until the calluses formed. Genomic DNA
was extracted from the selected calluses, and PCR was used to confirm that the target fragment and
GFP sequence had been stably transformed into the calluses. Arabidopsis thaliana wild-type Col-0
ecotype calluses were transformed by the floral dip method, using Agrobacterium tumefaciens carrying
the P35S:GFP::APUM2 construct [95]. apum2 mutant seeds (Salk_057880) were obtained from the
NASC Institute.

4.3. Callus Treatment and GFP Quantification

The transformed calluses were placed in liquid basic medium (Murashige and Skoog [MS]
containing salts and vitamins) containing the different treatments for 8 h at 22 ◦C under light. GFP
intensity was assessed under a fluorescence microscope, and quantification was performed on 2D
images using ImageJ software [96]. The integrated density of gray values was determined on
30 randomly selected spots on a representative part of each sample. Each modality was replicated
three to eight times.

4.4. Plant Culture and In-Vitro Cultivation of Axillary Buds

For the experiments on Rosa hybrida, cuttings from cloned mother plants were grown in a
greenhouse where the temperature was maintained around 22 ◦C. Nodes from the median part of the
stem were harvested on single-axis plants when the floral bud was visible (VFB stage), as previously
described [18,23,27]. For decapitated plants, the stems of plants with a terminal floral bud (0.5 cm above
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the fifth basal five-leaflet leaf) were removed. After 24 h, the lateral buds from the third and fourth
basal five-leaflet leaf were collected for qRT-PCR. For in-vitro-cultured buds, 1.5-cm stem segments
were transferred in vitro on classical solid MS medium with different sucrose metabolism effectors
(2-DOG for glycolysis, 6-AN for the OPPP) or different products of the sucrose metabolism pathway, in
a growth chamber (Strader) with 16 h light, at a temperature of 23/20 ◦C (day/night).

4.5. Rosa RNA Extraction

Total RNAs were extracted from the in-vitro-cultured buds using an RNA NucleoSpin kit
(Macherey-Nagel) [27]. The absence of genomic DNA contamination was checked by PCR using
specific primers designed against an intron region of the RhGAPDH gene [18,19]. cDNA was obtained
by reverse transcription performed on 1 µg of RNA using SuperScript III Reverse Transcriptase
(Invitrogen, Inc).

4.6. qRT-PCR

Quantitative real-time PCR (qRT-PCR) was performed with SYBR Green Supermix (Bio-Rad, Inc,
Hercules, USA) using cDNA as a template, with the following program: 30 s at 98 ◦C, and then 40
cycles of 15 s at 95 ◦C and 30 s at 55 ◦C. Specific pairs of primers were selected according to their
melting curves. Fluorescence detection was performed using a CFX ConnectTM Real-Time System
(Bio-Rad, Inc). Quantification of relative gene expression was determined using RhUBC expression as
an internal control [97,98]. The RhPUF4 expression level was assessed using the primers qPrRhPUF4
(Forward, 5′-GCTTGCTGCCCTGAATGAT-3′; Reverse, 5′-GCAAGGCTCCAAGATACGC-3′), and
each PCR result corresponded to three biological replicates.

4.7. Statistical Analyses

R software was used for statistical treatment. One-way ANOVA (α = 0.05) was run to test for
the effects of different modalities on bud outgrowth, gene transcription, and fluorescence. Significant
differences are indicated by different letters or asterisks directly on the figures.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1422-0067/
20/15/3808/s1.
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