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Abstract 

 

Assessing life-history traits of parasites on resistant hosts is crucial in evolutionary 

ecology. In the particular case of sporulating pathogens with growing lesions, phenotyp- 

ing is difficult because one needs to disentangle properly pathogen spread from sporula- 

tion. By considering Phytophthora infestans on potato, we use mathematical modelling 

to tackle this issue and refine the assessment of pathogen response to quantitative host  

resistance. We elaborate a parsimonious leaf-scale model by convolving a lesion growth 

model and a sporulation function, after a latency period. This model is fitted to data ob- 

tained on two isolates inoculated on three cultivars with contrasted resistance level. Our 

results confirm a significant host-pathogen interaction on the various estimated traits, and 

a reduction of both pathogen spread and spore production, induced by host resistance. 

Most interestingly, we highlight that quantitative resistance also changes the sporulation 

function, the mode of which is significantly time-lagged. This alteration of the infectious 

period distribution on resistant hosts may have strong impacts on the dynamics of para- 

site populations, and should be considered when assessing the durability of disease control 
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tactics based on plant resistance management. This inter-disciplinary work also supports 

the relevance of mechanistic models for analysing phenotypic data of plant-pathogen in- 

teractions. 

 

Keywords: Phytophthora infestans, epidemiological modelling, potato late blight, aggres- 

siveness, sporulation dynamics, lesion model 
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1 Introduction 
 

The use of resistant cultivars in agricultural systems remains the best alternative to pesti-   

cides for mitigating the impact of diseases on commercial crops. However, as plant pathogen 

populations generally evolve and adapt rapidly, they often overcome resistances of cultivated 

hosts after a few growing seasons. Therefore, the optimal management of disease-resistant host 

plants that maximises both the efficacy and the durability of the control is still a challenging 

question in plant disease epidemiology [1–5]. As pathogen populations frequently break down 

major genes, that confer host immunity (i.e. qualitative resistance), quantitative or partial  

resistance, which reduces the level of disease, has gained interest among plant geneticists and 

pathologists communities during the last decade to improve the durability of resistance [6–10]. 

Nevertheless, while the mechanisms of pathogen adaptation to qualitative resistance are now 

well established, the case of quantitative resistance is relatively less understood [11–14]. 

When it is present, quantitative host resistance to disease can occur alone or in combination 

with qualitative resistance. It generally reduces the fitness [15] of the target pathogens by 

altering one or several stages of their life-cycles [12; 16; 17]. In filamentous plant pathogens, 

quantitative resistance applies not only to spore germination and infection, but also to within- 

host growth and spore production [18]. Thus, the experimental measurement of quantitative 

traits, sometimes referred to as aggressiveness or pathogenicity components, is central to the 

study of interactions between resistant hosts and pathogens, and also to correlate the genetic 

background of both the host and the pathogen with their phenotypic traits (i.e. Quantitative 

Trait Loci) [14; 19]. Most empirical work consist in i) inoculating organs, typically leaflets, 

under controlled conditions, ii) monitoring the development of the lesion(s) caused by the 

pathogen, and finally iii) estimate various life-history traits such as latency period, sporulation 

rate and lesion size from lesion scale phenotyic data. However, in cases where the pathogen 

colonises host tissues and induces a growing lesion, the proper estimation of various key traits, 

e.g.   the  latency  period  or  the  sporulation  dynamics,  can  actually  be  difficult.   Indeed, to 

accurately assess those pathosystems, one needs to consider the age structure of the lesion to 

disentangle pathogen spread from the sporulation dynamics of infected host sites [20; 21]. It is 

recognised that the use of mathematical epidemiological models in combination with empirical 

disease  data  offers  a  mean  of  improving  our  understanding  of  the  processes  involved  in   the 
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spatio-temporal development of pathogens [22; 23] and assessing the effects of disease resistance 

[24]. Although mechanistic models could thus be useful to tackle sporulating parasites with 

growing lesions, they have been seldom considered by theoreticians, and rarely fitted against 

experimental data to infer pathogen traits in plant pathology [21; 25; 26], even when pathogen 

spread is negligible. 

In this study we consider the oomycete Phytophthora infestans (Mont.) de Bary as an 

example sporulating parasite with growing lesions. P. infestans, the causal agent of late blight 

of potato (Solanum tuberosum L.), played a substantial role in the Irish famine in the 1840s, 

and remains one of the most destructive plant diseases, causing each year important economic 

losses on potato crops worldwide [27]. The idea of breeding potato for resistance to P. infestans 

has emerged after the Irish famine [28; 29] and is still central to limit the damage due to late 

blight [30]. However, the explosive demography of P. infestans, due to the combination of a 

short generation time and a very high multiplication rate, associated with its ability to alternate 

between asexual and sexual cycles, still challenge its durable control based on host resistance 

[31]. 

We begin by developing a parsimonious mechanistic model that describes the within-host 

growth dynamics of a sporulating pathogen. Then, this leaf-scale model is fitted to phenotypic 

destructive data obtained on two isolates of P. infestans inoculated on three potato cultivars 

with contrasted levels of quantitative resistance. We show that it enables the disentanglement  

of the growth and sporulation processes and the estimation of key life-history traits (i.e. lesion 

growth rate, latent period, spore production by surface unit, and the dynamics of spore emis- 

sion). Afterwards, the comparison of isolates and cultivars allows us to provide new insights 

into the effects of quantitative host resistance on pathogen growth and sporulation. We finish 

by discussing our work, its limits and its interests for the study of plant-pathogen interactions 

with resistant host. 
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2 Materials and Methods 

 
2.1 Experimentation 

 
2.1.1 Biological material 

 
Two aggressive isolates of P. infestans, originally collected in the north of France, were chosen 

from  our  collection  :   BP3  (mating  type  A1,  origin  Wavrin  :   0◦34J27JJN  2◦56J2JJE)  which 

was  known  to  produce  a  large  number  of  spores  and  BP6  (mating  type  A2,  origin  Gavrelle 

:   50◦19J48JJN  2◦53J13JJE)  with  a  lower  level  of  sporulation.   These  isolates  were  tested  on 

three potato cultivars with contrasted levels of quantitative resistance, maintained at the Inra 

Station of Ploudaniel (UE RGCO, France), and already tested in our laboratory :  Bintje which 

is a reference susceptible to P. infestans, Désirée that mostly mitigates sporulation, and Möwe 

which reduces both lesion growth and spore production [32]. 

 
2.1.2 Inoculations 

For each of the six isolate-cultivar pairs, host leaflets were inoculated according to a standard 

biotest protocol developed in our laboratory [32]. Maintaining isolates on agar media can alter 

the pathogenicity of P. infestans, which can be restored after a re-infection of host tissues. 

Thus, for each isolate, the inoculum was produced separately on 7 weeks old leaves of the  

reference cultivar Bintje inoculated with sporangia previously collected on 3 to 4 weeks old  

colonies by washing the Petri dishes with a 5 mL deionised sterile water. The inoculations  

were performed by placing a 20µL droplet containing about 1000 sporangia at the center of 

each leaflet. Then, leaflets were placed on the lids of inverted Petri dishes containing water 

agar, to keep saturating moisture, and kept in clear plastic boxes stored in a climate chamber 

regulated at 18 (day) and 15 (night) ◦C with a 16h daylight. Six days later, sporangia produced 

on the inoculated leaves were collected by washing the symptomatic leaves in 10 mL deionised 

sterile water, before adjusting the concentration of the obtained suspension to 5×104 sporangia 

mL−1. Afterwards, these suspensions were used to inoculate each isolate onto around a hundred 

leaflets of each cultivar (Table 2), using the protocol described above. 
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2.1.3 Measurements 

 
In order to capture the dynamics of both lesion growth and sporulation, we used a destructive 

sampling of several inoculated leaflet replicates (about 10) with times of observation empirically 

tuned for each isolate-cultivar pair to match their respective lesion development speed. At each 

time (since inoculation) of observation T and for each individual leaflet, we used a sliding caliper 

to measure the minor and major radii of both the host-leaflet (R1 < R2 respectively) and the 

lesion induced by the pathogen (L1 < L2 respectively). It is important to notice that the 

visible measured lesion was an area including both the necrotic zone and a surrounding zone 

corresponding to spore-producing structures, that is commonly distinguishable under optimal 

conditions for P.  infestans.  Thereafter,  sporangia were collected by  washing each leaflet in 

a 10 mL Isoton (Saline buffer; Beckman Coulter, Villepinte, France) and the total number 

of sporangia present, at this time, on the lesion S was assessed with a Coulter Z2 counter 

(Beckman Coulter with lower and upper thresholds of 10µm and 20µm respectively). 

 

 

2.1.4 Lesion growth model 

 
We make the assumption of an ellipse-shaped leaflet that seems to be reasonable in the par- 

ticular case of this pathosystem. This hypothesis was verified before model development by 

comparing the surface predicted by the ellipse equation against the surface obtained through 

the manual segmentation of images performed with the ImageJ software. Despite the presence 

of some outliers, the linear relationship (slope of 1.04, R2 = 0.98) comforted our assumption. 

We did not detect any statistical effect of the cultivar on the slope with an ANCOVA (Fig. 1). 

Letting R1 < R2 be the minor and major radii of the leaf, its surface L is given by L = πR1R2. 

In this simple leaf-scale epidemiological model, we assume that the lesion starts from the center 

of the leaflet and expands as a circle until reaching an edge, afterwards it expands as an ellipse 

up to completely recovering the surface of the leaf (Fig. 2). If we call r1(t) < r2(t), respectively, 

the minor and the major radii of the lesion at time t, the surface of the lesion A at time t follows 

A(t) = πr1(t)r2(t).  We  consider that the symptomatic lesion appears after a fixed delay t0  ≥ 0 

which corresponds to the incubation period (i.e. the delay between inoculation and disease  

symptom) (Figs. 2 & 3 a-b). Tip growing filamentous pathogens often show a constant radial 

growth rate in a homogeneous medium [33; 34].  Let ρ be the radial growth rate of the parasite, 
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and assume ρ is maximal and constant until reaching the leaflet edges: i.e. for i = 1, 2 and 

t ≥ t0 ri(t) = min(ρ(t − t0), Ri) . The lesion surface is described as: 

A(t) = π min(ρ(t − t0), R1) min(ρ(t − t0), R2) , (1) 

for all t ≥ t0, and A(t) = 0 for all t < t0. 

As illustrated in Figure 2, the dynamics of the symptomatic lesion on the ellipse-shaped 

leaflet is characterised by four phases. After the incubation period t0 during which no symptom 

is visible (phase 1), the symptomatic lesion increases quadratically until it reaches the minor 

radius of the host leaflet R1 (phase 2). Thereafter, the lesion size grows linearly until the major 

leaf radius (phase 3) after which it saturates at the leaflet size L = πR1R2 (phase 4). 

 
2.1.5 Sporulation model 

 
Let us partition the host leaflet into small surfaces (or host spatial units), and call σ(a) a 

continuous time emission (or sporulation) function giving the distribution of spores (sporangia 

here) released by a spatial host unit according to its age since infection a. In the case of a 

growing lesion, to scale-up the sporulation dynamics from small host units to the lesion level, 

one needs to consider the inherent age structure of infected (and infectious) host tissues (Fig. 

3a) [21]. Then, the total number of spores produced at time t at the lesion level can be obtained 

through the following convolution product: 

 
 

t 

s(t) = 
0 

 

AJ(t − a)σ(a)da . (2) 

where AJ(t) describes the development of an infectious lesion over time, either symptomatic or 

asymptomatic. 

Let t1 be the latency period, i.e. the delay between host infection and sporulation, and let’s 

recall that t0 is the incubation period, i.e. the delay between host infection and the onset of  

disease symptoms [35]. We assume that these two periods are fixed, i.e. distributed according 

to a Dirac, and distinct from each other :  t1 − t0  =ƒ   0.  Taking our lesion growth model (1), the 

two lags related to t1 and t0 (Figs. 3a-b), and a generic emission function σ(a), equation (2) 

becomes : 

∫ 
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s(t) = 

 
t 

A(t + t0 − t1 − a)σ(a)da . (3) 
 

Several sporulation functions have already been proposed and discussed in plant disease 

epidemiology [24; 36–38]. Here, we opt for a Rayleigh distributed sporulation that has an 

asymmetric probability density function with a distinct mode (Fig. 3c). The use of this specific 

case allowed us to get an analytical solution of the convolution product (3), and therefore, to 

simplify calculations (see Appendix S1). Calling S the sporulation capacity of an infinitesimal 

host unit, i.e. the total amount of spores produced per infectious host unit, the sporulation 

function follows :  

σ(a) = S 
a 

exp 

µ2 

 
 

a2 

− 
2µ2 

 
 

 
. (4) 

where   a  exp 
.
− a2   

Σ  
is  the  probability  density  function  of  the  Rayleigh  distribution  with 

parameter µ that corresponds to the mode. 

 

 

2.2 Model fitting and statistical analyses 
 

For the six isolate-cultivar pairs, the lesion growth model (1) and the sporulation model (3) 

were sequentially fitted to empirical data.   We  first estimated the incubation period t0  and   

the lesion growth rate ρ from independent measurements i of the symptomatic lesion surface 

i i  i i 

L = (πL1L2) for a range of times since inoculation T (Table 1). Afterwards, we inferred the 

latency period t1, the sporulation capacity S, and the mode of the sporulation function µ from 

destructive spore counting data Si, knowing the estimates of both the incubation period and 

the lesion growth rate. The variability in potato leaflets’ size (Fig. 1) was taken into account 

by letting the minor and major leaf radii be the measured ones :  Ri = Ri
 and Ri = Ri

 

respectively. 

The two models were fitted to data by considering Gaussian likelihood functions (i.e. nor- 

mally distributed errors). Parameters estimation was performed via a Bayesian Markov Chain 

Monte Carlo sampling with non-informative prior distributions and an Adaptive Metropolis 

algorithm that is available in the FME package [39]. The adequacy of the models to the data 

were assessed visually by looking at the raw residuals and by considering the residual sum of 

0 

∫ 
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squares (RSS) as a measure of the goodness-of-fit. We performed a goodness-of-fit test using 

the distribution of the RSS in least-squares estimation : RSS ∼ χ2 where σ2 is the residual 

variance, n is the number of data points and k is the number of parameters. 

Finally, the effects of pathogen isolate {BP3, BP6} and host genotype {Bintje, Möwe, Désirée} 

on the parameters of models (1) and (3) were assessed through F-tests and pairwise comparisons 

(see Supplementary Information S4 for details). 

The implementation of the models and the statistical analyses were performed using the R 

free software environment [40]. 

 

 

3 Results 

The empirical destructive sampling strategy allowed us to fit the two models that both captured 

the essential patterns of data. The goodness-of-fit tests supported the null hypothesis for all 

cases (P-values ≥ 0.39), giving evidence of a good fit for both models (Table S1). The visual 

assessment of lesion growth model adequacy suggested a good, and similar, homoscedasticity 

of raw residuals for the six isolate-cultivar combinations (Fig. S1). For the sporulation model, it 

pointed out a higher heteroscedasticity in some combinations, e.g.  Bintje - BP3 or Möwe - BP3 

(Fig. S2). This increasing variability in the number of spores produced by a lesion can be 

explained by the inherent variability of the biological processes [17] but could have been also 

partially induced by some measurement error. 

The values of parameter estimates were consistent with previous studies [32; 41; 42]. Among 

the tested isolate-cultivar cases, the time to symptom appearance after inoculation t0 ranged 

from 41.4 to 68.8 hours, while the latency period t1  ranged between 68.2 and 121.4 hours 

(Table 2).  The related time lag between the onset of disease and sporulation δ = t0 − t1  varied 

between -3.6 and -52.7 hours (Table 2), showing that symptoms occured before spores release, 

as illustrated in Figures 3a and 3b. Finally, the lesion radial growth rate ρ, the amount of spores 

produced by infectious host unit S and the mode of the sporulation curve µ were estimated to 

vary between 0.17 and 0.30 mm.hours−1, 152 and 367 spores.mm−2, and, 3.6 and 14.6 hours 

(after t1), respectively (Table 2). 

Our results confirmed a significant isolate-cultivar interaction for the quantitative traits 
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of P. infestans considered in the study [32; 41] (Fig. 4 & Tables S2-4). Regarding the lesion 

growth model, our study confirms that quantitative resistance of the considered potato cultivars 

significantly reduces the rate at which the pathogen colonises host tissues ρ. Isolate BP6 was 

faster than BP3 on the susceptible reference Bintje (Table 2 & Fig. 4a). Although the cultivar 

Désirée had a stronger effect on pathogen colonisation than Möwe for BP6 (ρ = 0.19 and 0.23 

mm.hours−1 respectively), it was the opposite for isolate BP3 (ρ = 0.24 and 0.17 mm.hours−1 

respectively). 

Perhaps surprisingly, the fitting of the models suggested that quantitative resistance tends  

to decrease the incubation period t0 (Table 2). In comparison with Bintje, t0 exhibited a small 

reduction for BP3 in Möwe and a higher decrease on Désirée with the two isolates (Table 2), 

even though the difference between Bintje and Désirée was non-significant for BP6 (Table S4). 

As parameter t0 actually aggregates the delay between host leaflet exposure to particulate 

inoculum (sporangia) and infection as well as the true incubation period, it is difficult to 

identify here which process has been actually affected by quantitative resistance. Nevertheless, 

according to previous studies that have shown that infection efficiency can be higher in some 

partially resistant cultivars than in Bintje [43], we could speculate that some resistant potato 

cultivars  like  Désirée  might  be  more  susceptible  to  infections  by  external  inoculum  (asexual 

spores here) than the reference Bintje. 

The  estimates  of  the  latency  period  t1  on  the  resistant  cultivar  Möwe  were  in  agreement 

with previous findings [32; 41] and confirmed the putative increase of the latency induced by 

quantitative resistance in this cultivar (Table 2). Nevertheless, the estimated decrease of the 

latency  on  the  cultivar  Désirée  (Table  S2)  and  the  non-significant  differences  in  t1  between 

Möwe  and  Désirée  for  the  two  isolates  (Tables  S3-4)  showed  that  the  results  on  the  latency 

should be taken with care. Clement et al. [32] also demonstrated that the latency period of P. 

infestans  may not differ significantly on Bintje and Désirée, but found a significant difference 

in t1  between Möwe and Bintje.  In addition, looking at the lag between the incubation and the 

latency δ = t0 − t1 our results interestingly suggest that quantitative resistance may increase 

the delay between symptom appearance and spore release (Table 2). 

Finally, by fitting our sporulation model, we confirmed that quantitative resistance re-  

duces significantly the number of (asexual) spores produced by an infectious host spatial 



11  

 
 

unit S (Tables 2 & S2-4). As expected, isolate BP3 had a higher sporulation (367, 322 and  193  

spores.mm−2  on  Bintje,  Möwe  and  Désirée  respectively)  than  BP6  (238,  186  and 152  

spores.mm−2  on  Bintje,  Möwe  and  Désirée  respectively)  (Table  2).   Most  interestingly, we 

found that quantitative resistance can modify significantly the dynamics of spore emission 

(Fig.  4d).  Indeed, on the two resistant cultivars Möwe and Désirée, the mode of the emission 

function was delayed and the variance of the distribution was increased (Fig. 4c). Besides the 

reduction in spore production, it demonstrates that quantitative host resistance may also slow 

down and make more variable the timing of spore emission. On Bintje, contrary to isolate BP6 

for which µ was estimated to 6.7 hours, BP3 had a very narrow distribution with a mode at only 

3.6 hours, indicating a quasi-instantaneous release of spores after latency. While the strong 

difference in the distribution of spore emission between the reference susceptible Bintje and the 

two  resistant  cultivars  were  significant  for  both  BP3  (µ =  13.4  and  14.6  hours  for  Möwe  and 

Désirée respectively) and BP6 (µ = 14.5 and 10.3 hours for Möwe and Désirée respectively), we 

did not find significant differences in µ between Möwe and Désirée (Fig.  4c, Table 2 & Tables 

S3-4). 

 

 

4 Discussion 
 

Identifying and quantifying the components of pathogen aggressiveness and disease resistance 

requires numerous careful, and sometimes laborious, experimental measurements. Nevertheless, 

this step is a keystone for understanding the adaptation of pathogen populations to quantitative 

host resistance [16; 17; 44; 45], the coevolution of plants and their pathogens in natural systems 

[11; 14; 46], or to identify the genetic structures of quantitative resistance and aggressiveness 

[19]. In this study, we have addressed the particular case of sporulating pathogens with growing 

lesions, for which the accurate estimation of some key life-history traits is difficult from common 

lesion-scale phenotypic data. 

We considered P. infestans on potato as an example pathosystem with an inter-disciplinary 

approach to tackle this issue and refine the assessment of quantitative host resistance on life- 

history traits. By combining a parsimonious model, that describes the key monocyclic periods 

of the sporulating pathogen on a host leaflet, with phenotypic data obtained on two French 
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isolates inoculated and a reference susceptible potato cultivar and two resistant ones, we were 

able to i) capture the essential patterns of both lesion size and cumulated spores data, ii) 

deconvolve pathogen spread and spore emission, iii) provide estimates of key life-history traits 

of the pathogen, and iv) identify the effects of quantitative resistance on the monocyclic periods 

of P. infestans. Our results were consistent with previous works on this cultivated pathosystem 

[32; 41]. They confirm a significant isolate - cultivar interaction (Tables S2-4), and support 

already known effects of quantitative disease resistance, i.e. the decrease of both the pathogen 

growth rate and the sporulation capacity (Table 2 & Fig. 4), observed on several pathosystems 

[17; 45]. 

Moreover,  by  fitting the lesion growth (1) and the sporulation (3) models to the data      

we  found that the incubation period t0  was always shorter than the latency period t1  (i.e.        

δ = t0 − t1 < 0) (Table 2), and pointed out that quantitative resistance tends to increase the 

time-lag between these two  periods.  P.  infestans  is a near-obligate hemibiotrophic pathogen 

that has both biotrophic and necrotrophic phases during its asexual cycle [31]. Although one 

would expect the symptomatic lesion to match with the necrotic area,  in our experiments    

that were conducted under optimal conditions for pathogen development, the visible lesion  

was rather an area including both the necrotic zone and a surrounding whitish elliptical ring, 

corresponding to spore-producing structures. Therefore, we cannot correlate the observed 

increase in the delay between incubation and latency periods (i.e. δ) on resistant hosts with  

any biotrophy-necrotrophy switch. But, we speculate that this feeds the hypothesis of an 

increase in the latency period (i.e. time to spore release) due to quantitative resistance, though 

it was not possible to unequivocally identify it here. For future investigations, it would then be 

interesting to distinguish between symptomatic and necrotic phases during host colonisation to 

assess how such resistant cultivars might impact the hemibiotrophic behaviour of P. infestans 

[47]. 

Most interestingly, combining modelling and experimentation allowed us to show that quan- 

titative resistance also impacts the distribution of the infectious period, i.e. the temporal spore 

emission function [24; 37], by moving its mode back and extending its variance (Fig. 4c). It 

means that, besides the limitation of the sporulation capacity, quantitative host resistance may 

also lag the peak of spore emission and make more variable the temporal production of spores. 
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The effects of residence time distributional models, that describe the time spent by hosts in in- 

fectious and pathology compartments, on epidemics have been addressed by numerous studies 

that have demonstrated that changes in these distributions can produce significant modifica- 

tions of epidemic behaviour [35; 48]. For plant pathogens, several distributional models have 

been proposed and discussed for the infectious-sporulating period with non-growing lesions [36– 

38], but the change in this distribution caused by host resistance remains unknown. New studies 

on more potato cultivars and other isolates of P. infestans, as well as on other pathosytems, 

would be necessary to evaluate to what extent this phenomenon is generic or specific. However, 

it may be worth including this phenomenon into theoretical models or frameworks developed 

in evolutionary ecology,  to assess its influence on the timing of pathogen evolution [6; 12],  

the co-evolution of hosts and parasites in natural systems [14], and the management of plant 

resistances [4; 8]. 

The use of mechanistic models for analysing empirical data is recognised to be insightful for 

our understanding of epidemics [22; 24]. For instance, it enables one to test and select models, 

and the underlying hypotheses, and to quantify the main processes from observations [23].  

Surprisingly, while a large amount of data are collected by biologists at the lesion scale, the use 

of mechanistic models for analysing these data is still seldom considered in phytopathology. In 

the case of pathogens with growing lesions, one needs to take into account the age-structure of 

the infected host tissues for scaling-up the dynamics of sporulation at the symptom level, for 

instance by using a convolution product or a Leslie matrix [20; 21]. Then, the identification of 

the life-cycle periods of the pathogen for a small host unit from observation at a higher level 

becomes non-trivial (Fig. 3), and actually, difficult to capture accurately without using some 

advanced modelling. Our models are quite generic and can be used to estimate life-history traits 

of several sporulating pathogens with growing lesions. The R code attached to the manuscript 

enables one to fit the models against temporal data and may help non-modellers to apply the 

framework on their specific datasets. As long as the temporal data cover the dynamics of both 

lesion spread and sporulation, the implemented Bayesian procedure should provide estimates  

of the parameters, even with fewer replicates than we had. Furthermore, the implemented 

estimation procedure is relatively fast (e.g.  about respectively 1 & 3 minutes for fitting models 

(1) & (3) with 100000 MCMC iterations on a Intel§R   Xeon§R   E5 with 32 Go of RAM) and, from 
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a computational time point of view, its application to large datasets may be reasonable. 

Of course, this study has some limits that need to be discussed. To begin with, it is based on 

experiments led under controlled conditions, and it is essential to question the transfer of these 

results to the field. As in the particular case of the late blight of potato it has been shown that 

laboratory tests give similar results for the ranking of resistant cultivars [43], we could speculate 

that our results may qualitatively apply to field conditions. Then, as we aimed at comparing the 

behaviour of two isolates, we inoculated leaflets with asexual spores of P. infestans, a partially 

clonal heterothallic oomycete that can also produce sexual spores when the two mating types 

meet. It would be interesting to run similar experiments using sexual spores and use our models 

for investigating the impact of host resistance on the sexual reproduction of the pathogen and 

assess whether it confirms previous results [32]. Moreover, albeit our models fitted reasonably 

the data, we made strong assumptions which could be relaxed for further investigations. First, 

for the sake of simplicity and to keep the possibility to find an analytical solution of the 

convolution product we put severe constraints on the distributions of both the latency and the 

infectious periods, that were assumed to respectively follow a Dirac and a Rayleigh distribution. 

Generally, the distributional analysis of empirical epidemic data shows that the time spent by   

a host unit in infectious statuses is better described by asymmetric distributions with a distinct 

mode such as Gamma, Weibull or Lognormal distributions [35]. Therefore, considering such 

distributional models may provide a better description of the latency t1 and the incubation t0 

periods, and contribute to decrease the discrepancy between the model and the data (Figs. S1- 

2). On the other hand, this would increase the mathematical complexity of the model [37; 49] 

and would require the use of advanced numerical methods for implementation and simulation. 

Second, to describe the spread of the pathogen, we assumed i) an ellipse-shaped leaf, ii) that 

inoculation was always done at the center of the leaflet, and, iii) considered a constant radial 

growth of the pathogen with a saturation at leaflet edges.  Considering a  spatial model and   

the explicit shapes of leaves may provide a finer description of the host-pathogen interaction. 

Further studies could rely on recent advances in image-based phenotyping of plant diseases to 

automatically extract leaves features (e.g. shapes, veins structures) and segment lesions [50]. 

Then, combining spatial process-based models with image data appears as an interesting mean 

to i) improve our understanding of pathogen spread at the lesion level, ii) identify physiological 
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responses of host tissues, such as ontogenetic and disease-induced changes in the susceptibility 

that are known to occur in several pathosystems [47; 51], and iii) introduce the leaf vein 

structure that can be crucial to predict the spatial expansion of some pathogens.  Although  

such approaches are widely used for the study of human lesions or tumors [52], they remain 

unusual for plant diseases. 

To finish with, mathematical modelling offers a mean to improve plant disease phenotyping 

by allowing a finer quantification of traits. Thus,  it would be relevant to promote model-  

based phenotyping, especially for assessing the genetic architecture of traits, either for the  

plant or the pathogen. However, generating data for modelling purpose in genetic studies can 

increase the, already substantial, experimental cost. This experimental bottleneck might be 

partially overcome by using methods from the Optimal Design of Experiments [53; 54]. This 

field of statistics provides methods for designing experiments (e.g. size of the experiment,  

times of observation, number of replicates) that optimise the information on the processes for 

parameter estimation or model selection. In this study, the experiment was rather designed  

based on our knowledge on the time scale of pathogen development, and our experimental 

constraints. While this empirical space-filling design allowed us to fit the models, it would be 

interesting to improve our modelling framework by defining optimal experimental strategies 

that enable the proper estimation of life-history traits with the minimal number of lesion-scale 

data [55]. 
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[1] Burdon JJ, Zhan J, Barrett LG, Papä ıx J, Thrall PH. 2016 Addressing the challenges of  

pathogen evolution on the world’s arable crops. Phytopathology 106, 1117–1127. 

[2] Fabre F, Rousseau E, Mailleret L, Moury B. 2015 Epidemiological and evolutionary man- 

agement of plant resistance: optimizing the deployment of cultivar mixtures in time and 

space in agricultural landscapes. Evolutionary applications 8, 919–932. 

[3] McDonald BA, Linde C. 2002 Pathogen population genetics, evolutionary potential, and 

durable resistance. Annual review of phytopathology 40, 349–379. 
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Tables 
 

  Table 1:  Parameters with their definitions and units.  
 

Parameter Definition Units 

 
 

Lesion model A(t) 

  

t0 incubation period hours 

ρ lesion growth rate mm.hours−1 

R1 minor leaf radius mm 

R2 major leaf radius mm 

 

Sporulation model s(t) 
  

t1 latency period hours 

S spore production by infectious host unit spores.mm−2 

µ mode of the sporulation function σ hours 

Observations O 

T 

 

 
time of observation 

 

 
hours 

R1 minor leaf radius mm 

R2 major leaf radius mm 

L1 minor lesion radius mm 

L2 major lesion radius mm 

S total number of spores spores 

 



 

Table 2: Estimated parameters of lesion and sporulation models. Estimates corresponds to the mean of the posterior distributions. For each parameter the standard 

deviation (sd), the first quartile (q-25%) and the third quartile (q-75%) are given in brackets as (sd, q-25% - q-75%). Parameter n in the last row indicates the number 

of inoculated leaflets used for destructive sampling.  
 

  BP3   BP6  

Bintje Möwe Désirée Bintje Möwe Désirée 

Parameter Units       

 
 

t0 

 
 

hours 

 
 

68.8 

 
 

64.1 

 
 

55.9 

 
 

68.7 

 
 

68.7 

 
 

41.4 

  (1.2, 68.3 - 69.7) (4.5, 61.6 - 67.5) (3.9, 53.3 - 58.6) (1.1, 68.1 - 69.6) (1.1, 68.2 - 69.7) (3.7, 38.8 - 44.0) 

 

t1 

 

hours 

 

72.4 

 

83.9 

 

68.2 

 

88.7 

 

121.4 

 

79.3 

  (2.0, 70.8 - 73.5) (8.5, 77.2 - 90.8) (6.4, 63.5 - 72.5) (4.5, 85.8 - 91.7) (11.6, 114.1 - 129.1) (5.2, 75.2 - 82.8) 

δ = t0 − t1 

 

hours 

 

-3.6 

 

-19.8 

 

-12.3 

 

-20.0 

 

-52.7 

 

-37.9 

 

ρ mm.hours−1 

 

0.26 
 

0.17 
 

0.24 
 

0.30 
 

0.23 
 

0.19 

  (0.005, 0.254 - 0.263) (0.008, 0.169 - 0.179) (0.013, 0.234 - 0.253) (0.006, 0.294 - 0.303) (0.005, 0.223 - 0.229) (0.009, 0.184 - 0.196) 

 

S 

 

spores.mm−2 

 

367 

 

322 

 

193 

 

238 

 

186 

 

152 

  (13, 358 - 377) (18, 311 - 333) (13, 184 - 202) (10, 232 - 245) (16, 175 - 197) (9, 146 - 158) 

 

µ 

 

hours 

 

3.6 

 

13.4 

 

14.6 

 

6.7 

 

14.5 

 

10.3 

  (2.6, 1.6 - 5.0) (10.9, 5.4 - 18.4) (7.8, 8.2 - 20.3) (3.9, 3.7 - 9.4) (7.9, 8.4 - 19.8) (4.0, 7.2 - 12.5) 

 

n 

 

samples 

 

127 

 

99 

 

104 

 

139 

 

104 

 

125 

 

24 
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Figures 
 

 

Bintje Möwe Désirée 
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Leaf surface obtained through imaging (mm ) 

 

Figure 1: Ellipse shaped assumption for potato leaflets : Relationship between the leaf surface of 

potato leaves obtained through manual annotation of images versus the surface calculated with the 

ellipse shaped assumption and the measured radii (L = πR1R2). 
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Figure 2: Lesion growth model : Schematic lesion growth on an ellipse shaped host leaf with the 

corresponding temporal dynamics. 
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Figure 3: Sporulation model : (a) schematic illustration of the age-structuring of the lesion for  

two successive times corresponding to phase 3 (left) and phase 4 (right) of the dynamics ; (b) 

representation of the lags between the dynamics of asymptomatic (black), symptomatic (red) and 

sporulating (grey) lesions induced by respectively the incubation t0 and the latency t1 periods ; (c) 

probability density function of the Rayleigh distribution describing spore emission ; and (d) the 

corresponding dynamics of the cumulated number of spores produced by the lesion s(t) obtained 

through the convolution model. In consistency with our results, (a) and (b) show an illustrative 

instance where the latency period is higher than the incubation period (i.e.  the sporulating area is 

inside the symptomatic one).  The dynamics pre2s7ented  here were obtained using t0  = 60, t1  = 80, 

ρ = 0.12, R1 = 20, R2 = 30 and S = 200. 
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Figure 4: Fitted models for the six isolate-cultivar cases considered in the study. (a) shows the fitted 

growth of the lesion A(t) ; (b) represents the fitted dynamics of the cumulated number of emitted 

spores s(t) on an ellipse shaped host leaflet with minor (R1) and major radii (R2) of 40 and 60 mm 

respectively ; (c) the fitted emission probability density function ; and (d) the sporulation function 

σ(t).  In (d) the sporulation curves of BP6 on Möwe (blue solid line), and BP3 on Désirée (maroon 

dashed line) overlap. 28 
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