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Key Points: 

 Lumped parameter modeling of hyporheic nitrate removal by applying the exposure 

time concept.  

 Exposure time distributions are derived from analytical residence time distributions 

and reaction kinetics for hyporheic oxygen consumption.  

 Using exposure times rather than residence times is likely to lead to more realistic es-

timates for nutrient removal in the hyporheic zone  
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Abstract 

The rate of biogeochemical processing associated with natural degradation and transfor-

mation processes in the hyporheic zone (HZ) is one of the largest uncertainties in predicting 

nutrient fluxes. We present a lumped parameter (LPM) model that can be used to quantify the 

mass loss for nitrate in the HZ operating at the scale of river reaches to entire catchments. 

The model is based on using exposure times (ET) to account for the effective timescales of 

reactive transport in the HZ. Reach scale ET distributions are derived by removing the por-

tion of hyporheic residence times (RT) associated with flow through the oxic zone. The mod-

el was used to quantify nitrate removal for two scenarios: 1) a 100 m generic river reach and 

2) a small agricultural catchment in Brittany (France). For the field site hyporheic RT are 

derived from measured in-stream 222Rn activities and mass balance modelling. Simulations 

were carried out using different types of RT distributions (exponential, power-law and gam-

ma-type) for which ET were derived. Mass loss of nitrate in the HZ for the field site ranged 

from 0-0.45 kg d-1 depending on the RT distribution and the availability of oxygen in the 

streambed sediments. Simulations with power law ET distribution models only show very 

little removal of nitrate due to the heavy weighting towards shorter flow paths that are con-

fined to the oxic sediments.  Based on the simulation results, we suggest that ET likely lead 

to more realistic estimates for nutrient removal.  

1. Introduction 

The hyporheic zone (HZ) is an important interface between surface water and groundwater 

that hosts an array of biogeochemical processes contributing to nitrogen cycling and removal 

in river networks. Nitrate processing in the HZ results from different biogeochemical reaction 

pathways that are central to the self-purification capacities of rivers and streams  [Burgin and 

Hamilton, 2007]. Heterotrophic processes such as respiratory denitrification or fermentative 

dissimilatory nitrate reduction to ammonium (DNRA) besides nitrate require a suitable or-
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ganic carbon source.  While denitrification is a permanent sink for nitrate in the HZ, ferment-

ative DNRA is considered as an intermediate sink as it transforms nitrate into ammonium. 

Produced ammonium in the HZ can be converted back to nitrate by nitrification under appro-

priate biogeochemical conditions (i.e. presence of oxygen). Pathways for nitrate removal that 

do not rely on the availability of an organic carbon source (chemoautotrophic processes) in-

clude iron and sulfur driven nitrate reduction as well as anaerobic ammonium oxidation 

(ANAMOX).  

Although, the relative contribution of the these processes to nitrate removal at the catchment 

scale is still unclear  [Burgin and Hamilton, 2007], all heterotrophic and chemoautotrophic 

nitrate removal pathways are controlled by the complex interplay of 1) microbiology, 2) sub-

strate availability, 3) the presence and absence of oxygen as well as 4) the hydrodynamic 

flow conditions in the stream [Marzadri et al., 2012; Zarnetske et al., 2011; Briggs et al., 

2014]. Oxygen availability can change within centimeters for rippled bedforms [Kessler et 

al., 2013] to meters in gravel bars, river banks and meander bends [Trauth et al., 2013; Gu et 

al., 2012]. Stream morphological features such as riffle/pool sequences or rippled bedforms 

are controlling factors for the interaction between hydrology and biogeochemistry and are of 

particular importance for nitrate processing in river systems [Frei et al., 2018]. Site specific 

features such as regional groundwater flow [Trauth et al., 2013] or streambed morphology 

affect hyporheic water exchange fluxes and residence times (RT) in the HZ [Cardenas et al., 

2004; Boano et al., 2014]. RT have been identified as key a parameter in hyporheic nutrient 

removal [Briggs et al., 2014; Zarnetske et al., 2011].  

A detailed process understanding of how hydrological and biogeochemical processes mecha-

nistically interact in the HZ is one part of an improved and quantitative understanding of riv-

erine nutrient cycling. The latter is especially important when assessing the impact of climate 
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change with its potential to fundamentally change local to regional hydrological cycles, bio-

geochemical kinetics as well as interactions and feedbacks among these factors [Lohse et al., 

2009]. However, quantification of hyporheic nutrient fluxes and turnover on spatial scales 

beyond individual bedforms and upscaling results from local studies to catchment scales is 

rarely addressed in the literature. Exceptions are the work of Gomez-Velez et al. [2015] and 

Kiel and Cardenas [2014] who estimated denitrification capacities of the HZ for the entire 

Mississippi catchment and Pittroff et al. [2017] who quantified nitrate removal rates for a 

32 km reach of the Roter Main River in South Germany. 

Lumped parameter models (LPM) are modeling frameworks well suited for upscaling local 

nutrient cycling in the HZ to whole catchments [Pittroff et al., 2017]. Instead of simulating 

the governing physical and biogeochemical processes explicitly, LPMs usually use some kind 

of probability-density function (pdf) to account for transport and degradation of solutes in 

hydrological systems. The commonly used practice of dating groundwater using radioactive 

conservative tracers such as Tritium is based on applying a LPM with an associated pdf to 

simulate a catchment’s response to a known input function [Cartwright et al., 2018; 

Małoszewski and Zuber, 1982; Morgenstern et al., 2010]. For conservative tracers, the pdf is 

identical to the RT distribution (pdfRT), defining the timescales of water transport in the sub-

surface. For radioactive tracers decay occurs uniformly along subsurface flow paths and RT 

are equal to the effective reaction times in the catchment [Frei and Peiffer, 2016]. However, 

biogeochemical processes that occur in hyporheic systems such as denitrification, sulphate 

reduction, and methane production are redox-sensitive and microbiologically mediated reac-

tions that only take place under appropriate biogeochemical conditions (e.g. in the presence 

of bioavailable organic carbon or absence of oxygen) [Burgin and Hamilton, 2007]. Condi-

tions that favor anaerobic processes are not uniformly distributed in non-well mixed systems 

such as catchments, wetlands, lake sediments or the HZ. Consequently, for redox-sensitive 
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solutes RT are usually not equal to the timescales where biogeochemical reactions actually 

occur. In this case the pdfRT is not an appropriate pdf for quantifying nutrient removal in 

LPMs [Frei and Peiffer, 2016]. One exception is oxygen which reacts immediately with or-

ganic carbon on entering the subsurface during microbial respiration.  

As the HZ is a non-well mixed system exposure times (ET) instead of RT are a better estima-

tor of the effective timescales for reactive transport. However, for the HZ, the RT is often 

presented as a key parameter used in quantifying hyporheic nutrient removal [Cardenas et 

al., 2004; Boano et al., 2014; Pittroff et al., 2017; Runkel, 1998]. The concept of ET original-

ly was introduced to account for non-uniform biogeochemical conditions in non-well mixed 

hydrological system such as aquifers or catchments and to characterize effective timescales 

available for reaction [Ginn, 1999; Seeboonruang and Ginn, 2006]. By definition, ET repre-

sent the timescales over which a material has the opportunity to react [Oldham et al., 2013]. 

The concept of ET has been used to simulate bio-reactive transport in porous media [Sanz-

Prat et al., 2016] and to describe the hydrological controls on redox-sensitive reactions in 

wetland ecosystems [Frei and Peiffer, 2016].  

In this work we present a LPM that can be used to quantify hyporheic nitrate removal rates in 

streams and rivers at reach to catchment scales by incorporating ET. We introduce a simple 

method to derive ET distributions (pdfET) based on a priori defined hyporheic pdfRT and oxy-

gen consumption kinetics in the HZ. The novelty of the approach is that pdfET are directly 

derived from analytical pdfRT by introducing a so-called threshold factor that accounts for the 

presence of oxygen in the HZ. The LPM is first applied to a simple hypothetical scenario 

representing a generic river reach to study how hyporheic nitrate removal depends 1) on the 

shape of the hyporheic pdfRT and 2) the kinetics of oxygen consumption in the streambed sed-

iments. As a more realistic scenario the LPM is later applied to quantify hyporheic nitrate 
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removal for a 2.3 km long stream in a sub-catchment of the International Long Term Ecosys-

tem Research Catchment (LTSER), Brittany, France. For the field application we derive the 

relevant parameters for the LPM from a Radon-222 (222Rn) mass balance simulation previ-

ously described in Frei and Gilfedder [2015] and Pittroff et al. [2017].  

2. Theory 

2.1 Representing Hyporheic Nitrate Removal  

As part of the LPM we assume that nitrate is permanently removed from the system by an-

aerobic reaction pathways. We do not account for reactions that form inorganic nitrogen spe-

cies via decomposition of organic nitrogen (e.g. ammonium) or incomplete nitrate removal 

pathways that lead back to nitrate via oxidation. This implies that the LPM treats the HZ sole-

ly as a permanent sink for nitrogen and excludes production of nitrate in the stream sediments 

through nitrification. Further we do not explicitly distinguish between the various nitrate re-

action pathways outlined in the introduction. Rather we assume that processes responsible for 

nitrate removal can be lumped into one effective kinetic model that can be applied at the 

reach scale and thus define nitrate removal as the mass loss of nitrate from the stream via a 

single bulk reaction kinetic in the HZ.  The presented LPM is based on the rules of linear 

time-invariant (LTI) system theory [Hespanha, 2018]. For LTI systems the in- and output 

variables can be mapped by applying the superposition theorem using a time-invariant im-

pulse-response function. This LPM differs from previous models like OTIS [Runkel, 1998] 

by explicitly differentiating between timescales of water transport (RT) and effective time-

scales of reaction (ET) in the HZ. The LPM also includes the possibility to work with non-

exponential models for representing RT and ET in the HZ, such as gamma or power law dis-

tributions. In the following we will describe how hyporheic nitrate removal is represented as 

part of a convolution framework that is implemented into the LPM.  
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Nitrate removal in the HZ can be simulated for a single stream reach by 1) assuming that 

permanent nitrate removal occurs as soon as water infiltrates into the hyporheic sediments as 

commonly done in the past (i.e. RT = ET), or 2) that nitrate removal processes are initially 

suppressed by the presence of oxygen in shallow layers of the streambed sediments (i.e. RT ≠ 

ET). In the first case the pdfRT [T-1] can be used to describe the effective timescales of reac-

tion, where for the second case the timescales of reaction are described by a pdfET [T-1]. By 

using either pdfRT or pdfET as impulse-response functions, the nitrate output concentration Cout 

[ML-3] for water leaving the HZ can be estimated by convolution and nitrate removal for a 

single stream reach RNO3 [M T-1] (in the latter referred to as hyporheic nitrate removal) of 

length Δx [L] can be quantified:  

 

In Equation 1, Cout [ML-3] and Cin [ML-3] represent the nitrate concentrations leaving and 

entering the HZ respectively, z [T] represents a dummy variable necessary for carrying out 

the integration and kNO3 [T
-1] is an effective first order reaction constant for hyporheic nitrate 

removal processes and qH [L²T-1] is the steady state hyporheic water flux where the water 

fluxes entering and leaving the HZ are equal (net flux = 0). In this study we assume that Cin 

for a single stream reach is constant. For steady state conditions, the reach-averaged hyporhe-

ic flux qH can be estimated based on the stream width w [L], the hyporheic exchange depth 

h [L] the mean RT of water in the HZ τm [T] and the porosity of the streambed sediments ϴ [-

] [Cook, 2013; Runkel, 1998]. By assuming that Cin is constant over a reach and applying an 
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exponential pdfRT, Equation 1 can be solved analytically yielding
1

1

3 


NOm

inout
k

CC


. For non-

exponential pdfRT such as power law or gamma-type models, the convolution integral in 

Equation 1 can be solved numerically using adaptive quadrature techniques. When the pres-

ence of oxygen suppresses hyporheic nitrate removal processes, the convolution integral in 

Equation 1 is carried out by using a pdfET instead of a pdfRT.  

2.2 Deriving Exposure Time Distributions  

The pdfET required to carry out the convolution in Equation 1 is derived from a corresponding 

reach scale pdfRT that is assumed to be known a priori. For a given pdfRT the basic concept of 

deriving pdfET is illustrated in Figure 1.  

 

For a typical hyporheic flow cell (Figure 1B) the timescales of hyporheic water flow are de-

fined by pdfRT (Figure 1A). However for the situation where RT ≠ ET some of the flow paths 

through aerobic areas do not contribute to hyporheic nitrate removal. This time lag between 

water infiltrating into the HZ and the initiation of hyporheic nitrate removal processes can be 

described by introducing an isochrone a [T] (Figure 1B). Here a represents the characteristic 

time for which the majority of oxygen is already consumed and in the latter is referred to as 

threshold factor. Along flow paths where τ < a hyporheic nitrate removal processes are as-

sumed to be inactive due to the presence of oxygen. Based on the specific value of a, which 

can be estimated from known reaction kinetics for oxygen consumption (e.g. via respiration 

as presented in 2.3) the pdfET can be derived as follows: 
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In Equation 2 and as indicated in Figure 1A the expression τ+a [T] shifts the pdfRT to the left 

by a constant time a. This shift ensures that the time classes τ < a in the pdfRT do not contrib-
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ute to hyporheic nitrate removal if the convolution in Equation 1 is carried out from τ = 0 to 

∞. Ar [-] in Equation 2 represents a scaling factor that ensures that 1')'(
0




 dpdfET
 which is 

necessary to carry out the convolution integral as part of Equation 1. Finally, to estimate the 

hyporehic nitrate removal within the anaerobic areas of the HZ the effective hyporheic water 

flux qET [L²T-1] needs to be calculated using Equation 3. For the situation where a = 0 and RT 

= ET, qET is equal to qH. 
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2.3 Derivation of the threshold factor from reaction kinetics 

The threshold factor a is the central parameter necessary to define a pdfET based on a priori 

known pdfRT. The threshold factor can either be derived directly from field observations or 

alternatively from known reaction kinetics for oxygen consumption in the HZ. In both cases a 

represents a specific period of time needed for dissolved oxygen concentrations to drop be-

low a critical value O2crit [ML-3] after which anaerobic hyporheic nitrate removal pathways 

are initiated. O2crit as part of this study is defined as the concentration where only 5% of the 

initial oxygen O2init [ML-3] is still available. Based on this 5% criterion, the time a needed to 

reach O2crit assuming a 0th-order, 1st-order or Monod reaction kinetics for oxygen consump-

tion processes can be estimated according to Equations 4-6. Here KO2 [ML-3T-1] and kO2 [T
-1] 

represent 0th- and 1st -order reaction constants respectively and vO2max [ML-3T-1] is the sub-

strate utilization rate and KsO2 [ML-3] is the substrate concentration at half vO2max for Monod 

kinetics. Alternatively, measured oxygen profiles in combination with a RT tracer can also be 

used to derive a suitable threshold value. For example Pittroff et al. [2017] measured oxygen 

availability at various depths of the HZ and concurrently used 222Rn to estimate vertical pro-
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files for hyporheic water RT. This resulted in an oxygen vs. RT relationship that could be 

used to derive the threshold factor a for a specific field site.       
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3. Applications 

The LPM was applied to two different cases. The first application represents a simple test 

case scenario of a single generic river reach. The generic river reach scenario was used to 

investigate how the combination of different types of analytical pdfRT models in combination 

with a large range of possible threshold factors a affect reach-scale hyporheic nitrate removal. 

Additionally the LPM was applied to a small stream (Villqué) located in Northern France. 

The model was used to quantify hyporheic nitrate removal for 13 different stream reaches 

over a total distance of 2.4 km, with each reach characterized by a separate pdfRT and pdfET. 

For the field case hyporheic characteristics for the individual reaches such as τm and hyprheic 

depth h were estimated using stream 222Rn measurements and mass balance modeling with 

the model FINIFLUX [Frei and Gilfedder, 2015]. At this point we explicitly want to mention 

that the LPM framework does not necessarily require a ²²²Rn mass balance with the only pre-

requisite being some way to estimate a mean hyporheic RT and hyporheic exchange depth h 

for a given pdfRT.            

3.1 Generic River Reach 

τm and the threshold factor a both are primary control variables governing the water flux 

through the HZ and hyporheic nitrate removal. The range of published values for τm for the 

HZ varies considerably in literature. Moreover, there are a number of different reaction kinet-
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ics used to represent aerobic respiration in the HZ from which the threshold factor a can be 

derived. Values for τm, in Trauth et al. [2014] range between 1.44 and 6.30 hours for a gravel 

bar depending on the turbulent in-stream flow conditions and the flux of upwelling ground-

water which can suppress hyporheic exchange. Haggerty et al. [2002] provides a range of 

0.1 to 30 hours for τm based on a compilation of existing tracer studies. Gomez-Velez et al. 

[2015]   give a characteristic timescale for oxygen consumption (threshold factor a) of 

~ 1 hour while Vieweg et al. [2016] use a threshold factor of ~24 hours based on modeling 

and field observations. Kiel and Cardenas [2014] give a value estimated from field and la-

boratory studies for the Mississippi basin of a = 6.9 h. A sensitivity analysis was performed 

for the generic river reach scenario to account for the wide range of reported values for τm and 

a, and to test the influence of different combinations of these parameters on hyporheic nitrate 

removal. The generic reach represents a hypothetical river reach for which τm and a are sys-

tematically varied between 0 and 30 hours. The parameterization of the generic river reach is 

shown in Table 1. Besides the parameters introduced previously Qs [L³T-1] in Table 1 repre-

sents the stream discharge.   

 

For the generic river reach scenario, three different types of analytical RT distributions mod-

els were used to represent pdfRT:  1) an exponential model (Eq. 7), 2) a power law distribution 

with exponential cutoff (Eq. 8) and 3) a gamma-type distribution (Eq. 9).  
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GGgammaRTm dpdf  



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The parameters αG [-], αP [-], βG [T] and βP  [T-1],  in Equation 8 and 9 represent shape and 

scaling parameters while τmin [T] in Equation 8 is a minimum time class necessary to define 

the power law distribution model. All pdfRT models are normalized in such a way such that 

1)(

min;0




 

 dpdfRT

. For the power law and gamma-type distribution models it is possible to repre-

sent a variety of differently shaped pdfRT by adjusting the corresponding shape factors αG and 

αP (Figure 2). For the power law model τmin was uniformly set to 0.001 hours throughout this 

study. For αG = 1 the gamma-type model is identical to an exponential distribution (Figure 

2A). For all distributions shown in Figure 2 the parameters βG and βP were set to achieve a 

common mean value for hyporheic RT of τm = 1.5 hours. For the sensitivity analysis we used 

a set of pre-defined shape parameters (αG, αP) while the parameters for βG and βP were set to 

a value that correspond to τm in the range of 0 and 30 hours. For the generic river reach we 

compare the simulation outputs in term of hyporheic nitrate removal efficiencies E [-] defined 

as the hyporheic nitrate removal divided by the in-stream nitrate mass flux (Equation 10): 

s

NO

QCin

R
E


 3  

(10) 

 

 

3.2 Field case: Vilqué catchment 

The field case represents a small stream at the Zone Atelier Armorique (ZAAr), which is a 

part of the Long-Term Socio-ecological Research platform (LTSER) [Mirtl et al., 2018; 

Haase et al., 2018; Thomas et al., 2019] located in the northwest of France near the town of 

Pleine–Fougères (Figure 3). In Brittany (north west of France) stream biodiversity and water 

quality have been strongly affected by the intensification of agriculture. Surface water eco-

systems (lakes, rivers, and estuaries) have been highly degraded, especially due to nitrate 
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excess [Thomas et al., 2016]. Average nitrate concentrations increased from 9 mg l-1 in 1976 

to 65 mg l-1 in 1989 and have stabilized at about 70 mg l-1 as of 2008 [Cann, 1998], exceed-

ing numerous regulatory limits (European Nitrate directive 1991). The ecological conse-

quence of the nitrate loading to the coastal zone has been multiple algal blooms along the 

Brittany coastline. The 2.3 km stream, known locally as Vilqué, drains a 2.3 km² sub catch-

ment of the LSTER (Figure 3). The catchment consists of predominantly agricultural land 

including dairy and low intensity crops. Bedrock geology is mainly composed of metamor-

phic altered sedimentary rocks, schists and hornfels from the Proterozoic (Brioverian). Intru-

sive granodiorites of Cadomian age are found in the southernmost part of the catchment and 

upstream of our first sampling point (seismic cross section in the supplement).  

²²²Rn sampling was performed in spring 2017. The discharge prior to and during sampling 

was constant ranging between 0.002 m³ s-1 at the most upstream location to 0.031 m³ s-1 at the 

catchment outlet. Discharge was measured by using salt pulse tracer measurements (sudden-

injection method [Rantz, 1982]) for the upstream reaches and an induction flow meter using 

the two-point method  [Rantz, 1982] for the stream reaches located downstream. Fourteen 

1 liter stream samples for 222Rn and nitrate analysis were collected from the headwater area 

of the Vilqué stream to its confluence with l'Hermitage at intervals of 100 m and 500 m (Fig-

ure 3). ²²²Rn was measured in the field using a RAD7 Radon in air detector by applying a 

method similar to Lee and Kim [2006] which we have also used in previous work [Cartwright 

et al., 2018; Pittroff et al., 2017; Cartwright and Gilfedder, 2015]. Each sample was purged 

for 5 minutes and then counted for 1 hour. Replicate samples were run with a precision of 

better than ±15% relative standard deviation (RSD). Samples for nitrate analysis were first 

filtered through 0.45 µm filters and then stored at 4oC until measured by ion chromatography 

(Metrohm GmbH). Precision was better than ±5% RSD. 
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3.2.1 Field case: ²²²Rn Mass Balance Modelling 

Steady state mass balance modelling for in-stream ²²²Rn was performed using the model 

FINIFLUX described in detail in Frei and Gilfedder [2015]. FINIFLUX numerically solves 

the mass balance equation for in-stream 222Rn [M L-³] on the reach scale (Equation 11) by 

using a Petrov-Galerkin Finite Element scheme based on in-stream ²²²Rn measurements. 
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(11) 

Here, x [L] is the 1D stream length, w [L] is the mean stream width, d [L] is the mean stream 

depth, Qs [L3T- 1] is stream discharge, I [L²T-1] is the rate of groundwater inflow, 

222Rngw  [ML-3] is the 222Rn activity in the groundwater, kdeg [LT-1] is the degassing coeffi-

cient derived from empirical functions (see [Frei and Gilfedder, 2015; Unland et al., 2013; 

Genereux and Hemond, 1992]), λRn [T
-1] the first order decay constant for 222Rn, Qr [L

3T-1] is 

inflow from tributaries, RL [L] the inflow length and 222Rntrib [ML-3] the ²²²Rn activity in trib-

utaries. Reach specific parameters used for FINIFLUX simulations of the Vilqué catchment 

are listed in Table 2. 

In Equation 11 α1 [ML-1T-1] and α2 [L
2T-1] are reach specific parameters representing the en-

richment and loss of in-stream ²²²Rn due to hyporheic exchange. Both parameters can be de-

rived by assuming that the hyporheic RT follow a pre-defined distribution model pdfRT ac-

cording to Equations 12 and 13 where γ [ML-3T-1] is the ²²²Rn production rate (emanation 

rate) in the hyporheic sediments.  
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It is important to note that the hyporheic flux qH, which is also needed for the quantification 

of hyporheic nitrate removal, does not include any interaction with regional groundwater 

flow consisting solely of infiltrating and exfiltrating stream water at steady state. This is iden-

tical to other commonly used hyporheic models such as OTIS and is a necessary simplifica-

tion in the up-scaling process [Runkel, 1998]. The original version of FINIFLUX [Frei and 

Gilfedder, 2015] only supported an exponential distribution model for pdfRT. As part of this 

study we additionally implemented power law and gamma-type pdfRT models (Equations 8 

and 9) to account for 222Rn emanation in the HZ (modified version of FIIFLUX can be ob-

tained from http://www.hydro.uni-

bayreuth.de/hydro/en/software/software/software_dl.php?id_obj=129191).   

By using the standard exponential pdfRT Equations 11 and 12 can be solved analytically giv-

ing 
1

1



mRn

hw




  and 

1
2




mRn

Rnhw




  [Cook, 2013]. In the case of power law or a gamma 

distribution models the integrals in Equation 12 and 13 are solved numerically by using the 

adaptive quadrature techniques implemented in MATLAB.  FINIFLUX is coupled to the au-

tomated parameter estimation software PEST [Doherty et al., 1994] for model optimization. 

PEST is used to derive an objective function between the in-stream 222Rn observations and 

numerical predictions, and depends on a set of pre-defined model parameters. Optimal pa-

rameter settings are systematically estimated within PEST targeting the best parameter set 

that minimizes the objective function. PEST estimates this optimal parameter set by applying 

the Gauss-Marquardt-Levenberg algorithm [Doherty et al., 1994]. PEST coupling within 

FINIFLUX is set up to search for optimal groundwater inflow rates I and optimal hyporheic 

exchange parameters τm and h simultaneously.         

3.2.2 Field case: Simulation of hyporheic nitrate removal 

http://www.hydro.uni-bayreuth.de/hydro/en/software/software/software_dl.php?id_obj=129191
http://www.hydro.uni-bayreuth.de/hydro/en/software/software/software_dl.php?id_obj=129191
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Hyporheic nitrate removal for the Vilqué catchment was simulated using the different pdfRT 

models with the corresponding shape factors presented in Figure 2. In order to calculate the 

hyporheic water flux qh (Equation 1), we used the mean hyporheic RT τm and the reach spe-

cific hyporheic exchange depths h that were estimated for every stream reach as part of the 

FINIFLUX simulation. For the representation of ET we used threshold factors derived from 

published reaction kinetics for aerobic respiration in the HZ (Table 3). Threshold factors 

based on 1st-order reaction kinetics for oxygen consumption for rippled streambeds as pre-

sented in Kessler et al. [2012] were derived by applying Equation 5. Azizian et al. [2015] 

have simulated aerobic respiration using a Monod rate expression for which a corresponding 

threshold factor was derived by applying Equation 6. Finally we also used a threshold value 

for ‘a’ from literature that is based directly on field observations [Gomez-Velez et al., 2015].  

 

4. Results  

4.1. Generic River Reach 

In general for all pdfRT scenarios the highest hyporheic nitrate removal efficiencies (13-72%) 

were achieved for simulations using a threshold factor of a = 0 hours (RT = ET) and low 

mean hyporheic RT (Figure 4 and 5).For gamma-type/exponential pdfRT regions where E ≥ 

3% (here the contour line E=3% was chosen only as an example to illustrate the sensitivity of 

simulated nitrate removal efficiencies) were equally found above and below the 1:1 line (Fig-

ure 4). By increasing the shape factor αG areas where E ≥ 3% were progressively shifted be-

low the 1:1 line. Simulations using a power law pdfRT obtained the highest modeled removal 

efficiencies ranging from 16 to 72% (Figure 5) Maximum simulated hyporheic nitrate remov-

al efficiency for the generic river reach scenario of 72% was found for the power law pdfRT 

with τm < 1 hours, a shape factor of αP = 1.2 and a threshold factor of a = 0 hours. Contrary to 
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the gamma-type and exponential pdfRT models (Figure 4), removal efficiencies rapidly de-

creased for the power law distributions at threshold factors a > 0 hours. For the power law 

pdfRT regions of the graph where E ≥ 3% only can be found below the a = 0.5τm line and an 

increase in the shape factor αP further shifting the E ≥ 3% bound towards lower τm values. In 

Figure 5 parts of the graph above the 1:1 line (a = τm) are blanked as scaling factors Ar were 

close to zero subsequently resulting in a division by zero in Equation 2. The narrow range, 

where high hyporheic nutrient efficiencies can be achieved for simulations using power law 

pdfRT, can be explained by the special shape of the distribution models (Figure 2). Compared 

to the gamma or exponential model, most of the power (area below the function) for power 

law pdfRT is located at very low RT. Physically this can be interpreted as a system where ma-

jority of the flow paths are located in shallow areas of the HZ which are characterized by 

very low RT. For these shallow flow paths hyporheic nutrient removal is particularity high, 

which we will explain in detail later as part of chapter 4.4.2. If the shape factor αP is in-

creased more power is shifted towards low RT fractions in the pdfRT (Figure 2). However if 

the threshold factor a is introduced these fractions associated with high hyporheic nitrate re-

moval capacities (see chapter 4.4.2) are excluded and consequently removal rates and remov-

al efficiencies are becoming lower (Figure 5). 

 

 

4.2. Vilqué catchment 

4.2.1 Groundwater Input and Hyporheic Exchange parameters  

The ²²²Rn activities in the Vilqué stream varied from <100 to 16,000 Bq m-3 (Figure 6). The 

first 350 m of the stream showed ²²²Rn activities with values below 100 Bq m-³. Prior to the 

first sampling point the stream flows down an escarpment (Figure 3D) which produces highly 

turbulent conditions and high radon degassing which can account for the low ²²²Rn activities. 
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At x = 360 m the ²²²Rn activity rapidly increased from ~ 100 Bq m-3 to 16,000 Bq m-³ indicat-

ing a point source of groundwater discharge. An inflowing spring was identified on the 

stream bank with a ²²²Rn activity of 52,000 Bq m-3 (Figure 6A). This value was used as the 

groundwater end-member (²²²Rngw in Equation 11) as part of the FINIFLUX simulations. It is 

also likely that groundwater entered the stream through the streambed, and the spring is only 

a visual indicator for the upwelling of deeper groundwater. A second local maximum in ²²²Rn 

activity of ≈ 5,000 Bq m-³ was measured at x = 1,946 m, indicating a second stream reach that 

was preferentially influenced by groundwater inflow. Stream discharge rapidly increased for 

the first stream kilometer, especially in the area around the spring. For reaches located further 

downstream (between 1.5 km and 2 km), close to the catchment's outlet, discharge slightly 

decreased. The highest nitrate concentrations were measured in the upstream areas of the 

catchment (45 mg l-1) and decreased to ≈ 31 mg l-1 towards the catchment's outlet. The in-

verse correlation between measured nitrate concentrations and discharge suggests that nitrate 

was diluted by inflowing ground or surface water and nitrate loss due to hyporheic nitrate 

removal processes (Figure 6B). 

 

²²²Rn and stream discharge were used to quantify groundwater inflow and hyporheic ex-

change parameters as part of the FINIFLUX simulations. For all scenarios modeled ²²²Rn 

activities were close to the observed values with a correlation coefficient of ≈ 0.997 (a selec-

tion of three different distribution models are shown in Figure 6A). On average the different 

pdfRT scenarios systematically were overestimating the observed ²²²Rn activities by ~480 Bq 

m-³. The highest discrepancy between modeled and measured ²²²Rn activities was 1,300 Bq 

m-³ (8%) and is located where the spring enters the stream. Maximum difference in the simu-

lated ²²²Rn activities for the different pdfRT scenarios, with ~20 Bq m-³ lie close to the detec-

tion limit (15 Bq m-³) and were considered as insignificant (Figure 6A-D). The groundwater 
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influxes for the stream reaches upstream of the spring were close to zero for all scenarios 

(Figure 6D). At the spring location (x = 360 m) the modeled groundwater inflow was 1.7x10-

3 m³ s-1. For the reach where the second ²²²Rn peak (x = 1946 m) is located the groundwater 

inflow was estimated at ~0.6x10-3 m³ s-1. For the entire 2.3 km of the stream the groundwater 

inflow for the different scenarios varied between 5.52x10-3 and 5.54x10-3 m³ s-1 (Figure 6D). 

The net increase in measured stream discharge between the first and the last measuring point 

was 9.3x10-3 m³ s-1 which suggests that the modeled groundwater component makes up ap-

proximately 60% of the change in stream flow over the 2.3 km catchment. The remaining 

40% (3.8x10-3 m³ s-1) likely comes from small farm drains and ditches which were observed 

in the field but not quantified. 

  

Among the different distribution models pdfRT, inversely estimated τm were almost identical 

and varied from 2.4 to 2.6 hours (Figure 6C and D). The highest τm and the highest variability 

in τm came from the power law pdfRT. The cumulated hyporheic water flux for the entire 2.3 

km of the stream was ~18 x10-3 m³ s-1 with only very little difference between the various 

pdfRT models (Figure 6D). This suggests that more than half of the stream water passes 

through the HZ at some point over the 2.4 km, which is consistent with other hyporheic stud-

ies on small streams [Liao et al., 2013]. For the last two stream reaches groundwater input 

and hyporheic exchange was close to zero, which is also consistent with field observations as 

the streambed in this area was characterized by a high clay content preventing hyporheic ex-

change as well as very field data showing little change, or even a decrease, in discharge. 
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4.2.2 Hyporheic Nitrate Removal  

Hyporheic nitrate removal was simulated using the estimated hyporheic exchange parameters 

from the FINIFLUX simulations and measured stream nitrate concentrations Cin. Hyporheic 

nitrate removal was simulated for all pdfRT models by 1) assuming that hyporheic RT are 

equal to the ET (pdfRT = pdfET) which means that nitrate processing starts as soon as stream 

water enters the hyporheic zone (a = 0) and 2) that there is a distinct difference between RT 

and ET where pdfRT ≠ pdfET by introducing the different threshold factors discussed above. In 

Figure 7 the spatial development of hyporheic nitrate turnover is shown for three different 

pdfRT scenarios (exponential, αG=0.5, αP=1). Although absolute values for simulated hyporhe-

ic nutrient turnover did vary among the different pdfRT scenarios, all models had in common 

that hyporheic removal rates for the last two stream reaches were close to zero. The reason 

for this was the almost zero hyporheic flux qH for the last two stream reaches suggested by 

the FINIFLUX simulations (Figure 6D). Among the three different scenarios, highest 

hyporheic nitrate removal was simulated by setting a=0 hours for the power law distribution 

(0.33 kg h-1), followed by the gamma (0.21 kg h-1) and exponential (0.20 kg h-1) distribution 

models (Figure 7A). By assuming ET ≠ RT and using a threshold factor a > 0, hyporheic ni-

trate removal was significantly reduced (Figure 7A). For a = 2.3 hours (Figure 7) hyporheic 

nitrate removal for the entire stream decreased to 0.11 kg h-1 for the gamma model, 0.09 kg h-

1 for the exponential model and 0.01 kg h-1 for the power law model. This is a reduction of 

48-97 %.  

 

Total hyporheic nitrate removal and removal efficiencies for all simulated pdfRT scenarios are 

shown in Figure 8. Hyporheic nitrate removal efficiencies were calculated according to Equa-

tion 10 by setting the parameters in the denominator to corresponding values estimated for 

the catchments outlet at the last stream reach (Cin = 31.06 mg L-1 and Qs = 0.012 m³ s-1). For 
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all simulations performed for the Vilqué (Figure 8), and as found in the generic river reach 

scenarios, simulations using power law distribution models resulted in both the highest and 

lowest hyporheic nitrate removal and removal efficiencies depending on whether pdfRT or 

pdfET were used. This is due to the particular shape of the power law distribution (Figure 2). 

Compared to the gamma and exponential models most of the weight (area below the distribu-

tion) of the power law distribution is located at very short RT. This physically can be inter-

preted as shallow flow paths in the HZ with low hyporheic RT and a large hyporheic water 

flux qh. For these flow paths, the relative change in nitrate concentration (Cin - Cout) is low. 

However, mass removal scales with the hyporheic water flux, which is highest in the shallow 

areas of the HZ. These areas are removed from the power law distribution by introducing a 

threshold factor a > 0, with only the tail of the power law distribution contributing to the reac-

tive part of the hyporheic water flux qET and thus hyporheic nitrate removal. This can be seen 

when comparing the average qET for the three different distribution models (Figure 7) where 

qET for the power law distribution (0.0014 m³ m-1 h-1) is considerably lower compared to the 

gamma (0.009 m³ m-1 h-1) and exponential (0.011 m³ m-1 h-1) models.  
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5. Discussion 

In the HZ the complex interplay between hydrodynamic flow and redox-sensitive biogeo-

chemical reactions creates conditions where nitrogen is non-uniformly processed [Frei et al., 

2018]. Heterotrophic and autotrophic hyporheic nitrate removal pathways are capable of 

permanently and/or temporarily removing nitrogen from fluvial systems  [Burgin and Hamil-

ton, 2007].  In the LPM presented here, the primary controls on hyporheic nitrate removal are 

only represented in a simplified manner compared to real world conditions. We assume that 

the various processes responsible for hyporheic nitrate removal can be represented in a 

lumped fashion using a single kinetic expression that hinges on the absence of oxygen. In 

reality, stream reaches can also be net nitrate sources [Zarnetske et al., 2012; Briggs et al., 

2014] through nitrification, where ammonium originating either from incomplete hyporheic 

nitrate removal pathways (e.g. DNRA) or aerobic respiration are oxidized to nitrate. This is 

currently unaccounted for in the presented LPM, in that we assume that the HZ acts solely as 

a permanent sink for nitrogen. Processes such as nitrification would reduce the net efficiency 

of streams to remove nitrate, and thus our estimates may be an upper limit to nitrate loss in 

the HZ. Also we do not account for mixing processes with local groundwater in the HZ nor 

the suppressing effect of inflowing groundwater on hyporheic exchange [Trauth et al., 2013]. 

Streambed heterogeneity can have an important influence on hyporheic exchange characteris-

tics [Pryshlak et al., 2015], hyporheic residence times [Tonina et al., 2016] and can be re-

sponsible for the formation of biogeochemical hot spots [Gomez‐Velez et al., 2014]. By treat-

ing the HZ as box containing homogenous streambed materials where characteristics of 

transport are represented in a lumped fashion some of the aspects relevant under real world 

conditions cannot be accounted for in the LPM. The benefit associated with this high level of 

abstraction is the ability to upscale complex hydrological and biogeochemical processes to 

river reaches or entire catchments with a minimal number of parameters and computer power. 
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Compared to spatially explicit process-based model structures [Gomez-Velez et al., 2015] 

LPM usually do not need the level of detail required to set up and run flow and transport sim-

ulations.   

The concept presented as part of this study is based on the fundamental idea that there exists 

a distinct relationship between pdfRT and pdfET in non-well mixed hydrological systems [Frei 

and Peiffer, 2016]. The a-priori choice of 1) a suitable analytical distribution model to repre-

sent hyporheic RT and 2) a threshold factor that defines the time scales over which hyporheic 

nitrate removal processes are suppressed by the presence of oxygen are the critical compo-

nents in the LPM. A similar LPM was used by Pittroff et al. [2017] in order to quantify the 

hyporheic nitrate removal for a 32 km long river reach of the Roter Main River in South-East 

Germany. Despite considerable oxygen levels in the hyporheic sediments [Pittroff et al., 

2017], the authors still assumed that hyporheic nitrate removal was initiated as soon as stream 

water entered the subsurface. This assumption is identical to our simulations scenarios where 

the threshold factor a = 0.  Moreover, the simulations in Pittroff et al. [2017] were carried out 

using exclusively an exponential model for hyporeic residence times (pdfRT). As shown for 

the generic river reach and the Vilqué catchment, the combination of different distribution 

models and threshold factors can lead to very different estimates for hyporheic nitrate remov-

al. In particular simulations that use power law models show very inefficient hyporheic ni-

trate removal as soon as the threshold factor approaches the mean hyporheic RT. This is sig-

nificant as power law distributions are often associated with hydrological systems [Kirchner 

et al., 2000; Kollet and Maxwell, 2008b] including the HZ [Haggerty et al., 2002]. 

For the Vilqué catchment nutrient removal was estimated based on hyporheic parameters that 

are originated from inverse 222Rn mass balance modeling using the FINIFLUX model. Here 

we explicitly note that the LPM framework does not necessarily require a ²²²Rn mass balance 
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with the only prerequisite being some way to estimate a mean hyporheic RT and hyporheic 

exchange depth h for a given pdfRT. For ²²²Rn mass balance modeling, the specific type of 

pdfRT model used to describe enrichment of ²²²Rn in the hyporheic zone seems to be of minor 

importance. This can be attributed to the main source of stream ²²²Rn stemming from 

groundwater discharge due to its high ²²²Rn signature. Enrichment of stream water with ²²²Rn 

due to hyporheic flow only seems to play a subordinate role in this case due to the shallow 

hyporheic depth and narrow stream width. However, this also may be related with to the fact 

that the applied longitudinal stream 222Rn mass balance was reported to be insensitive to 

hyporheic zone residence times of below a few days [Cook, 2013]. 

For hyporheic nitrate removal the choice of a pdfRT model is important and can lead to signif-

icantly different results depending on which pdfRT is used. This was particularly evident for 

power law pdfRT where mass loss was up to 33% higher than either the gamma or exponential 

functions for a = 0 but approached zero when ETs were included in the calculations. These 

findings indicate that hyporheic systems can be very inefficient in removing nitrate especially 

when oxygen availability is high for parts of the pdfRT where most of the hyporheic water flux 

occurs. Although hyporheic nitrate removal can be minimal for the shallow aerobic areas the 

presence of oxygen can facilitate nitrification up to a point where the HZ is a net-source for 

nitrate [Briggs et al., 2014; Zarnetske et al., 2012].  

Catchment wide input-output mass balances are often associated with a high uncertainty. 

However, they can be a useful test of the plausibility of model results and to identify possible 

inconsistencies with observations. For the Vilqué stream we calculated a nitrate input to the 

uppermost reach of 9.6 kg d-1 and at the outlet a flux of 31.7 kg d-1. By using the mean 

groundwater flux from these three scenarios and the nitrate concentration in the spring, the 

nitrate flux from the aquifer into the stream can be quantified at 14.3 kg d-1. Hyporheic nitrate 
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removal in the HZ varied significantly depending on which pdfRT model was used and wheth-

er the ET method was applied or not. Maximum hyporheic nitrate removal (10.8 kg d-1) was 

calculated using the power law distribution model with a shape factor of αp = 1.2 and a = 0. 

For all pdfRT models, minimum and near zero mass removal occurred at a threshold factor of 

a = 4.2 hours. This leaves an unaccounted nitrate source in the mass-balance ranging from 

7.8 - 18.6 kg d-1. For the Vilqué catchment we assume that the missing nitrate flux originates 

from the unaccounted water source associated with surface or near surface inflows due to 

drains and ditches that were not quantified during the field campaign. Theoretically this un-

accounted component can be represented as part of the FINFLUX simulation via the tributary 

input term (Equation 11). This however would require defining the specific location where 

surface flow from drains is entering the stream which is difficult for a more diffuse water 

source that cannot be localized exactly. As the parameters obtained from FINIFLUX used to 

quantify hyporheic nitrate removal (qh, h and τm) are quite robust for the different FIN-

INFLUX scenarios, we think the outcome in terms of the estimated hyporheic nitrate removal 

rates would be very similar by accounting for the missing drainage water. By dividing the 

missing water flux (3.8x10-3 m³ s-1) by the range of unaccounted nitrate flux 7.8 - 18.7 kg d-1, 

an expected nitrate concentrations in the drain end member can be estimated for the different 

pdfRT scenarios (Figure 9). This can then be compared to the variability of measured stream 

nitrate concentrations.  Two scenarios simulated for the power law pdfRT model produce esti-

mated drain nitrate concentrations lying above the 75 percentile of measured instream nitrate 

concentrations and can probably be excluded as realistic. Nitrate concentration in the drains 

should lie close to or below to the ones measured in the stream as observations (Figure 6) 

suggest that nitrate is diluted by inflowing water from the drains. All the other scenarios pro-

duce nitrate concentrations lying in a plausible range. For the gamma-type and exponential 

pdfRT, almost all concentrations are lying within the 25 (32 mg l-1) -75 (44 mg l-1) percentiles 
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of measured stream nitrate concentrations. The scenarios that come closest to the median 

stream water concentration use gamma-type pdfRT with a shape factor of αp > 0.1 and a 

threshold factor of a = 0.35 hours. For the Vilqué catchment improved nitrate mass balances 

could be achieved by further narrowing the uncertainties associated with the FINIFLUX sim-

ulations and the parameterization of the ET. This would require additional field measure-

ments to constrain hyporheic exchange depths, measurements (e.g. N2-emission) to directly 

quantify denitrification in the HZ or in-situ oxygen measurements that can be used to derive 

an appropriate threshold factor for each reach.            

 

6. Conclusions 

 

Quantification of nutrient removal associated with natural degradation and transformation in 

managed and unmanaged catchments is a major challenge in environmental science. The 

framework presented here is a simple way to combine hydrological transport and biogeo-

chemical reactions using a LPM. The concept can be incorporated into existing tracer model-

ing routines such as OTIS [Runkel, 1998] when simulating reactive transport processes in 

storage zones. It is one of the few methods that can be applied to estimate hyporheic nitrate 

removal on scales of river networks and catchments. By incorporating ET to account for the 

effective timescales of biogeochemical reaction in the HZ, modeled removal efficiencies de-

crease dramatically compared to scenarios where RT are assumed to represent the time scale 

available for reaction. We conclude that ET will likely lead to more realistic estimates for 

nutrient removal in hyporheic systems.     
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Table 1: Parameterization of the generic river reach used to quantify hyporheic nutri-
ent removal for different parameter combinations of a and τm and different RT distribu-
tion models.  

 

N reaches [-] 1 

w [m] 1.0 

h [m] 0.25  

ϴ [-] 0.4 

τm [h] 0-30 

a [h] 0-30 

Qs [m³ s-1] 1  

Δx [m] 100 

Cin [g m-³] 40 
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Table 2: Reach specific values for the FINIFLUX simulations used for the Vilqué 

catchment. 

 

N observations [-] 14 

N reaches [-] 13 

222Rngw [Bq m-³] 52,000 

w [m] 0.22-0.78 

d [m] 0.011-0.169 

h [m] 0.001-0.570 (PEST calibrated) 

ϴ [-] 0.4 

τm [h] 2.4-2.6 (PEST calibrated) 

a [h] Table 3 

I [m³ m-1 s-1] 2.6x10-8 - 5x10-5 (PEST calibrated) 

Qs [m³ s-1] 2.5-12.8x10-3  

QR [m³ s-1] 0 

RL [m] 0 

222Rntrib [Bq m-³] 0 

Δx [m] 16-419 
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Table 3: Threshold factors used to simulate hyporheic nitrate removal of the stream 
Vilqué.  

 

Reaction kinetics Threshold factor a 

[h] 

Reference 

ET = RT 0 - 

First order 0.35 Kessler et al. [2012] 

Field observations 1 

 

 

Gomez-Velez et al. 

[2015] 

 

First order 1.6 Kessler et al. [2012] 

Monod-type 

(95% criterion) 

2.3 

modified after  

Azizian et al. [2015] 

Monod-type 

(using inhibitor criteri-

on) 

4.2 Azizian et al. [2015] 
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Figure 1: Deriving a pdfET from a pdfRT by introducing the threshold factor a. ’a’ repre-
sents the lag time prior to hyporheic nitrate removal caused by the inhibiting pres-
ence of oxygen. An exponential distribution model was used for visualization of the 
underlying concept.  



 

 

©2019 American Geophysical Union. All rights reserved. 
 

 

 

Figure 2: Various types of pdfRT models used for the generic river reach scenario. All 
pdfRT have a common mean value of τm = 1.5 hours. Plot A+B: Gamma-Type distribu-
tion models for different values of αG (tail behavior of the distributions are shown in 
plot B). Plot C+D: Power-law with exponential cutoff distribution models for different 
values of αP (tail behavior of the distributions are shown in plot D).  
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Figure 3: A-C) Location of the surveyed stream section at the ZAAr (Zone Atelier Ar-
morique), Long-Term Socio-ecological Research platform (LTSER) located in the 
northwest of France near the town of Pleine–Fougères. D) Digital elevation model 
(DEM) of the Villqué catchment.  
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Figure 4: Simulated hyporheic nitrate removal efficiencies for the generic river reach 
using different parameter sets for mean resident times τm, threshold factors a and 
shape factors αG for gamma-type RT distribution models. Note where the gamma pa-
rameter αG is 1 it is equal to an exponential distribution.  
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Figure 5: Simulated hyporheic nitrate removal efficiencies for the generic river reach 
using different parameter sets for mean resident times τm, threshold factors a and 
shape factors αP for power law RT distribution models. The blanked areas above the 
1:1 line result from an Ar factor lying close to zero resulting in a singularity when 
Equation 2 is calculated. 
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Figure 6: Simulated and observed in-stream ²²²Rn activity (A); measured discharge 
and in-stream nitrate concentrations (B); Box-Whisker-Plots for the simulated mean 
hyporheic RT shown for the exponential (αG = 1), gamma-type (αG = 0.5) and power law 
(αP = 1) distribution (C); modeled cumulative groundwater inflow and cumulated 
steady-state hyporheic water flux (D). 
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Figure 7: (A) Simulated hyporheic nitrate removal in the HZ by assuming pdfRT = pdfET 
(solid lines) and pdfRT ≠ pdfET (dashed lines) shown for three different RT distribution 
models. Total values for all simulated RT distribution scenarios are shown in Table4. 
(B) Box-Whisker plots showing the variability of reach specific hyporheic exchange 
fluxes qH and the effective hyporheic flux qET after introducing a threshold factor of a 
= 2.3 hours for the three different RT distribution models. 
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Figure 8: Cumulated hyporheic nitrate removal for all RT distribution scenarios for the 
2.3 km stream reach for gamma-type/exponential pdfRT (A) and power law pdfRT (B).   
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Figure 9: Observed in-stream nitrate concentrations and the nitrate concentration in 
the missing water source (e.g. farm drains) estimated for the different RT distribution 
scenarios.  

 

 


