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Abstract: One challenge in plant breeding is to ensure optimized production under fluctuating
environments while reducing the environmental impacts of agriculture. Thus, new rapeseed varieties
should be adapted to a wide range of pedoclimatic conditions and constraints. Addressing this issue
requires identifying the critical factors limiting production and the genotype by environment (G × E)
interaction. Our goal was to characterize the effects of environment and G × E interaction on the seed
yield of rapeseed grown over a large field network. First, we defined a pedoclimatic indicator set with
the ability to highlight the potential limiting factors along the crop cycle by analyzing the yield of two
genotypes grown under 20 environments. Out of the 84 pedoclimatic indicators, 10 were identified
as limiting after a partial least squares regression analysis. The environments were then clustered
into five envirotypes, each characterized by few major limiting factors: low winter temperatures and
heat stress during seed filling (1); low solar radiation during seed filling (3); vernalization conditions
during winter (4) and high temperatures at flowering (5). A larger genetic diversity was evaluated in
a subset of 11 environments to analyze the impact of envirotyping on genotype ranking. Their results
were discussed in light of field network management and plant breeding purposes.

Keywords: Brassica napus L.; seed yield; genotype × environment interaction; partial least
square regression

1. Introduction

Faced with the challenges of adapting agriculture to climate change, as well as more sustainable
cultural practices, a major goal is to maintain seed production (quantity and quality) under a wide
range of growth conditions, with sometimes highly adverse and unexpected constraints. In this
context, plant breeders face a dilemma between designing either new genotypes adapted to diverse
pedoclimatic conditions or highly specifically adapted genotypes. This consideration highlights two
main issues, first is the definition of field networks for genotype trialing under a large range of limiting
factors, and second is the understanding of the G × E interactions.

Genotypes are often trialed within field networks for breeding, cultivar registration, or agricultural
recommendations. Since the concepts of ecovalence [1] or joint linear regression [2] in the 1960s,
several methods have been developed to characterize the genotype reactivity to a given environment
using phenotypic observation [3]. These methods are easy to handle and allow quantifying the G × E
interactions as well as classifying genotypes as reactive or non-reactive. However, they do not provide

Agronomy 2019, 9, 798; doi:10.3390/agronomy9120798 www.mdpi.com/journal/agronomy

http://www.mdpi.com/journal/agronomy
http://www.mdpi.com
https://orcid.org/0000-0001-6700-3597
https://orcid.org/0000-0002-2552-472X
https://orcid.org/0000-0002-4930-8407
http://www.mdpi.com/2073-4395/9/12/798?type=check_update&version=1
http://dx.doi.org/10.3390/agronomy9120798
http://www.mdpi.com/journal/agronomy


Agronomy 2019, 9, 798 2 of 18

any easy way to unravel the interactions due to climate, management practices, or genotype features,
nor to access to the biological processes involved.

To get deeper insights into the G × E determinants, statistical methods, such as the factorial
regression [4] or partial least squares (PLS) regression [5], were developed in the 1980s. They rely on the
identification of the main environmental covariates that contribute to the G× E effects. A prerequisite of
these methods is the definition of a priori environmental covariates standing for the potential seed yield
limiting factors. According to Van Ittersum et al. [6], the limiting factors can be classified according to
their impact on seed yield. The first category corresponds to the “climatic” factors that allow predicting
a potential seed yield for a given genotype in a given environment. These factors are related to CO2

concentration, solar radiation, and soil water holding capacity or temperature. The second category of
factors reflects water and nutrient availability that limits the expression of the potential seed yield.
This set of environmental factors must be adapted to the considered crop and its agronomic context.

Rapeseed (Brassica napus L.) is a major worldwide oil crop with an annual production of around
70 Mt [7]. For winter oilseed rape (WOSR), Bouchet et al. [8] reported that G × E interactions could
explain up to 10% of the seed yield variation in a field network covering the main crop areas in France.
Therefore, there is scope to decipher the main factors that affect seed yield in WOSR in order to improve
both the management practices and breeding of cultivars with better resilience towards biotic and/or
abiotic constraints. Up until now, most of the studies dedicated to G × E in rapeseed were focused on
spring oilseed rape (SOSR) accessions grown under a Mediterranean-type climate and showed that
water availability and temperature were the two main yield limiting factors under these environmental
conditions [9–11]. However, data about other contrasting kinds of climates, such as continental or
oceanic types are rather scarce [12].

One main feature of WOSR is its long crop cycle in Western Europe (>10 months from sowing
to harvest in France) during which multiple biotic and/or abiotic stresses may occur and impact the
seed yield. To define the potential seed yield limiting factors along the crop cycle, it is necessary
to divide the whole cycle into different periods, corresponding to homogenous developmental or
climatic features, and to list the potential limiting factors over each period. Among all factors defined
by Van Ittersum et al. [6], some have already been qualified as limiting for WOSR, such as extreme
temperatures at anthesis or vernalization requirement fulfillment during winter [13]. In Northern
Europe, solar radiation may also be limiting, and a short photoperiod (less than 9 h) can affect plant
development and impact seed yield. Water deficiency, especially at sowing and during seed filling and
nitrogen limitation before flowering, has also been described to impact seed yield [14].

The goal of the present work was to cluster environments into different envirotypes in order to
describe seed yield variation and explain the G × E interaction for WOSR under French pedoclimatic
conditions. We based the envirotyping approach on regrouping environments according to their
patterns of limiting pedoclimatic factors. We made the hypothesis that inside a single envirotype
(cluster of environments presenting the same environmental limiting conditions), the G × E interaction
was lower than the G × E observed at the whole network scale. Therefore, we used the data obtained
across a field network of twenty environments (year by location combinations) to develop a four-step
strategy: (i) set up a large set of indicators based on pedoclimatic data and phenology of WOSR.
(ii) Identify the indicators that most influenced seed yield using PLS regression. (iii) Group the
environments into envirotypes based on these limiting factors. (iv) Characterize the impact of the
envirotyping on the G × E interaction using a large genetic diversity. This pipeline is presented and
discussed based on its interest in deciphering the G × E interactions to improve plant breeding and
field network management.
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2. Materials and Methods

2.1. Field Network and Crop Management Description

Field experiments were conducted in 20 environments (combination of location and year) between
2011 and 2016 in France to cover contrasting pedoclimatic conditions that represented the main areas
of rapeseed production and the climate diversity existing in France. The complete field network
consisted of 20 environments (Table S1). Each one is defined as the combination of a given location
by the year of harvest, as following: Ch14 (Châteauroux in 2014), Dij13 and Dij15 (Dijon in 2013 and
2015 respectively), Liv16 (Liverdy in 2016), LR11, LR12, LR13, LR15, and LR16 (Le Rheu in 2011,
2012, 2013, 2015, and 2016, respectively), Md11, Md14, and Md15 (Mondonville in 2011, 2014, and
2015, respectively), Pre14, Pre15, and Pre16 (Prémesques in 2014, 2015, and 2016, respectively), Sel14
and Sel15 (Selommes in 2014 and 2015, respectively), Ver14 and Ver15 (Verpillères in 2014 and 2015,
respectively) and Yeb15 (Yèbles in 2015). Each individual trial was conducted using classical crop
management for WOSR with comprehensive protection against weeds, pests, and pathogens. Optimal
Nitrogen (N) fertilization was estimated using the balance sheet method [15,16] for a target yield of
3.5 t ha−1. The total amount of required N fertilizer ranged between 40–190 kg N ha−1 depending on
the environment and was provided in one, two, or three applications (Table S1). Plant N status was
estimated using the Nitrogen Nutrition Index (NNI) [17] at the stage where flower buds were still
enclosed by leaves (BBCH50) [18,19], with a minimum delay of two weeks after the latest N supply.
Each trial was designed as a randomized complete block design with two to four repetitions (according
to the environment). Individual plot surface ranged from 6.75 m2 to 14 m2.

2.2. Plant Material and Seed Yield Assessment

Two probe genotypes, namely Aviso and Montego, were scored for seed yield over the
20 environments of the network. These genotypes were contrasted for earliness (mean difference of
40 growing degree days (GDD) ± 18) at flowering, GDD calculated as Gabrielle et al. [20] and height
(mean difference of 13 cm ± 9 cm), with Montego being the earliest and the smallest one. A diversity
set of 127 WOSR accessions (hereafter referred to as DS127) released from 1959 to 2007 (Table S2)
was scored for seed yield over a subset of 11 environments. Seed yield (SY) was defined as the
weight (t) of seeds harvested per ha considering moisture and impurity levels at 0% each. As a first
evaluation of the G × E, the ecovalence [1] was calculated for SY for each genotype (Equation (1)). It
corresponds to the contribution of each genotype to the G × E. The ecovalence gives information about
the stability of a genotype across environments. A high ecovalence means that the genotype is not
stable across environments.

W2
g =

E∑
e=1

(
Yge −Yg. −Y.e + Y..

)2
, (1)

where W2
g is the ecovalence for the genotype g, Yge is the SY value for genotype g in environment e, Yg. is

the mean SY for the genotype g across all environments, Y.e is the mean SY for the environment e across
all genotypes, and Y.. is the general mean. The DS127 displayed genetic variability for ecovalence, as
shown in Figure S1, reflecting a genetic variability of the response to environmental conditions.

2.3. Key Periods of the Winter Rapeseed Crop Cycle

The rapeseed crop cycle was divided into seven consecutive and non-overlapping periods based
on climatic data and plant phenology (Figure S2). The first period was the fall (F) that covered from the
sowing date to the beginning of the climatic winter (CW) defined as the second period. The CW started
or ended when 3 consecutive days with daily air temperature were recorded under or above 5 ◦C,
respectively (adapted for Hebinger [21]). The third period was the bolting period (B) that spanned
from the end of CW to the beginning of flowering of Montego (BBCH60) [18,19]. The fourth period
was the flowering (FLO) that lasted three weeks from the Montego BBCH60 stage onwards. The last
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three periods were defined on the base of thermal dates calculated from flowering (cumulative thermal
time using a base temperature of 0 ◦C) according to Leterme [22] and Julien et al. [23]. The P300 period
lasted 300 GDD after FLO and is related to the seed number fixation. The P600 period started at the
end of P300 and lasted 300 GDD. It is related to reserve allocation to the pod growth. Finally, the P1000
period started at the end of P600 and lasted 400 GDD. During P1000, reserves were primarily allocated
to seed growth. The vegetative part of the cycle included the F, CW, and B periods, while the FLO,
P300, P600, and P1000 defined the reproductive part of the cycle.

2.4. Indicators Used for Environmental Description

2.4.1. Descriptor Definition: Raw Climatic Data and Soil Water Status Evaluation

Specialized climatic data corresponding to mean daily rainfalls (R), evapotranspiration of Penmann
(ETP), global solar radiation (SR), mean air temperature (Tmean), maximum air temperature (Tmaxi),
and minimum air temperature (Tmin), that were extracted from the Meteo France database [24].

Water status for each environment was quantified by daily water soil content (WSC), calculated
from the water balance described in Equation (2). The maximal water soil content was estimated for
each location based on soil physical characteristics of two soil layers, 0–30 cm and 30–100 cm, according
to Bruand et al. [25]. The soil depth was set up to 100 cm for all locations according to oilseed rape root
distribution [26] and French soils mean depth [27].{

WSCi = WSCi−1 + (Ri −Kci × ETPi) −ROi
WSCi ≥ 0,

(2)

where WSCi is the water soil content at day i, Ri is the rainfall of day i, Kci is the crop coefficient (with
kinetic through adapted from Allen et al. [28]; Figure S2) calculated at day i, ETPi is the potential
evapotranspiration, and ROi is the runoff. Runoff at day i is estimated as the difference between
[WSCi−1 + (Ri −Kci × ETPi)] and WSC_MAX when [WSCi−1 + (Ri −Kci × ETPi)] > WSC_MAX and is
0 when [WSCi−1 + (Ri −Kci × ETPi)] ≤WSC_MAX.

For the initialization of the simulations of water balance, two extreme scenarios were tested
in all environments (i) WSC = WSC_MAX on 1 January before sowing without any previous crop
(Kc limited to soil evaporation coefficient) and (ii) WSC = 0 at sowing. The two simulations converged
rapidly and showed that the WSC was very close to 0 mm in August before sowing in almost all
environments and was at field capacity in winter, as reported by Weymann et al. [29]. Then, WSC was
initialized to 0 mm on August, 1st before each sowing. Based on the previous data, 15 descriptors
were identified. Eight descriptors were based on direct calculations of the raw data (mean, range, and
sum) and are summarized in Table 1a. They corresponded to the minimal temperature (TMIN), the
maximal temperature (TMAX), the mean temperature (TMN) over a period and the length of a period
in GDD (LGDD) for periods F, CW, B, and FLO. The water soil content maximal capacity (WSC_MAX)
and the mean water soil content (WSC_MN). The sum of the radiations (SSR) and the photothermal
quotient (QPT) only for the FLO period calculated as the ratio between SSR and LGDD [30,31].
Seven other descriptors consisted of the quantification of different stress durations by counting the
number of days when the considered raw climatic data was under or above a given threshold. These
descriptors are summarized in Table 1b and correspond to the number of days with Tmax > 25 ◦C
(high temperature—HT), the number of days with 0 ◦C < Tmin < 5 ◦C (low temperature—LT), the
number of days with Tmin < 0 ◦C (frost—FR). The number of days when WSC < 1/3 WSC_MAX (water
stress—WS), the number of days when WSC = 0 mm (water deficiency—WD). The number of days
with SR < 900 J cm−2 (lack of solar radiation—LSR) and the number of days with Tmean < 5 ◦C, and a
day length below 9 h (optimal vernalization treatment [13]—VERN_OPT).
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Table 1. (a) List of pedoclimatic descriptors: soil data status and descriptors calculated using raw
climatic data; (b) List of pedoclimatic descriptors corresponding to stress duration.

(a)

Descriptor Description Category Unit

LGDD*

Length of a crop period expressed in
growing degree-days. Sum of the daily
Tmean for the period (base temperature

0 ◦C)

Temperature ◦C.d

TMN Mean of the daily Tmean recorded over
a given crop period Temperature ◦C

TMIN Minimal temperature over a given
crop period Temperature ◦C

TMAX Maximal temperature over a given
crop period Temperature ◦C

WSC_MAX* Maximal water soil content for a
given environment Water mm

WSC_MN
Mean of the water soil content over a
given crop period (in proportion of

WSC_MAX)
Water %

SSR Sum of the daily solar radiation over a
given crop period Solar J cm−2

QPT* Photothermal quotient of SSR by LGDD
(SSR/LGDD) Solar MJ m−2 ◦C−1

(b)

Descriptor Description Category

HT Number of days with high temperature (Tmax > 25 ◦C) Temperature

LT Number of days with low temperature
(0 ◦C < Tmin < 5 ◦C) Temperature

FR Number of freezing days (Tmin < 0 ◦C) Temperature
WS Number of days when WSC < 1/3 WSC_MAX Water
WD Number of days when WSC = 0 mm Water

LSR Number of days with a lack of solar radiation
(SR < 900 J cm−2) Solar

VERN_OPT* Number of days with an optimal vernalization
treatment (Tmean < 5 ◦C and day length < 9 h) Plant

Each descriptor can be attributed to all crop periods (descriptor × crop period = indicator) excepted for descriptors
with a star (*). The length of a crop period in growing degree days (LGDD) is only calculated for Fall, Climatic
Winter, Bolting, and Flowering. The photothermal quotient (QPT) is only calculated for Flowering. Tmin and Tmax
represent daily minimal and maximal temperature, respectively, whereas TMIN and TMAX represent minimal and
maximal temperature for a given period.

2.4.2. Set up of Informative Indicators

Combining the different descriptors with the crop periods led to the definition of 84 pedoclimatic
indicators falling into four main categories, namely “temperature”, “water”, “solar” and “plant”. The
pedoclimatic indicators that did not vary along the crop cycle (11 in this study) or varied in less than
3 environments (5 in this study) were considered as non-informative and eventually removed from
our dataset (Figure 1). Among these, 9 were of the temperature category and 7 of the water category.
The Pearson correlation coefficients were calculated between each of the 68 remaining pedoclimatic
indicators. Environments were clustered based on the pedoclimatic indicator categories using the
Ward method [32] to describe the network.

2.5. Statistical Analyses

All statistical analyses were performed with R software version 3.5.1 [33].
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2.5.1. Partial Least Squares (PLS) Regression

To identify the pedoclimatic indicators that limited seed yield, a univariate partial least squares
(PLS) regression [34] was performed on the mean SY value calculated as the mean between Aviso
and Montego seed yields across the 20 environments of the network. PLS regression was preferred
to linear regression because many indicators were considered and some of them were correlated.
The univariate PLS regression model was based on the construction of latent variable (T) as linear
combinations of the X variables (the pedoclimatic indicators in this study) so that cov(T,Y) is maximal
and then regressing Y (the mean seed yield of Aviso and Montego) on those latent variables [35,36].
The number of latent variables to consider was based on the Q2 indicator [37]; one new component
was considered if its Q2 value was over 0.0975. Finally, the model performance was estimated by its
Q2

cum (ref) value assessed on all its components. Gauchi and Chagnon [38] showed that a selection
among the indicators under study could improve the PLS regression model. They proposed methods
to perform this selection of variables as the Backward-Q2

cum method (BQ method) [38]. The first step
of this method was to perform a PLS regression on all pedoclimatic indicators and then to select the set
of indicators that explain SY variability using a backward selection: at each step, the pedoclimatic
indicator presenting the smallest regression coefficient in absolute value was discarded and a new PLS
regression was performed. The process was repeated n-1 times (with n the number of pedoclimatic
indicators considered). The best PLS regression model corresponded to the model with the highest
Q2

cum value. When two models resulted in the same Q2
cum value, the one with the smallest number

of indicators was chosen. PLS regressions runs were carried out using the plsreg1 function from the
package plsdepot [39].

To validate the indicators set identified by the PLS regression, a leave-one-out procedure was
used on the 20 environments. Twenty PLS regressions were performed using the same method, each
on 19 environments (one environment was removed at each PLS regression). For each of the indicators
selected by the PLS regression on the whole network, we calculated a confidence index as the number
of times where the pedoclimatic indicator was selected among the 20 “leave-one-out” PLS regressions
divided by the total number of environments. If the value of the confidence index was superior to 0.5,
the pedoclimatic indicator was considered as consistent.

2.5.2. Envirotyping Based on the PLS Regression Results

Using the best PLS regression model, each environment was characterized by its coordinates
on the different PLS axes multiplied by the impact of those axes on Y. Based on these coordinates,
Euclidean distances between environments were calculated and used to carry out a clustering using
the Ward method [32]. To determine the number of envirotypes (clusters of environments), the inertia
gain was observed, and the Krzanowski and Lai index [40] was calculated for a number of clusters
between 2 and 15. The index maximal value indicates the optimal number of envirotypes. Finally, each
envirotype was described using the function catdes of the package FactoMineR [41] by the calculation
of a test value as defined by Husson et al. [42]. Briefly, the test-value is the normalized variation
between the mean value of individuals belonging to a given envirotype and the general mean.

2.5.3. Test of the Environment and Genotype by Environment Effects Using Linear Models

Each linear model was run using the function lm of R.
A first linear fixed model (Equation (3)) was fitted on the data of DS127 (11 environments) to test

the effects of the environments and the G × E interaction across the network:

Yi jk = µ+ Gi + E j + Gi × E j + Rk( j) + εi jk, (3)

where Yi jk is the seed yield (SY) of genotype i in environment j for the replicate k, µ is the population
mean, Gi stands for the effect of genotype i, E j for the effect of environment j, Rk for the effect of
replicate k nested in the environment j, Gi × E j for the effect of interaction between genotype i, and
environment j and εi jk is the residual.
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A second linear model (Equation (4)) was fitted to include an “envirotype” term and the
corresponding interaction effects.

Yi jkl = µ+ Gi + Cl + Cl( j) + Gi ×Cl + Gi ×Cl( j) + Cl( j×k) + εi jkl, (4)

where Yi jkl is the SY observed for the genotype i, in envirotype l, in environment j, and in replicate
k, µ is the population mean, Gi stands for the effect of genotype i, Cl for the effect of envirotype l, E j
for the effect of environment j nested in envirotype l. Rk stands for the effect of replicate k nested in
environment j also nested in envirotype l. Gi × Cl the effect of interaction between genotype i and
envirotype l, Gi × Cl

(
E j

)
the effect of interaction between genotype i and environment j nested in

envirotype l. εi jkl is the residual.

3. Results

3.1. Description of the Field Network and Pedoclimatic Indicators

The mean seed yield of the two probe genotypes Aviso and Montego reached 3.4 t ha−1 (standard
deviation of 0.618) over the whole network, ranging from 2.4 t ha−1 to 4.7 t ha−1 depending on the
environment. The targeted yield of 3–3.5 t ha−1 was reached in most environments (Table S1). In
addition, the mean NNI value across the network was 1.18 (standard deviation of 0.25), confirming
that the network was not very impacted by a nitrogen stress as the NNI value was higher than 0.9 [17].
No biotic stresses were reported in the network. Taken together, these data suggested that the SY was
primarily limited by pedoclimatic conditions.

According to the four classifications, performed for each pedoclimatic categories, environments
can be assigned to three climatic categories (Figure 1). The first category gathered the environments
Dij13, Dij15, Pre15, Ver15, Sel15, Yeb15, Md11, and Md15, and can be qualified as “continental”. It is
characterized by cold winters (high FR_CW and high LT_CW) and high temperature during spring and
summers (high TMAX_FLO/P300/P600/P1000 and high HT_FLO/P300/P600/P1000). No solar deficit
was recorded for these environments and five out of eight environments showed water stress during
the reproductive phase (Dij15, Pre15, Yeb15, Md11, and Md15). This “continental” category gathered
all environments of the year 2015 (except LR15), and all the trials were carried out in location “Dijon”
in Eastern France. The second category consisted of the three environments LR12, LR13, and LR16.
The environments of this category are characterized by a short duration of the flowering phase when
expressed in growing degree-days (low LGDD_FLO), low temperatures at flowering (high LT_FLO
and low TMN_FLO), solar deficiency during falls and the reproductive phase (LSR_F/P300/P600), and
no water stress during the whole crop cycle. This category is specific to the LR location in Brittany
(Western France), an area known for its oceanic climate with mild and rainy winters and the absence of
extreme temperatures. The last group gathered environments Md14, Sel14, Pre14, Ver14, Liv16, Pre16,
LR11, Ch14, and LR15. This group can be qualified as “modified oceanic” climate and is characterized
by warm falls and winters (high TMAX_F and low FR_CW) and cool springs and summers. At the
network scale, specific climatic constraints were recorded independently of the climate category:
water stress during flowering (WSC_MN_FLO) were recorded for Md11, Dij15, Sel14, and LR12, and
optimal vernalization conditions were not fulfilled for LR12, LR16, Md14, Md15, Md11, and Pre14.
The calculation of the Pearson’s correlation coefficient for the 68 pedoclimatic indicators (Table S3)
revealed that 25% of the correlation coefficients were significant at α = 0.05 and corresponded to
correlation coefficient absolute values above 0.5 and that 5% of the correlations were highly significant
(p-value < 0.001). This 5% of correlations are highlighted in Table S3.

3.2. Identification of the Critical Indicators for Seed Yield

Following the PLS regression analysis, the BQ method was applied, resulting in the selection
of a model based on three components and 10 pedoclimatic indicators (Table 2). The confidence
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index calculated by PLS across permutations showed that these 10 indicators were identified in at
least 60% of the permutations. The observed seed yield and the predicted seed yield were highly
correlated (R2 = 0.96, RMSE = 1.3). Selected indicators presented highly significant correlations with
other indicators excepted for TMAX_FLO (Table 2).

Table 2. The 10 limiting factors identified by partial least squares regression.

Pedoclimatic Indicator Confidence Index Correlated Indicators

VERN_OPT 1 LT_CW
TMAX_FLO 0.95 -

HT_P600 0.9 FR_CW (0.72); TMAX_P600 (0.83); TMN_P600
(0.87); HT_P1000 (0.70)

SSR_P600 0.85 LSR_P600 (−0.70)
TMN_CW 0.85 TMIN_B (0.73)
HT_P300 0.8 TMAX_P300 (0.70)
LSR_FLO 0.8 SSR_FLO (−0.70)

WS_P1000 0.75 WS_P600 (0.77); WSC_MN_P600 (−0.68);
WSC_MN_P1000 (−0.70)

TMIN_P300 0.65
TMN_FLO (0.70); LT_FLO (−0.68);

LGDD_FLO (0.70); TMN_P300 (0.71);
LT_P300 (−0.88)

TMN_P1000 0.6
TMN_FLO (0.70); LGDD_FLO (0.70);
TMAX_P1000 (0.76); HT_P1000 (0.89);

LSR_P1000 (−0.76)

Confidence index corresponds to the percentage of permutations where the indicator was identified by PLS
regression. Correlated indicators represent additional indicators that were significantly correlated with the ones
identified by the PLS regression. The values given into parentheses represent the Pearson’s correlation coefficient
(data given in Table S3).Agronomy 2019, 9, x FOR PEER REVIEW 8 of 19 
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Figure 1. Description of the field network by the pedoclimatic indicators and variations of these 
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right (b, d, f, h) for temperature indicators (a, b); water indicators (c, d); solar indicators, (e, f) or plant 
indicators (g, h). To run comparisons between environments, each indicator was scaled from 0 (dark 
blue) to 10 (yellow) on the heatmaps. Non-informative indicators are represented in grey and were 
removed for further studies. Pedoclimatic indicators are grouped by period as following: Fall (F), 
climatic winter (CW), Bolting (B), Flowering (FLO), Seed number fixation period (P300), Priority 
allocation to envelope phase (P600), and priority allocation to seeds phase (P1000). Information about 
environments is given in Table S1. 
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All categories of descriptors were represented in the 10 indicators revealed by the PLS 
regression with TMN_CW, TMAX_FLO, TMIN_P300, HT_P300, HT_P600, and TMN_P100 for the 
temperature category, WS_P1000 for the water category, LSR_FLO and SSR_P600 for the solar 

Figure 1. Description of the field network by the pedoclimatic indicators and variations of these
indicators within the field network. Heatmaps are presented on the left (a,c,e,g) and boxplots on
the right (b,d,f,h) for temperature indicators (a,b); water indicators (c,d); solar indicators, (e,f) or
plant indicators (g,h). To run comparisons between environments, each indicator was scaled from 0
(dark blue) to 10 (yellow) on the heatmaps. Non-informative indicators are represented in grey and
were removed for further studies. Pedoclimatic indicators are grouped by period as following: Fall
(F), climatic winter (CW), Bolting (B), Flowering (FLO), Seed number fixation period (P300), Priority
allocation to envelope phase (P600), and priority allocation to seeds phase (P1000). Information about
environments is given in Table S1.

All categories of descriptors were represented in the 10 indicators revealed by the PLS regression
with TMN_CW, TMAX_FLO, TMIN_P300, HT_P300, HT_P600, and TMN_P100 for the temperature
category, WS_P1000 for the water category, LSR_FLO and SSR_P600 for the solar category, and finally,
VERN_OPT. Except for VERN_OPT and TMN_CW, all selected indicators that explained seed yield
variation were post-flowering indicators.

3.3. Definition of the Envirotypes
Based on the results of the PLS regression and of clustering of the environments, five envirotypes

were identified regarding the inertia gain and the result of the Krzanowski and Lai index [40]
(Figure 2a,b). The environments Dij13 and Dij15 constituted the envirotype 1. Pre16, Ver14, LR12,
Sel14, LR13, Md14, Ch14, and LR15 constituted the envirotype 2. LR16, Liv16, and Pre14 constituted
the envirotype 3. LR11, Pre15, and Yeb15 constituted the envirotype 4 and Md15, Md11, Sel15, and
Ver15 constituted the envirotype 5. Noticeably, the different envirotypes did not correspond to a year
or location specific classification except for the envirotype 1. The seed yield distribution of Aviso and
Montego in each envirotype revealed high-yielding envirotypes (e.g., envirotype 1) and low-yielding
envirotypes (e.g., envirotype 3) (Figure 2c).
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Figure 2. Envirotype definition: (a) dendrogram tree of the 20 environments of the field network based
on the PLS regression results. The 11 environments of the DS127 are underlined. (b) Inertia gain for
number of groups between 2 to 19. (c) Boxplots showing the distribution of the seed yield (q ha−1) of
Aviso and Montego per envirotype.
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The envirotypes were characterized according to their pedoclimatic indicators pattern (Figure 3).
Envirotype 1 had a higher mean HT_P300 and a higher mean HT_P600 than the global network
but a lower mean TMN_CW. Envirotype 2 was representative of the global network. Envirotype 3
was characterized by a lower mean SSR_P600. Envirotype 4 was characterized by a more important
VERN_OPT. Last, envirotype 5 had a higher mean TMAX_FLO than the global network.Agronomy 2019, 9, x FOR PEER REVIEW 12 of 19 
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Figure 3. Characterization of the envirotypes using the 10 indicators selected by the PLS regression. The
pedoclimatic indicators are written in black and the correlated indicators in blue (positive correlation)
or in red (negative correlation). TMN_CW (mean temperature during the climatic winter period),
TMAX_FLO (maximal temperature during the flowering period), TMIN_P300 (minimal temperature
during the seed number fixation period), TMN_P1000 (mean temperature during the seed filling period),
HT_P300 (number of days of high temperature during the seed number fixation period), HT_P600
(number of days of high temperature during the “allocation to the pod” period), VERN_OPT (number
of days with an optimal vernalization treatment), WS_P1000 (number of days presenting a water stress
during the seed filling period), LSR_FLO (number of days with a lack of solar radiation during the
flowering period). The mean network is represented by a black dash line.

3.4. Evaluation and Decomposition of the G × E Interaction at the Network Level

3.4.1. Effect of the Envirotyping on the G × E Decomposition

The DS127 was trialed in 11 out of the 20 environments represented in at least one envirotype
(Figure 2a). The distribution of seed yield for the DS127 per envirotype displayed the same pattern
as shown for Aviso and Montego (Figure S3). The multi-local variance analysis, using the Equation
(3) on the DS127 data (Table 3) revealed a high environmental effect with 51.1% of the variation
and a high genotype effect and G × E interaction reaching 28.9% and 11.7% of the global variation,
respectively. When considering the effect of the envirotyping on seed yield, we observed that the
envirotype was significant and explained 46.2% of the total variation, and the environmental effect
within each envirotype explained 4.9% (Table 4). Clustering the environments into five envirotypes
contributed to explaining 90% of the environmental effect observed at the field network scale. The
initial G × E interaction (Table 3) was split into the G × C (42.6%) and G × C × E effect (57.4%) (Table 4).
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Finally, within an envirotype, the environmental and G × E effects were reduced when compared to
the global network.

Table 3. Results and corresponding variance partition of the linear fixed model (3) on DS127 data (127
genotypes trialed in 11 environments of the network).

G E G × E E × R Residuals

Sum Sq 70821 125131 28620 6069 14190
%Sum Sq 28.9 51.1 11.7 2.5 5.8

Pvalue *** *** *** ***

Significance of the genotype (G), environment (E), replicate (E × R), and their interaction (G × E) were assessed
using model (3). Sum Sq: sum square of the considered effect, %Sum Sq: proportion of the total variation explained
for the considered effect, p value: results of the F-test. (***, p < 0.001).

Table 4. Results and corresponding variance partition on the linear fixed model (4) on DS127 data.

G C C × E G × C G × C × E C × E × R Residuals

Sum Sq 70821 113195 11936 12195 16425 6069 14190
%Sum Sq 28.9 46.2 4.9 5.0 6.7 2.5 5.8

Pvalue *** *** *** *** *** ***

Significance of the genotype (G), environment (E), envirotype (C), replicate (C × E × R) and their interactions (C × E,
G × C, G × C × E) were assessed using model (4). Sum Sq: sum square of the considered effect, %Sum Sq: proportion
of the total variation explained for the considered effect, p value: results of the F-test. (***, p < 0.001).

3.4.2. Ranking of the Genotypes Per Envirotype

The evaluation of the genotype ranking per envirotype also illustrates the impact of the
envirotyping on deciphering the G × E interaction (Figure 4a). Lists of the top five genotypes
of each envirotype were compared. Taken together, these genotypes were always performing in the
first quarter list, but the top five genotypes differed between envirotypes. Indeed, only two genotypes
(Ecrin and SW Gospel) were identified in the top list of three envirotypes, including envirotype
1, 2, and 5 for Ecrin and envirotype 2, 3, and 4 for SW Gospel. Seven genotypes were common
to two envirotypes: Adriana (envirotypes 1 and 5), Capvert (1 and 3), Astrid (1 and 5), Courage
(2 and 3), Salomont (2 and 4), Alesi (2 and 4), and Kadore (3 and 4). Finally, five genotypes were
envirotype-specific as Remy (1), Navajo (3), Pacific (4) Lewis (5), and Aviso (5). These rankings changed
between envirotypes, highlighting qualitative G × E at the network scale. The same approach was
carried out for envirotypes 2, 4, and 5 that included several environments, and the top list of genotypes
per environment of a given envirotype was compared to the global ranking at the envirotype scale
(Figure 4b–d). For instance, one genotype (SW Gospel) was identified as one of the best five genotypes
of all the constituting environments of envirotype 4. Similar results were observed for genotype Astrid
within envirotype 5.
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Figure 4. Ranking of the genotypes: (a) comparison of the top 5 genotypes in each envirotype across the
whole network; network mean represented the mean ranking of the genotypes. Genotypes identified
as one of the top 5 genotypes in three envirotypes are represented in green (�); the one identified in
2 envirotypes out of 5 are represented in blue (�) and the one identified in a single envirotype are
represented in orange (�). (b,c,d) Ranking of the top 5 genotypes in green (�) for envirotype 2, 4, and 5,
respectively, in each environment of the corresponding envirotype.

4. Discussion

The main goal of this study was to characterize the environmental effect and the G × E interaction
on winter oilseed rapeseed yield variation considering climatic, pedological, and plant phenological
features. Using this framework, 68 informative pedoclimatic indicators were defined. A PLS regression
coupled with a decision rule (Backward-Q2

cum method) allowed to tag 10 indicators linked to the
vernalization and reproductive phase as limiting for seed yield. These 10 indicators were used to
cluster the environments of the network into five envirotypes. The envirotyping allowed catching a
major part of the environmental effect as well as a smaller part of the G × E interaction. These results
open new directions in quantitative genetics and genomics selection.

4.1. When Used in A Multi-Constraining Network the PLS Regression Selected Key Indicators That Were
Critical for Seed Yield

Under French climatic conditions, a wide range of stresses can limit seed yield, according to the
duration of the crop cycle as well as the diversity of climates occurring in France (oceanic, Mediterranean
or pseudo-continental climates). To cover most stresses that potentially occurred along the crop cycle,
84 pedoclimatic indicators were defined and split into four categories (thermic, water, solar, and plant)
for all developmental stages. This large set was reduced to 68 after consideration of the variability
of each single indicator within the network. Other studies have focused on the impact of abiotic
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stresses on seed yield of Brassica napus. Thermic and water stresses were identified as limiting factors
for spring oilseed rape grown under Mediterranean-type climates [9–11], and the time of flowering
depends on the photoperiod and temperature [13]. However, these studies did not consider any other
abiotic constraints. In this study, an exhaustive environmental screening of potential pedoclimatic
indicators affecting seed yield was performed and produced a high number of indicators. Because this
number was much higher than the number of environments and because correlations existed between
indicators, classical methods to identify limiting factors, such as the factorial regression, cannot be
carried out without a preselection of the most important variables. PLS regression permits using all
variables, including correlated variables, without selection, and pairing with a decision rule selects
indicators to improve the regression model. From the 68 indicators, 10 were identified by the PLS
regression as limiting factors and all four categories were represented.

4.2. Critical Factors for Seed Yield in WOSR Were Mostly Related to Heat Stress, Radiation Deficit, and Water
Shortage during Vernalization and Reproductive Periods

The 10 pedoclimatic indicators identified for seed yield were related to the vernalization period
(TMN_CW and VERN_OPT) and the reproductive phase (TMAX_FLO, LSR_FLO, TMIN_P300,
HT_P300, HT_P600, SSR_P600, TMN_P1000, and WS_P1000). Most of the correlated indicators showed
the same processes excepted for the correlation between HT_P600 and FR_CW (Table S3). Vernalization
controls flowering time and is highly impacted by the photoperiod and the duration at low temperatures
(<5 ◦C for Brassica napus) [43]. The non-fulfillment of optimal vernalization conditions impacts seed
yield, leading to a delay or an absence of flowering in WOSR [44]. In Arabidopsis thaliana, the two
genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) are known to delay flowering, but their effect
can be suppressed by a vernalization treatment. Orthologs have been identified in Brassica napus and
their impact on flowering time was confirmed [45,46]. With an earlier flowering, the environmental
conditions at anthesis could change and affect the seed number elaboration. An earlier flowering also
decreases the duration of the vegetative phase resulting in a lower amount of accumulated assimilates
to be remobilized to the grain afterward. During the reproductive phase including the flowering
period, the seed number fixation period (P300), the period when reserves are allocated to pod growth
(P600) and the period when reserves primarily allocated to the pods are used for seed growth (P1000),
five thermic indicators were identified as limiting. Heat stress at flowering is known to induce a
seed yield reduction in Brassica napus by affecting the flower fertility: size and shape of the floral
organs [47–49]. Heat stress can also affect the seed number, the number of seeds per pod, and the
pod number [47,48], depending on the period affected by the stress. For instance, during the P1000
period, high temperature impact on seed yield was quantified as a loss of 0.4 t ha−1 for an increase of
3 ◦C of the mean temperature for canola [50]. Two solar indicators were identified during flowering
and P600 periods. Radiation stresses are sometimes confounded with heat stress in the literature, and
therefore less described [48]. In our study, these two solar indicators were not correlated with a thermic
indicator; we were able to distinguish radiation effects from heat stress and to highlight both effects
independently. This distinction is important because radiation stress by itself can lead to seed yield
variation, especially during flowering and seed filling, as shown by Baux et al. [31]. Radiation stress
during the reproductive phase could affect the pod autotrophy by affecting the pod chlorophyll content
and their photosynthetic activity. Finally, one water indicator was identified as limiting during the end
of the crop cycle. In France, water shortage is not considered as a major limiting factor for rapeseed,
but it can lead to seed yield loss, especially when the stress appears between the BBCH stages 65 and
73, affecting the number of pods per plant [14].

4.3. An Approach to Capture the Components of the Environmental Effect

The five envirotypes identified gathered from two to eight environments each. The environments
were not grouped according to their climatic features or the climatic year. Indeed, this clustering was
compared to a clustering performed using a PCA carried out using the whole set of pedoclimatic
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indicators. The results showed that environments were clustered mainly according to the year of
the experiment and secondly according to their location, and no differences were observed for mean
seed yield between groups (data not shown). However, the envirotyping based on the PLS regression
was reliable as it explained 90% of the environmental variation observed across 11 environments,
thus drastically reducing the remaining environmental effect within each envirotype. These results
confirmed the important effect of environment on seed yield and the ability of the method to identify a
posteriori the pedoclimatic components explaining yield instability. This envirotyping allowed us to
define a typology of environments. These results can be helpful to design new networks or to improve
existing ones. For instance, redundant environments, that are environments attributed to the same
envirotype, could be removed from the network, or new environments could be added to increase
the representativeness of specific limiting factors. Indeed, the 11 environments where the DS127 was
trialed consisted of a first optimization of the network as each envirotype was represented by at least
one environment. Such optimized networks could be valuable for registration and post-registration
trials to provide agricultural advice in the choice of cultivars adapted to one or several environments.

4.4. An Approach that Provided First Clues to Tackle the G × E Interaction

After the understanding of the environmental effect, the second goal of this study was to decipher
the G × E interaction. According to the DS127 data, the G × E interaction stood for 11.7% of the
variation. The envirotyping permitted to reduce the G × E between envirotype to 5% and reducing the
G× E inside envirotype to only 6.7%. However, as showed by the genotype ranking, the interaction was
still present inside envirotypes. When we calculated the ecovalence of each environment as defined by
Parisot-Baril [51], which corresponds to the contribution of each environment to the G × E interaction,
we did not observe that highly interactive (or stable) environments were grouped together. This may
result from the fact that period definition, PLS regression, and envirotyping were performed on the two
probes genotypes that were not perfectly representative of the whole diversity of DS127. To specifically
target the pedoclimatic factors that do affect the G × E interaction, it could be worth using the PLS
regression approach to explain directly the environmental ecovalence instead of the mean environment
seed yield or directly performing a multivariate PLS regression on the interaction matrix estimated
for large number of genotypes trialed under numerous environments (more than 20 environments).
However, envirotyping directly on G × E interaction term remains tricky as G × E only accounted for a
small part of total variation, leading to potential confounding effects with errors. Such errors could
be attributed to the fact that the G × E interaction is dependent on both the genotype set and on the
environment sets. In such G × E-based clustering approach, the environments will be gathered into
envirotypes according to their ability to contribute to G × E and not to their patterns of seed yield
limiting factors, leading to difficulties to interpret the clustering. Moreover, the clustering will be
dependent on the given genotype set. It will, therefore, not be possible to use the obtained clustering
to optimize a field network. In our study, the envirotyping was based on seed yield variation between
environments, leading to an agronomic characterization of the envirotype. We then demonstrated that
this envirotyping was also useful to control a part of the G × E interaction and could be transferred
from few genotypes to a larger range of genetic diversity.

4.5. Get Further into the Genetic Determinant of the G × E Interaction and Its Interest for Breeding Programs

Handling G × E interaction is critical for breeders, as it is a driver of a wide versus specific
adaptation of cultivars to environments. Stable cultivars that present a small contribution to the G × E
are adapted for large areas, whereas cultivars dedicated to specific environments may benefit from
high G × E interaction. In most cases, the breeding material is evaluated for a variety of locations.
Another option consists in breeding genotypes using a single representative environment of the region
of interest [52]. However, we showed that trials carried out in the same location but on different
years did not present the same limiting factors. Therefore, we propose an alternative strategy where
breeding trials are grouped into envirotypes according to their limiting factors and not according to
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their geographical proximity. This methodology can help breeders in designing field networks that
emphasize limiting factors for their breeding programs, but we must define new indicators related
to biotic interaction or cultural conditions. To help in the identification and the assessment of new
pedoclimatic indicators, crop models can be used to simulate daily indicators, such as nitrogen nutrition
index, soil water content, soil nutrient availability (N, P, K, S...).

5. Conclusions

The results of our study could find applications in quantitative genetics (for QTL detection/GWAS)
and for breeding (with marker-assisted selection (MAS)) using the envirotypes or by considering the
limiting factors as covariables in the models. Indeed, the G × E interactions lead to instability of the
loci detected from one environment to the other. Understanding this specificity will help breeders
considering specific loci for MAS purposes, depending on a given environment (represented here by
an envirotype and its pattern of limiting factors). Our results could also be used to improve genomic
predictions by calibrating models for each envirotype or using environmental covariates into the
calibrations to predict the environment effect and genotypic performances across environments.
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Figure S1: Description of the DS127 set based on the ecovalence calculated for each genotype. Figure S2:
Adaptation of crop coefficient (Kc) dynamics for winter oilseed rape to perform soil water content estimation across
the crop cycle. Figure S3: Seed yield distribution of the DS127 set following the envirotypes defined for Aviso and
Montego. Table S1: Field network and crop management strategies. Table S2: Description of the DS127 diversity
set of winter oilseed rape. Table S3: Matrix of correlation coefficients between the 68 pedoclimatic indicators.
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