Towards the prediction of levels of infestation of Acyrthosyphon pisum in pea-wheat mixtures

David Camilo Corrales, Marie-Hélène Robin, Bruno Jaloux, Cécile Le Lann, Anne Le Ralec, Martin Luquet, Yann Tricault, Juan Manuel Cancino, Jean-Philippe Deguine, Jean-Noel J.-N. Aubertot

To cite this version:

David Camilo Corrales, Marie-Hélène Robin, Bruno Jaloux, Cécile Le Lann, Anne Le Ralec, et al.. Towards the prediction of levels of infestation of Acyrthosyphon pisum in pea-wheat mixtures. European Conference on Crop Diversification., Sep 2019, Budapest, Hungary. hal-02484883

HAL Id: hal-02484883
https://institut-agro-rennes-angers.hal.science/hal-02484883

Submitted on 19 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Towards the prediction of levels of infestation of *Acyrthosyphon pismum* in pea-wheat mixtures

David Camilo Corrales¹, Marie-Hélène Robin², Bruno Jaloux³, Cécile Lelann³, Anne Le Ralec⁵, Martin Luquet³, Yann Tricault⁵, Juan Manuel Cancino⁶, Jean-Philippe Dequigne⁶, Jean-Noël Aubertot⁷

¹INRA, Université Fédérale de Toulouse, UMR 1248 AGIR, F-31326 Castanet-Tolosan, France
²INPT-El Purpan, Université Fédérale de Toulouse, UMR 1248 AGIR, F-31326 Castanet-Tolosan, France
³AGROCAMPUS OUEST, UMR 1349 IGEPP, F-49042 Angers, France
⁴Université de Rennes 1, UMR 6553 Ecobio, F-35042 Rennes, France
⁵AGROCAMPUS OUEST, UMR 1349 IGEPP, F-35042 Rennes, France
⁶CIRAD, UMR PVBM, F-97410 Saint-Pierre, Réunion, France

European Conference on Crop Diversification. 18-21 September 2019, Budapest, Hungary

Introduction

Acyrthosyphon pismum commonly known as pea aphid reaches densities in some places high enough to become a significant economic problem. Considering the growing interest in species mixtures, especially for their role in pest control, we designed a tool to predict pest injuries in pea-wheat mixtures. Using the qualitative modelling framework Injury Profile SIMulator (IPSIM), we built a model to predict *A. pismum* final infestation in pea-wheat mixtures.

IPSIM method

The development of IPSIM-Pea/Wheat-Aphids followed 4 steps:

1. Identification and organisation of attributes
2. Definition of qualitative values for each attribute
3. Creation of aggregative tables

![Hierarchical structure](image)

- Scientific Literature
 - FA: Final Attribute
 - AA: Aggregated Attribute
 - IA: Input Attribute
- Attributes
 - Nominal and quantitative input data
 - Ordinal input data
 - IPSIM model

Example of aggregative table. $A_A = f(A_B, A_C)$

4. Assessment of predictive quality

Preliminary results

Hierarchical structure is presented in Figure 1. We identified 17 attributes, 11 input attributes, and 6 aggregated attributes, including the final attribute (*Acyrthosyphon pismum* level of infestation).

Qualitative scales were defined for the basic and aggregated attributes. For instance, the “Temperature” attribute was described using a two-value scale: favourable or unfavourable to aphid development.

![Confusion matrix](image)

Discussion

It is now the phase to assess the predictive quality of the model. This evaluation consists in comparing observed and simulated classes of aphid infestation severity using an independent dataset covering a wide range of production situations. In addition, to run IPSIM-Pea/Wheat-Aphids, it is necessary to design a converter that can transform nominal input variables, or quantitative input variables into ordinal variables. Currently, we are building a dataset from field experiments in order to evaluate the model.

Acknowledgments: we are grateful to the European project ReMiX “Redesigning European cropping systems based on species MIXtures” for the technical and scientific support. This project has received funding from the European Union’s Horizon 2020 Program for Research & Innovation under grant agreement n°727217.