

Towards the prediction of levels of infestation of Acyrthosyphon pisum in pea-wheat mixtures

David Camilo Corrales, Marie-Hélène Robin, Bruno Jaloux, Cécile Le Lann, Anne Le Ralec, Martin Luquet, Yann Tricault, Juan Manuel Cancino, Jean-Philippe Deguine, Jean-Noel J.-N. Aubertot

▶ To cite this version:

David Camilo Corrales, Marie-Hélène Robin, Bruno Jaloux, Cécile Le Lann, Anne Le Ralec, et al.. Towards the prediction of levels of infestation of Acyrthosyphon pisum in pea-wheat mixtures. European Conference on Crop Diversification., Sep 2019, Budapest, Hungary. . hal-02484883

HAL Id: hal-02484883

https://institut-agro-rennes-angers.hal.science/hal-02484883

Submitted on 19 Feb2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Towards the prediction of levels of infestation of Acyrthosyphon pisum in pea-wheat mixtures

David Camilo Corrales¹, Marie-Hélène Robin², Bruno Jaloux³, Cécile Lelann⁴, Anne Le Ralec⁵, Martin Luquet³, Yann Tricault³, Juan Manuel Cancino¹, Jean-Philippe Deguine⁶, Jean-Noël Aubertot¹

¹INRA, Université Fédérale de Toulouse, UMR 1248 AGIR, F-31326 Castanet-Tolosan, France ²INPT-EI Purpan, Université Fédérale de Toulouse, UMR 1248 AGIR, F-31326 Castanet-Tolosan, France ³AGROCAMPUS OUEST, UMR 1349 IGEPP, F-49042 Angers, France ⁴Université de Rennes 1, UMR 6553 Ecobio, F-35042 Rennes, France ⁵AGROCAMPUS OUEST, UMR 1349 IGEPP, F-35042 Rennes, France ⁶CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Réunion, France

European Conference on Crop Diversification. 18-21 September 2019, Budapest, Hungary

Introduction

Acyrthosyphon pisum commonly known as pea aphid reaches densities in some places high enough to become a significant economic problem. Considering the growing interest in species mixtures, especially for their role in pest control, we designed a tool to predict pest injuries in peawheat mixtures. Using the qualitative modelling framework Injury Profile SIMulator (IPSIM), we built a model to predict A. pisum final infestation in pea-wheat mixtures.

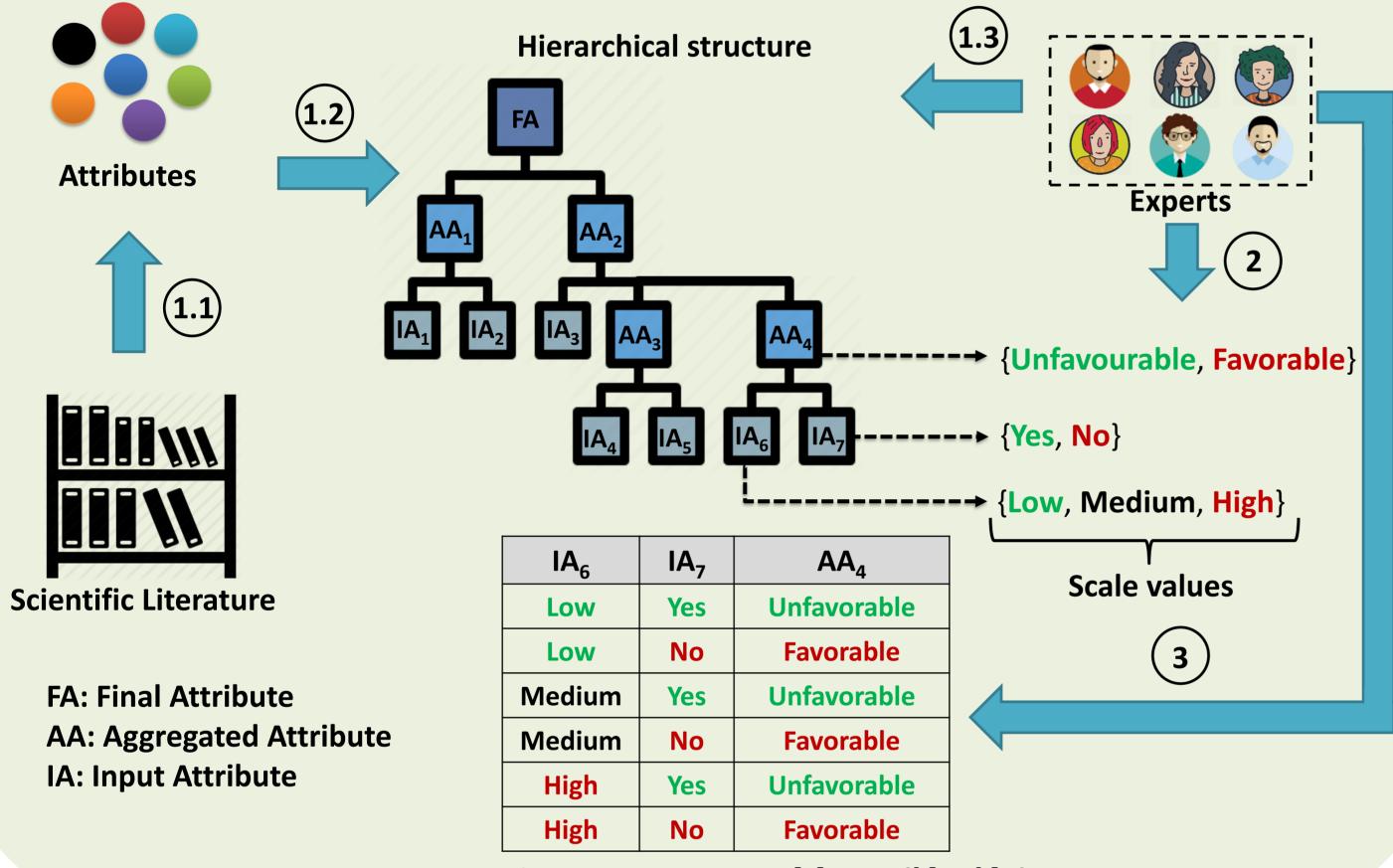
Attribute	Weight		
Aphids severity on pea/wheat intercrop			
-Weather	23		
-Spring	53		
-Temperature	38		
-Rainfall	43		
Wind Speed	19		
Winter temperature	47		
-Treatment	44		
–Landscape composition	21		
— %Semi-natural areas	15		
- %Leguminous crops	54		
L-%Organic fields	31		
LImpact of intercropping	12		
Intercrop sowing rates	50		
-Wheat density	75		
Pea density	25		
LType of intercrop	50		

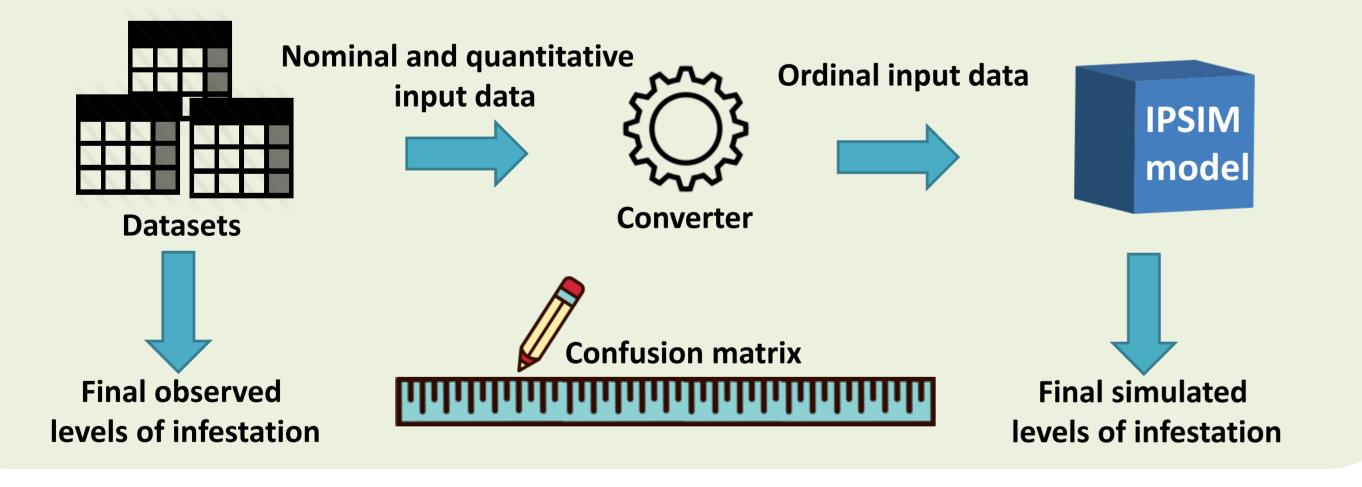
IPSIM method

The development of IPSIM-Pea/Wheat-Aphids followed 4

steps:

- **1. Identification and organisation of attributes**
- **2.** Definition of qualitative values for each attribute
- **3. Creation of aggregative tables**




Figure 1. Hierarchical structure of IPSIM-Pea/Wheat-Aphids. Blue attributes correspond to aggregated attributes

The model was applied to two hypothetical fields, one organic and one with high input levels to illustrate how IPSIM-Pea/Wheat-Aphids could be used (Table 1).

	Crop management	
Input attributes	Organic	High input levels
Temperature	Favourable to aphids	Favourable to aphids
Rainfall	Medium	Medium
Wind speed	Favourable to aphids	Favourable to aphids
Winter temperature	Favourable to aphids	Favourable to aphids
Treatment	No	Yes
% Semi-natural areas	High	Medium
% Leguminous crops	Medium	Low
% Organic fields	High	Low
Wheat density	Recommended sowing doses	Recommended sowing doses
Pea density	Very lower than	Less than recommended
	recommended sowing doses	sowing doses
Type of intercrop	Mixed	Mixed
Aphids severity	Intermediate	Very low

Example of aggregative table. $AA_4 <- F(IA_6, IA_7)$

4. Assessment of predictive quality

Preliminary results

Hierarchical structure is presented in Figure 1. We identified 17 attributes, 11 input attributes, and 6 aggregated attributes, including the final attribute (Acyrthosyphon pisum level of infestation).

Table 1. Example of simulations using IPSIM-Pea/Wheat-Aphids. Attribute values in red, black and green are respectively favourable, neutral and unfavourable to aphids,.

Discussion

It is now the phase to assess the predictive quality of the model. This evaluation consists in comparing observed and simulated classes of aphid infestation severity using an independent dataset covering a wide range of production situations. In addition, to run IPSIM-Pea/Wheat-Aphids, it is necessary to design a converter that can transform nominal input variables, or quantitative input variables into ordinal variables. Currently, we are building a dataset from field experiments in order to evaluate the model.

Qualitative scales were defined for the basic and aggregated attributes. For instance, the "Temperature" attribute was using a two-value scale: favourable described or **unfavourable** to aphid development.

Acknowledgments: we are grateful to the European project ReMIX "Redesigning European cropping systems based on species MIXtures" for the technical and scientific support. This project has received funding from the European Union's Horizon 2020 Program for Research & Innovation under grant agreement n°727217.

