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Abstract
Sea water temperature affects all biological and ecological processes that ultimately impact 

ecosystem functioning. In this study, we examine the influence of temperature on global biomass 

transfers from marine secondary production to fish stocks. By combining fisheries catches in all 

coastal ocean areas and life history traits of exploited marine species, we provide global estimates 

of two trophic transfer parameters which determine biomass flows in coastal marine food web: the 

trophic transfer efficiency and the biomass residence time in the food web. We find that biomass 

transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In 

contrast, biomass transfers through the food web became faster and more efficient between 1950 

and 2010. Using simulated changes in sea water temperature from three Earth system models, we 

project that the mean trophic transfer efficiency in coastal waters would decrease from 7.7% to 

7.2% between 2010 and 2100 under the ‘no effective mitigation’ Representative Concentration 

Pathway (RCP 8.5), while biomass residence time between trophic level 2 and 4 is projected to 

decrease from 2.7 to 2.3 year on average. Beyond the global trends, we show that the trophic 

transfer efficiencies and biomass residence times may vary substantially among ecosystem types 

and that the polar ecosystems may be the most impacted ecosystems. The detected and projected 

changes in mean trophic transfer efficiency and biomass residence time will undermine food web 

functioning. Our study provides quantitative understanding of temperature effects on 

trophodynamic of marine ecosystems under climate change.
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Introduction
In marine ecosystems, temperature is one of the main factors affecting species physiology 

(Cheung, Watson, & Pauly, 2013; Pörtner & Farrell, 2008), biogeography (Tittensor et al., 2010), 

trophic dynamics (Boyce, Frank, Worm, & Leggett, 2015; Pörtner et al., 2014), and ecosystem 

services such as food provision. A growing number of studies have shown that modifications of 

the natural fluctuation of ocean temperature have caused shifts in the geographic distribution of 

marine species and phenology from plankton to top predators (Beaugrand, Edwards, & Legendre, 

2010; Cheung et al., 2009; Dulvy et al., 2008; Perry, 2005; Pinsky, Worm, Fogarty, Sarmiento, & 

Levin, 2013; Poloczanska et al., 2013). These biogeographical shifts have resulted in re-

organization of marine species assemblages in various ecosystems across the global ocean 

(Beaugrand et al., 2014; Kortsch et al., 2018; Kortsch, Primicerio, Fossheim, Dolgov, & Aschan, 

2015) and influenced the composition of fisheries catches (Cheung et al., 2013; Stuart-Smith, 

Edgar, Barrett, Kininmonth, & Bates, 2015). 

At the individual scale, warmer temperature results in faster exothermic biogeochemical reactions 

and  higher metabolic rates (Brown, Gillooly, Allen, Savage, & West, 2004a; Bruno, Carr, & 

O’Connor, 2015). Consequently, warmer temperature conditions may induce an increase in the 

speed of biomass transfer in the food web and a reduction of the biomass residence time. In 

addition, higher organism metabolic rates imply larger losses by respiration, and may cause a 

decrease in the efficiency of biomass transfers by affecting  growth (Barneche & Allen, 2018; 

Heilmayer, Brey, & Pörtner, 2004; Palomares & Pauly, 1998; Pörtner, Peck, & Somero, 2012). 

These changes at the individual level are expected to propagate at the population and hence 

community levels (Barneche & Allen, 2018; Brown, Gillooly, Allen, Savage, & West, 2004b; 

Bruno et al., 2015; Pinsky, Selden, & Kitchel, 2020; Schramski, Dell, Grady, Sibly, & Brown, 

2015). 

In particular, changes in species composition induced by warmer waters may result in the selection 

of species characterized by shorter lifespan and higher respiration rates at every level of the food 

web, therefore leading to faster and less efficient biomass transfers, respectively. Several studies 

suggest profound reshuffles of marine communities due to anthropogenic changes in ocean 

conditions (Cheung et al., 2009; Pachauri, Mayer, & IPCC, 2015; Pereira et al., 2010; Pörtner et 

al., 2014; Rutterford et al., 2015). However, the consequences of ocean warming on properties of 

biomass flow remain unexplored and unquantified.A
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Here, we used a trophodynamic approach, initially developed by Lindeman (1942), to analyse the 

impact of sea water temperature on biomass flowing in ecosystems, from primary consumer to top 

predators. Two parameters summarize these biomass transfers through the food web and are 

expected to change in a warming ocean: the trophic transfer efficiency and the biomass residence 

time. Trophic transfer efficiency (TTE) is the fraction of energy transferred from one trophic level 

to the next and summarises all the losses in the food web at each trophic level (Jennings, Warr, & 

Mackinson, 2002; Libralato, Coll, Tudela, Palomera, & Pranovi, 2008; Lindeman, 1942; Niquil et 

al., 2014; Pauly & Christensen, 1995; Schramski et al., 2015; Stock et al., 2017; Strayer, 1991). 

TTE is measured as the ratio between the production rate of two adjacent trophic levels (Baumann, 

1995; Libralato et al., 2008; Lindeman, 1942; D. Pauly & Christensen, 1995; Ricklefs & Miller, 

2000). This property of the food web has been widely studied (Andersen, Beyer, & Lundberg, 

2009; Chassot et al., 2010; Irigoien et al., 2014; Jennings et al., 2008; Stock et al., 2017) and some 

studies suggest that it spatially varies among biomes or ecosystem types (Chassot et al., 2010; 

Libralato et al., 2008; Schramski et al., 2015; Stock et al., 2017). 

Biomass residence time (BRT) is the average amount of time a unit of biomass spends at a given 

trophic level before trophic transfer to higher trophic levels in the food web through predation 

(Gascuel, Morissette, Palomares, & Christensen, 2008; Schramski et al., 2015). BRT (expressed in 

years) is inversely proportional to the speed of biomass transfer across trophic levels. It directly 

affects the biomass present at each trophic level of the food web (longer residence time results in 

greater biomass at each trophic level).

The aim of this study is to analyse how the temperature-induced spatial patterns in species 

composition affect biomass transfers in marine food webs, and how these transfers are expected to 

change over the 21st century. We focus on community-level biological responses driven by 

changes in species assemblages. The study and analysis are performed for the coastal regions of 

the global ocean which currently support the bulk of fisheries production, and where catch data are 

used as insights on the features of the marine community structure.

First, we measure TTE and BRT based on fisheries catch species composition over the period 

2000-2010 and determine how these two parameters vary along the temperature gradient in the 

global coastal marine ecosystems. Second, to detect the past changes in biomass transfers and 

determine if ocean warming has already affected them, we analyse the trends in TTE and BRT 

between 1950 and 2010 and we compare the observed and modelled trends using sea water 

temperature data. Finally, we project TTE and BRT by 2100 using simulated changes in sea water A
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temperature based on three Earth system models under two contrasting greenhouse gas emissions 

scenarios.
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Materials and Methods
Study area and catch data
Since the composition of species assemblages is unknown in many coastal marine ecosystems that 

we studied, we estimated trophic transfer parameters based on catch data, assuming they can be 

considered as proxy of the true features of the food web. This assumption will be further discussed 

and sensitivity analyses were conducted.

Annual reconstructed catch data made available by the SeaAroundUs project from 1950 to 2010 

(Pauly and Zeller, 2015) were used. This set of data is spatially disaggregated by taxon on a 1° x 

1° spatial grid of the world ocean. The reconstruction is based on the official records from the 

Food and Agriculture Organization (FAO), with addition of undeclared artisanal and subsidence 

fisheries, recreational catches, discarded bycatch and illegal and unreported catch (Pauly and 

Zeller, 2015). 

We removed catch of rare taxa representing less than 0.05% of the total catches for each year and 

catches from unidentified species. Biogeography of coastal and shelf areas were delimited using 

the distribution of coastal biomes identified by Reygondeau et al. (2013) and adapted from 

Longhurst (2007). To ensure that parameters issued from the catch composition in each grid cell is 

representative of the food web, we removed grid cells where unidentified species represented more 

than 50% of the total catch, and cells where one single species represented more than 75% of the 

catch. Finally, we kept only grid cells where there were more than 10 species excluding rare taxa.

After passing the dataset through the above filters, the final dataset consists of 5,783 (75% of the 

cells) 1° latitude x 1° longitude grid cells and 1760 taxa in coastal and shelf seas. Each cell was 

classified as one of the 3 biomes: tropical, temperate and polar biomes. Upwelling ecosystems 

were added using the biogeographical provinces described by Reygondeau et al., (2013) (Figure 

1).

Trophic transfer efficiency and biomass residence time calculations 

Trophic transfer efficiency (TTE) and biomass residence time (BRT) were estimated within each 

grid cell using a trophodynamic approach based on two indicators: the efficiency cumulated 

indicator (ECI) and the time cumulated indicator (TCI). The method to calculate TTE and BRT is 

summarised in Figure 2.

a. Trophic transfer efficiency (TTE)A
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The efficiency cumulated indicator (ECI) developed by Maureaud et al., (2017) quantifies the 

fraction of secondary production transferred from trophic level (TL) 2 to 4, considering only 

metabolism losses due to respiration and excretion (see partial transfer efficiency (partial TE on 

Figure 3)). It was calculated for each grid cell i and each year y, as an aggregation from TL = 2 to 

TL = 4 of the production to consumption ratio (P/Q)τ,i,y which can be defined as the “gross food 

conversion efficiency” (Christensen & Pauly, 1993) at trophic level τ, with the following 

equations:

𝐸𝐶𝐼𝑖,𝑦 =  
4.0

∏
𝜏 = 2.0

((𝑃
𝑄)

𝜏,𝑖,𝑦
) Eq. 1

P/Q is firstly calculated for each species or taxon j, as the ratio of P/B (Production to Biomass) to 

Q/B (Consumption to Biomass). For finfish, these taxon-specific ratios are calculated according to 

the empirical equations of Gascuel et al. (2008) and Palomares and Pauly (1998) and based on life 

history traits and thermal habitat (see Supporting Information Appendix S1). The required data 

(asymptotic weight, Von Bertalanffy growth coefficient, diet type and aspect ratio) were taken 

from FishBase (http://www.fishbase.org, Froese and Pauly, 2018). For the others species (e.g., 

cephalopods, crustaceans), the taxon-specific P/B and P/Q ratios were extracted from EcoBase 

(Colléter et al., 2013) (see Supporting Information Appendix S1).

Then, taxon-specific P/Q ratios were transformed into a P/Q trophic spectra (Gascuel, Bozec, 

Chassot, Colomb, & Laurans, 2005). To consider the within-taxon variability of trophic levels, 

catches of every taxon were distributed over a range of trophic classes (following a lognormal 

distribution and using classes with a width of 0.1 TL). Trophic spectra were obtained by averaging 

the taxon-specific P/Q ratios weighted by the resulting catch per taxon and trophic class.

Since the ECI calculation does not account for losses in trophic transfers related to non-predation 

natural mortality and biomass accumulation, ECI is measuring a partial transfer efficiency, and is 

likely to overestimate the true trophic transfer efficiency (TTE). To account for such 

overestimation, partial transfer efficiency was converted into TTE by introducing a correction 

term based on Ecotrophic Efficiency (EE, Christensen & Pauly, 1992) and Bacc (biomass 

accumulation rate within each species or taxon). Thus, (EE - Bacc) measures the fraction of the 

production of a given taxon not transferred to detritus and not accumulated by the taxon, and thus 

available for trophic transfers through consumption by predators (see theoretical graph on Figure 

3). EE and Bacc were extracted from coastal Ecopath models (see Supporting Information A
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Appendix S2) included in the EcoBase database (Colléter et al., 2013). The extracted data were 

then used to calculate a correction factor for each trophic level  and for each ecosystem type  

(see Supporting Information Appendix S3). Finally, the two components of TTE - the fraction of 

loss due metabolism (P/Q) and the non-predation natural mortality and biomass accumulation (EE-

Bacc) - are combined. Thus, the trophic transfer efficiency between TL=2 and TL=4, can be 

estimated as a product of all trophic classes; the estimates, which represent TTE across two trophic 

levels, is transformed into TTE expressed per trophic level by taking a square root of the term 

(Eq.2):

𝑇𝑇𝐸𝑖,𝑦 = [ 4.0

∏
𝜏 = 2.0

((𝑃
𝑄)

𝜏,𝑖,𝑦
∙ (𝐸𝐸 ― 𝐵𝑎𝑐𝑐)𝜏, 𝛽)]

1
2

Eq. 2

b. Biomass residence time (BRT)

The BRT, which is called the time cumulated indicator (TCI) by Maureaud et al. (2017), was 

calculated by aggregating the time spent by each unit of biomass within small trophic level classes 

of =0.1 TL, when moving into the food web from trophic level 2 to 4. Gascuel et al., (2008) 

showed that the mean speed of the biomass flow passing through a given trophic level can be 

measured as the production to biomass ratio (P/B). Therefore, as a speed is defined by a distance 

divided by a time, the time a unit of biomass need on average to cross a trophic class from TL= to 

TL=+ is equal to /(P/B). Thus, the BRT between TL=2 and TL=4, can be estimated as a sum 

for all trophic classes, according to:

𝐵𝑅𝑇𝑖,𝑦 =
4.0

∑
𝜏 = 2.0

∆𝜏

(𝑃
𝐵)

𝜏,𝑖,𝑦

Eq. 3

where BRT is the biomass residence time in the food web, between tropic levels 2 and 4, for cell i 

and year y. P/B ratio was first calculated by species or taxon (see Supporting Information 

Appendix S2), and converted into P/B trophic spectra using the above described method, thus 

providing an estimate for every trophic class.

c. Data used for the calculations

TTE and BRT were calculated for each year between 1950 and 2010 in each grid cells. This 

computation is using the annual catch species composition from the SeaAroundUs database. 

Trophic levels for each species or taxon were obtained from Fishbase and SeaLifeBase A
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(http://www.sealifebase.org, Palomares and Pauly, 2018). We used sea surface temperature (SST) 

to estimate the thermal habitat of fish required to calculate the taxon-specific ratios (see 

Supporting Information Appendix S1) for every year between 1982 and 2010 from NOAA, using 

the Optimum Interpolation (OI) V2 dataset derived from in situ and satellite SST’s 

(https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html).

Relationships between temperature, trophic transfer efficiency and 

biomass residence time
In order to understand how the two trophic transfer parameters vary spatially and to determine 

their relationship to temperature in the recent past, the average values over the period 2000-2010 

of TTE and BRT were estimated in each cell. Then, two generalized linear models (GLM), with 

TTE and BRT per grid cell as the dependent variables and sea water temperature as independent 

variable, were developed. The models consider an ecosystem type effect (tropical, temperature, 

polar or upwelling), in order to highlight potential non-temperature related differences in 

ecosystem structure. The interaction between sea water temperature and ecosystem type is also 

integrated in the models to take into account the differences in temperature effects among the four 

ecosystem types. 

All statistical analyses were performed with the R free software environment (v.3.4.4, 

http://cran.r-project.org). The best-fitted family distribution and link function were selected among 

Gamma distribution (with identity, logarithmic and inverse link function), inverse Gaussian 

distribution (with identity, logarithmic and inverse link function), and Gaussian distribution (with 

identity and inverse link function) with log-transformed dependent variable or not. We finally 

chose to select models based on a Gaussian distribution on log-transformed trophic transfer 

parameters:

𝑙𝑜𝑔(𝑋) =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑆𝑆𝑇 + 𝑒𝑐𝑜𝑠𝑦𝑡𝑒𝑚 𝑡𝑦𝑝𝑒 + 𝑆𝑆𝑇 ∙ 𝑒𝑐𝑜𝑠𝑦𝑡𝑒𝑚 𝑡𝑦𝑝𝑒 + 𝜀

with . 𝜀 = 𝑁(0,𝜎²) 

X is TTE or BRT and   is the normally distributed error with mean of 0 and variance of σ2.𝜀

Adequacy of the GLMs was evaluated by checking the distribution of model residuals for 

homoscedasticity, normality, the fraction of deviance explained by the model, and by each 

variable. The significance of the parameters was assessed using Wald chi-square tests. Laurent’s 

correction was applied to the models to obtain unbiased estimations from log-transformed data 

(Laurent, 1963).A
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Past and projected trends in trophic transfer efficiency and biomass 

residence time
In order to contrast projections over the 21th century against the past variability and trends, TTE 

and BRT were estimated from 1950 to 2010, based on the fisheries catch species compositions. 

These observed past trends were compared to temperature-based estimates using the GLM 

statistical model. Then, we projected TTE and BRT by 2100 in the four ecosystem types, using 

yearly values of SST predictions from three Earth System Models, respectively developed by: the 

Geophysical Fluid Dynamics Laboratory (GFDL-ESM2M, Dunne et al., 2012), the Max Plank 

Institute (MPI-ESM-MR, Giorgetta et al. 2013) and the Institut Pierre Simon Laplace (IPSL-

CM5A-MR, Dufresne et al. 2013). Spatial distribution of ecosystem types was assumed 

unchanged by 2100. Final projections of TTE and BRT were built by averaging results from the 

three general circulation models, under two contrasted Representative Concentration Pathways 

(RCPs, i.e. climate change scenarios from IPCC; http://sedac.ipcc-

data.org/ddc/ar5_scenario_process/RCPs.html): RCP2.6 where radiative forcing level reaches 3.1 

W/m2 by mid-century and returns to 2.6 W/m2 by 2100 (strong mitigation scenario), and RCP8.5 

where rising radiative forcing pathway reaches 8.5 W/m2 in 2100 (no effective mitigation 

scenario). 

Sensitivity analysis
TTE and BRT time are studied here using post-filtered catch data (see Study area and catch data 

in Materials and Methods), assuming that the features of the biomass flow of the exploited fraction 

of marine food webs reflect the features of the biomass flow of the entire marine food web. We 

recognize that the use of catch data to describe marine ecosystem functioning and structure may 

lead to biased estimators, due to selective fisheries and changes in the fishing strategies over time 

and space (Branch et al., 2010; Daniel Pauly, Hilborn, & Branch, 2013). To evaluate the potential 

effects of these biases, two sensitivity analyses were conducted (Supporting Information Appendix 

S4 and S5). First, we tested the robustness of our models by adding the effects of the catch per 

surface area (as an indicator of the fishing intensity) and the mean trophic level of catch (MTL, as 

an indicator of the fishing strategy at the ecosystem level). Second, we used a selection of Ecopath 

ecosystem models to compare the estimates of the trophic transfer parameters based on species 

assemblages in the ecosystems or in the catch. A
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Since we estimated the two trophic transfer parameters from the TL=2 to TL=4 based on catch 

data, a large fraction of the biomass at lower levels is made up of species such as zooplankton, 

benthic invertebrates, or larvae not targeted by fishing. Thus, in our catch dataset, species less than 

or equal to TL of 2.5 represent only between 4 and 8% of the annual global catch. As a 

consequence, the catch composition between TL=2 and TL=2.5 is unable to reflect the species 

composition in the ecosystem, what may also lead to bias in our estimates. This potential bias was 

tested by modelling the temperature effect on the two trophic transfer parameters using only 

catches between TL=2.5 and TL=4 (Supporting Information Appendix S6). 

Our data, TTE and BRT are spatially autocorrelated. This autocorrelation is supposed to be 

captured by the models. Nevertheless, if a spatial autocorrelation remains in the residuals of the 

GLMs, the key assumption that residuals are independent and identically distributed is violated, 

and parameter estimates may be biased. Consequently, we tested the potential spatial 

autocorrelation bias on our models by comparing the developed models and models based on 100 

subsamples with no or a weak spatial autocorrelation (Supporting Information Appendix S7).

Finally, the natural non-predation mortality was taken into account in our analysis by adding a 

correction which reduces the TTE values. The correction is calculated on the average of 

ecotrophic efficiency and biomass accumulation by aggregating 72 Ecopath models per ecosystem 

type. Since these parameters may be modelling dependent and inaccurate in some models, we 

tested the introduction of this supplementary loss in the model by comparing the sea temperature 

effect including or not this correction (Supporting Information Appendix S3).
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Results
Relation between sea surface temperature and ecosystem trophodynamics
Trophic transfer efficiency (TTE) and biomass residence time (BRT) over the recent period 2000-

2010 differ significantly according to ecosystem type (p-value<0.001). Polar ecosystems exhibit 

the most efficient but the slowest biomass transfers with a TTE of 10.4% ± 2.7 and BRT of 4.4 

years ± 1.3 between trophic level 2 and 4 (Figure 4a and b). In contrast, trophic transfers in 

upwelling and tropical ecosystems appear faster with 2.8 years ± 2.2 and 1.9 years ± 1.9 

respectively but less efficient with 5.9% ± 0.7 and 6.5% ± 0.6. Intermediate values are estimated 

in temperate ecosystems with 2.8 years ± 0.9 and 8.1% ± 2.4. 

The same spatial patterns emerged for the two trophic transfer parameters (see related maps on 

Figure 5a and b). In the colder coastal waters, for example in the Bering Sea and in the Antarctica 

coast, TTE and BRT exhibit high values, while in the warmer waters for example along the 

African coast and in the continental shelf of Southeast Asia, biomass is transferred faster and less 

efficiently. Some exceptions exist, such as in the Gulf of Mexico, which exhibits high TTE values, 

and in the Indian Ocean between the area between Seychelles and Mauritius showing a high BRT. 

Our models indicate that SST and ecosystem type have both a statistically significant effect on the 

studied biomass flow parameters. Furthermore, SST explained 34.7% and 48.7% of the total 

deviance for TTE and BRT respectively, while the interaction between SST and the ecosystem 

type explained an additional 5.4% and 2.3% for these two parameters (see Supporting Information 

Appendix S8).

The decreasing relationship between sea temperature and TTE or BRT is consistent across 

ecosystems types, although the variations in temperature sensitivity of these food web parameters 

between the ecosystem types were not expected (Figure 4c and d). Temperature sensitivity for 

TTE is higher in temperate and upwelling zones, followed by polar and tropical ecosystems. In 

contrast, BRT is more sensitive to temperature in polar and tropical ecosystems followed by 

temperate and upwelling ecosystems.

Observed past trends in trophic transfer efficiency and biomass residence 

time
Over the period 1950-2010, the observed global mean of TTE, computed from the catch 

composition, significantly increased from 7.1% to 7.6% (Figure 6a, p-value linear model < 0.001), A
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while BRT decreased from 2.5 to 2.2 years (Figure 6b, p-value linear model < 0.001).  The 

changes in TTE and BRT occurred mainly before the mid-1990s, then TTE stopped its increase 

and BRT decreased at a slower pace. These increasing TTE and decreasing BRT are observed in 

every ecosystem type (see Supporting Information Appendix S9) except for TTE in polar 

ecosystem where the estimates increased from 1950 to 1978 before a steep decrease at the 

beginning of the 1980s and then an increase until 2010. The outputs of the temperature-based 

model show that BRT should have decreased at a slower rate than observed, while the TTE should 

have decreased slightly in place of increasing. Thus, changes in the species composition of the 

catch have affected the observed parameters which cannot be explained only by the temperature 

effect. This suggests that faster and more efficient trophic transfers have resulted from direct 

fishing-induced impacts on species assemblages.

Projections for the end of the century
TTE and BRT should decrease until 2040, regardless of the climate scenario or the Earth system 

model considered (Figure 7a and b). From 2000 to 2040, global averages are projected to decrease 

slightly by 0.09% for TTE and by 0.09 year for BRT. After 2040, TTE and BRT remain stable in 

scenario RCP2.6, while the decrease accelerates for both indicators in scenario RCP8.5. Overall, 

under RCP8.5, we projected a 0.5% loss of TTE (from 7.7 to 7.2%) and a 0.4 year decrease in 

BRT (from 2.7 to 2.3 years) over the period 2000-2100. 

The geographical distributions of the projected changes in TTE and BRT under RCP8.5 scenario 

show that the two trophic transfer parameters should decrease everywhere by the end of the 21st 

century (2100), with the largest changes expected at high latitudes (Figure 4g and h). In polar, 

upwelling and temperate ecosystems, the projected losses in TTE are around 0.8% by 2100, while 

they are much lower around 0.2% in tropical ecosystems (Figure 7c). The BRT will be more 

affected by ocean warming in polar ecosystems than in others, with more than a 1.0 year decrease 

by 2100, compared to 0.4 year (~5 months) in tropical ecosystems, 0.2 year (~2 months) in 

temperate ecosystems, and almost no effect in upwelling ecosystems, on average (Figure 7d).

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Discussion
Our results provide estimates of average TTE and BRT in coastal marine food webs, at the global 

scale and per ecosystem type. We show that human-induced changes in species assemblages may 

already have affected the functioning of coastal marine food webs and are expected to have greater 

impacts over the 21th century. Specifically, the trophodynamics of coastal marine ecosystems 

have already changed and are expected to amplify their rate of change in the coming decades.

Less efficient and faster transfers in warm waters
Our study shows that sea water temperature significantly influences biomass transfers through the 

food web in global coastal marine ecosystems. The warmest coastal ecosystems are characterised 

by low-efficient and fast biomass transfers through the food web. These characteristics indicate 

that species assemblages are dominated, at each trophic level, by species with low TTE because of 

large energy losses due to their metabolism processes that scale with temperature (Brown et al., 

2004b; Schramski et al., 2015). Also, the BRT is shorter in tropical coastal ecosystems so the 

biomass transfer between a prey and its predator is faster at each trophic level. These trophic 

functioning properties may be explained by species assemblages where communities may be 

dominated by short-living and fast-growing species. In contrast, in polar and temperate 

ecosystems, biomass is transferred more efficiently and slowly, where a unit of biomass spends 

more time in the food web. Such trophodynamic properties may be explained by species 

assemblages dominated by long-living and slow-growing species in colder waters as suggested by 

several authors in polar ecosystems (e.g., Murphy et al., 2016; Peck, 2016; Pörtner, Storch, & 

Heilmayer, 2005). As the biomass transfer indicators are calculated using trophic spectra, the 

observed contrasts between warm and cold waters do not result from the distribution of long or 

short-living species among food webs (more predator and less prey in cold waters), but from 

differences occurring at every trophic level (longer living preys and predators in cold waters in 

contrast to warm waters).

The natural non-predation mortality is an additional factor reducing TTE by introducing 

supplementary losses, although it appeared to have little effect on the differences in TTE between 

the ecosystem types (Appendix S3). Finally, the low TTE in upwelling is consistent with the 

literature (Coll, Libralato, Tudela, Palomera, & Pranovi, 2008; Libralato et al., 2008) and may be 

due to the highly variable productivities of upwelling ecosystems. This lack in stability, which A
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characterises immature or disturbed ecosystems (sensus Odum 1969), is likely to result in a 

weakly structured food web with fast and inefficient biomass transfers.

Robustness of the analysis
As we use catch data to study TTE and BRT, fishing effort, in addition to temperature, might 

affect trophic flow in marine ecosystems. The assessment of the potential effects of the 

confounding factors from fishing shows that the temperature sensitivity of these indicators remains 

supported (Appendix S4 and S5). First, we found that the fishing intensity (catch per km2) and the 

fishing strategies (MTL) have only a small effect on TTE estimates while BRT estimates are more 

sensitive to fishing intensity (Information Appendix S4). However, the effects of sea water 

temperature and ecosystem type on BRT remained highly significant and qualitatively unchanged 

even after accounting for the effects of fishing. Secondly, based on data from the selected Ecopath 

models, the absolute values of BRT and TTE are overestimated and underestimated, respectively, 

when using catch data instead of biomass data (Appendix S5). However, here too, qualitative 

results regarding the temperature effect and the variability among ecosystem types remained 

consistent. 

Furthermore, it appeared that the exclusion of the lowest trophic levels affects mainly cold waters 

and upwelling ecosystems, decreasing the estimated TTE and increasing BRT (Appendix S6). 

However, the variations due to the lower trophic levels of the food web do not modify the order of 

magnitude and the trends regarding sea water temperature and ecosystem type effects.

The potential bias due to the spatial autocorrelation is low for TTE with a slight effect in tropical 

ecosystems (Appendix S7). Regarding BRT, the effect is a bit stronger, suggesting that we 

underestimated BRT in temperate and tropical ecosystems (greater values without the spatial 

autocorrelation) and we underestimated the temperature effects in polar and tropical ecosystems 

(greater slopes without the spatial autocorrelation). 

The introduction of the natural non-predation mortality as an additional loss in TTE estimates by 

adding a correction factor (Supporting Information Appendix S3) has a rather low effect on the 

GLMs outputs. It induces an overall decrease in TTE but that does not change substantially neither 

the temperature effect nor the differences between the ecosystem types. Even if it is imperfect 

especially because we use potentially biased modelled parameters, we consider that the inclusion 

of the correction is better than ignoring the additional losses.
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More generally, the observed temperature effects and predicted changes in trophic transfer are 

likely to be underestimated because our study is taking into account only the effect of community 

structure on the ecosystem functioning. Additional ocean warming effects at individual and 

population level are also expected to change the trophic transfer in marine food webs. 

Towards faster and less efficient trophic transfers
The global decrease in BRT and increase in TTE over the period 1950-2010 is likely partly driven 

by the global increase in fishing pressure as previously shown by Maureaud et al. (2017), who 

focused on quantifying the fishing effects on trophodynamics over the Large Marine Ecosystem. 

Majorities of fishing activities tend to select the targeted large and long-living species causing a 

decrease in their abundance compared to small species with fast life histories (Cheung, Watson, 

Morato, Pitcher, & Pauly, 2007; Jennings, Greenstreet, & Reynolds, 1999; Planque et al., 2010; 

Shephard et al., 2012). Our results suggest that the same fishing effects occur within each trophic 

class leading to shorter biomass residence time and less efficient energy transfer in marine food 

webs. Such a trend may be considered as an adaptive reaction to the fishing pressure (Maureaud et 

al. 2017), leading to more efficient, but simplified and potentially less resilient food web.

The global decreasing trend of TTE estimated using the modelled temperature-based GLM (Figure 

6a) is not consistent with the observed TTE over the period 1950-2010. The opposition between 

observed and modelled trends can be derived from the dominant fishing pressure. The decrease in 

the modelled TTE is driven by ocean warming, while the increase in the observed TTE between 

1950 and the mid-1990s can likely be attributed to the growing amount of fishing pressure 

(Maureaud et al., 2017; Daniel Pauly & Zeller, 2016). Following Pauly & Zeller, (2016), global 

fishing catch reached its maximal value in 1996 and stabilized until now. Therefore, the 

stabilization of TTE trend from the mid-1990s can be assumed to be caused by the effects of 

constant fishing catch over already exploited system and the growing effect of ocean warming 

(Beaugrand et al., 2019). In parallel, the decreasing trend in BRT between 1950 and the mid-1990s 

is consistent with the observed BRT (Figure 6b). However, the decrease in observed BRT is 

steeper between 1950 and the mid-1990s. That can be also attributed to the increasing fishing 

pressure. As for TTE, the trend in observed BRT stabilized between 2000 and 2010 probably due 

to the decreasing fishing effects and the growing effect of ocean warming.

In the coming decades, as ocean warming is expected to intensify and by hypothesising that global 

fishing pressure will stabilize, the trend in TTE may reverse and decrease (Figure 7a and c) while A
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BRT may globally continue to decrease (Figure 7b and d). Consequently, the greater losses of 

production between every trophic level due to the decrease in TTE and BRT in the food web may 

lead to a decrease in biomass and production at each trophic level. 

Our projections of changes in trophic transfer functioning only result from the expected 

modifications in species assemblages induced by warming. At the species level, responses to 

warming may differ from one species to the other, depending on their thermal tolerance and life 

histories (Perry et al., 2010; Pörtner & Peck, 2010), and leading to changes in their own 

productivity and/or biogeographical shifts of their spatial distribution. In addition, indirect effects 

due to changes in species interactions can enhance the changes in marine community structure and 

functioning (Bruno et al., 2015).

Polar ecosystems: the more affected ecosystems?
Ocean warming effects on the trophic transfer parameters exhibit substantial differences between 

ecosystem types. TTE and BRT in polar ecosystems are projected to strongly decrease by 2100 

due to its high sensitivity to temperature (Figure 4). Such a high thermal sensitivity of TTE and 

BRT in polar ecosystems is likely due to the narrow thermal window of the polar species that 

inhabit in stable ecosystem (Peck, Webb, & Bailey, 2004; Pörtner et al., 2014; Sunday, Bates, & 

Dulvy, 2011). The changes in biomass transfer may be also exacerbated by the reshuffling of polar 

ecosystems structure induced by the observed and projected poleward shifts in species distribution 

and the expansion of subpolar/boreal communities with faster and less efficient biomass flow 

properties (Cheung et al., 2009; Frainer et al., 2017; García Molinos et al., 2016; Kortsch et al., 

2015). In addition, although the complexity and the diversity of the planktonic food web in polar 

ecosystems is equivalent to temperate ecosystems (Michel et al., 2012; Smetacek & Nicol, 2005), 

the relatively low coastal marine biodiversity of high trophic level species (Tittensor et al., 2010; 

Worm & Lotze, 2016) may accelerate the rate of decline of polar species. Such declines of 

endemic and sea ice dependent species are already observed at some locations (e.g., krills in the 

Southern Ocean, Atkinson, Siegel, Pakhomov, & Rothery, 2004). Besides, the effects of 

temperature may be also abrupt in polar ecosystems due to more frequent and extreme marine 

heatwaves (Frölicher, Fischer, & Gruber, 2018).

Species inhabiting in tropical ecosystems has also a relatively narrow thermal window that could 

explain the high thermal sensitivity of BRT (Poloczanska et al., 2016). However, TTE in tropical 

ecosystem exhibits a low thermal sensitivity and thus a moderate projected decrease by 2100. The A
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higher biodiversity in tropical ecosystem may help buffer the warming effects on biomass transfer 

at lower latitudes. Therefore, in tropical ecosystem the BRT is expected to largely decrease but the 

losses in production between each trophic level may be weakly impacted. However, as our 

projections are based on current temperatures, we likely underestimate the effects of ocean 

warming on tropical ecosystems since these ecosystems will experience unprecedentedly observed 

temperature level associated with more frequent and extreme marine heatwaves (Frölicher et al., 

2018).

BRT in temperate ecosystem exhibits a low thermal sensitivity to ocean warming probably due to 

the wide thermal window of the marine species living in temperate regions, as the result of the 

high seasonal variability (Sunday et al., 2011). However, TTE is highly sensitive to temperature 

leading to a high projected decrease in TTE while BRT is projected to decrease moderately.

In summary, our results show that biomass transfers in marine food webs have globally become 

more efficient and faster over the period 1950-2010, which may be explained, at least partially, by 

the past increase in global fishing pressure. Such changes may have compensating effects on the 

whole ecosystem biomass, as faster transfers imply less biomass per trophic level while more 

efficient transfers is reducing the losses. We also found that temperature plays a key role to 

determine the properties of the biomass flow in marine coastal ecosystems. While warm coastal 

ecosystems are characterised by less efficient and fast biomass transfers, in colder coastal 

ecosystems, biomass transfers are slower and more efficient. Our model projections suggest that 

the increase in sea temperature is expected to shift the global ocean towards faster and less 

efficient biomass transfers by 2100 with especially drastic changes in polar ecosystems. These 

changes in trophic functioning have cumulative effects and will likely lead to a decrease in 

biomass through increasing losses of production at each trophic level, and decreasing BRT in the 

food web. Ultimately, they may severely affect the catch potential of fisheries across the globe by 

the end of the century.
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List of legends
Figure 1: (a) Map of the coastal areas represented in the dataset and associated to ecosystem 

types. The colours refer to the ecosystem types: polar (in blue), temperate (in orange), tropical (in 

red) and upwelling (in green). The four graphs (b), (c), (d), and (e) show the past reconstructed 

trends in sea surface temperature (SST) and the predicted trends under RCP8.5 scenario (business 

as usual scenario). Temperature is represented by mean values of SST coming from the three 

Earth System Models used in the study and described in Materials and Methods. 

Figure 2: Synthetic schematic representation of the method to calculate trophic transfer efficiency 

and biomass residence time focused on the data that we used and the levels of ecological 

organisation (from species to trophic level to ecosystem). n represents the number of species. 1 

(Froese and Pauly, 2018), 2 (Colléter et al., 2013), 3 (Gascuel et al., 2008; Palomares & Pauly, 

1998), 4 (Pauly and Zeller, 2015).

Figure 3: Schematic representation of biomass flow parameters between two trophic levels. Black 

arrows represent energy transfers or losses. The prey has a trophic level τ and the predator has a 

trophic level (τ+1). The partial transfer efficiency (partial TE) (Pτ+1/Qτ+1) and trophic transfer 

efficiency (Pτ+1/Pτ) are indicated (derived from Gascuel, Morissette, Palomares, & Christensen, 

2008; Maureaud et al., 2017).

Figure 4: The effect of temperature on the two trophic transfer parameters. The violin plots on the 

top panels represent the distribution of the mean values of the two trophic transfer parameters: (a) 

trophic transfer efficiency (TTE) and (b) biomass residence time (BRT) in each ecosystem type 

over the period 2000-2010. The colours refer to the ecosystem types: polar (in blue), temperate (in 

orange), tropical (in red) and upwelling (in green). In both panels (c) and (d), coloured solid lines 

represent the predicted values (i.e., the temperature effect) of TTE and BRT respectively, provided 

for each ecosystem type by the GLM model. The black dashed lines represent the predicted values 

of TTE and BRT by an additional GLM model considering only SST as a covariate. The shaded 

areas refer to the mean predicted value confidence intervals (95%). 5783 grid cells were used to 

calculate the trends.

Figure 5:  Trophic transfer efficiencies and biomass residence times in the coastal regions of the 

global ocean. The panels (a) and (b) represent the observed values over the period 2000-2010 

while the other panels exhibit the predicted values from the General Linear Model for: the period A
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2000-2010 (c) and (d), and projected changes in 2090-2100 relative to 2000-2010 for climate 

change scenarios for RCP 2.6 (e, f), and RCP 8.5 (g, h).

Figure 6: Past trends of trophic transfer parameters over the period 1950-2010. The dashed lines 

represent global mean values of the observed trophic transfer efficiency (TTE) (a) and biomass 

residence time (BRT) (b). Shaded areas refer to bootstrap confidence intervals at 95%. Solid black 

lines represent theoretical global mean trends of TTE and BRT, computed using the GLM 

temperature-based model. Light grey lines are trends calculated using three Earth System Models 

(GFDL: Geophysical Fluid Dynamics Laboratory, MPI: Max Plank Institute, IPSL: Institut Pierre 

Simon Laplace). 2253 grid cells were used to calculate the trends.

Figure 7: The expected changes of trophic transfer at the global scale over the 21st century. Panel 

(a) shows the projections of trophic transfer efficiency (TTE) and panel (b) shows the projections 

of biomass residence time (BRT) in the coastal ecosystems between 2000 and 2100 under two 

climate change scenarios, RCP2.6 and RCP8.5 in green and red, respectively. The dark lines are 

the mean values of the trophic transfer parameters and the light lines are the values of each 

general circulation model. Panels (c) and (d) focus on RCP8.5 scenario (the business as usual 

scenario) and represent the changes in TTE (c) and BRT (d), relative to 2000-2010 for each 

ecosystem type. 4608 grid cells were used to calculate the trends.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Bibliography
Andersen, K. H., Beyer, J. E., & Lundberg, P. (2009). Trophic and individual efficiencies of size-

structured communities. Proceedings of the Royal Society B: Biological Sciences, 

276(1654), 109‑114. https://doi.org/10.1098/rspb.2008.0951

Atkinson, A., Siegel, V., Pakhomov, E., & Rothery, P. (2004). Long-term decline in krill stock 

and increase in salps within the Southern Ocean. Nature, 432(7013), 100‑103. 

https://doi.org/10.1038/nature02996

Barneche, D. R., & Allen, A. P. (2018). The energetics of fish growth and how it constrains food-

web trophic structure. Ecology Letters, 21(6), 836‑844. https://doi.org/10.1111/ele.12947

Baumann, M. (1995). A comment on transfer efficiencies. Fisheries Oceanography, 4(3), 

264‑266. https://doi.org/10.1111/j.1365-2419.1995.tb00150.x

Beaugrand, G., Conversi, A., Atkinson, A., Cloern, J., Chiba, S., Fonda-Umani, S., … Edwards, 

M. (2019). Prediction of unprecedented biological shifts in the global ocean. Nature 

Climate Change, 9(3), 237‑243. https://doi.org/10.1038/s41558-019-0420-1

Beaugrand, G., Conversi, A., Chiba, S., Edwards, M., Fonda-Umani, S., Greene, C., … Sugisaki, 

H. (2014). Synchronous marine pelagic regime shifts in the Northern Hemisphere. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), 

20130272‑20130272. https://doi.org/10.1098/rstb.2013.0272

Beaugrand, G., Edwards, M., & Legendre, L. (2010). Marine biodiversity, ecosystem functioning, 

and carbon cycles. Proceedings of the National Academy of Sciences, 107(22), 

10120‑10124. https://doi.org/10.1073/pnas.0913855107

Boyce, D. G., Frank, K. T., Worm, B., & Leggett, W. C. (2015). Spatial patterns and predictors of 

trophic control in marine ecosystems. Ecology Letters, 18(10), 1001‑1011. 

https://doi.org/10.1111/ele.12481

Branch, T. A., Watson, R., Fulton, E. A., Jennings, S., McGilliard, C. R., Pablico, G. T., … 

Tracey, S. R. (2010). The trophic fingerprint of marine fisheries. Nature, 468(7322), 

431‑435. https://doi.org/10.1038/nature09528

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004a). TOWARD A 

METABOLIC THEORY OF ECOLOGY. Ecology, 85(7), 1771‑1789. 

https://doi.org/10.1890/03-9000

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004b). TOWARD A 

METABOLIC THEORY OF ECOLOGY. Ecology, 85(7), 1771‑1789. 

https://doi.org/10.1890/03-9000

Bruno, J. F., Carr, L. A., & O’Connor, M. I. (2015). Exploring the role of temperature in the ocean 

through metabolic scaling. Ecology, 96(12), 3126‑3140. https://doi.org/10.1890/14-1954.1

Chassot, E., Bonhommeau, S., Dulvy, N. K., Mélin, F., Watson, R., Gascuel, D., & Le Pape, O. 

(2010). Global marine primary production constrains fisheries catches. Ecology Letters, 

13(4), 495‑505. https://doi.org/10.1111/j.1461-0248.2010.01443.x

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., & Pauly, D. (2009). 

Projecting global marine biodiversity impacts under climate change scenarios. Fish and 

Fisheries, 10(3), 235‑251. https://doi.org/10.1111/j.1467-2979.2008.00315.x

Cheung, W. W. L., Watson, R., Morato, T., Pitcher, T., & Pauly, D. (2007). Intrinsic vulnerability 

in the global fish catch. Marine Ecology Progress Series, 333, 1‑12. 

https://doi.org/10.3354/meps333001

Cheung, W. W. L., Watson, R., & Pauly, D. (2013). Signature of ocean warming in global 

fisheries catch. Nature, 497(7449), 365‑368. https://doi.org/10.1038/nature12156

Christensen, V., & Pauly, D. (1992). ECOPATH II — a software for balancing steady-state 

ecosystem models and calculating network characteristics. Ecological Modelling, 61(3‑4), 

169‑185. https://doi.org/10.1016/0304-3800(92)90016-8

Christensen, V., & Pauly, D. (1993). Trophic models of aquatic ecosystems. Makati, Metro 

Manila, Philippines : Copenhagen K., Denmark: International Center for Living Aquatic 

Resources Management ; International Council for the Exploration of the Sea : Danish 

International Development Agency.

Coll, M., Libralato, S., Tudela, S., Palomera, I., & Pranovi, F. (2008). Ecosystem Overfishing in 

the Ocean. PLoS ONE, 3(12), e3881. https://doi.org/10.1371/journal.pone.0003881

Colléter, M., Valls, A., Guitton, J., Lyne, M., Sánchez, F. A.-, Christensen, V., … Pauly, D. 

(2013). EcoBase : A repository solution to gather and communicate information from EwE 

models. 69.

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., … Vuichard, N. 

(2013). Climate change projections using the IPSL-CM5 Earth System Model : From 

CMIP3 to CMIP5. Climate Dynamics, 40(9‑10), 2123‑2165. 

https://doi.org/10.1007/s00382-012-1636-1A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmller, V., Dye, S. R., & Skjoldal, H. R. (2008). 

Climate change and deepening of the North Sea fish assemblage : A biotic indicator of 

warming seas. Journal of Applied Ecology, 45(4), 1029‑1039. 

https://doi.org/10.1111/j.1365-2664.2008.01488.x

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., … 

Zadeh, N. (2012). GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. 

Part I : Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 

25(19), 6646‑6665. https://doi.org/10.1175/JCLI-D-11-00560.1

Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V., Fossheim, M., & Aschan, M. M. 

(2017). Climate-driven changes in functional biogeography of Arctic marine fish 

communities. Proceedings of the National Academy of Sciences, 114(46), 12202‑12207. 

https://doi.org/10.1073/pnas.1706080114

Froese, R., & Pauly, D. (Éd.). (2000). FishBase 2000 : Concepts, design and data sources. Makati 

City, Philippines: ICLARM.

Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. 

Nature, 560(7718), 360‑364. https://doi.org/10.1038/s41586-018-0383-9

García Molinos, J., Halpern, B. S., Schoeman, D. S., Brown, C. J., Kiessling, W., Moore, P. J., … 

Burrows, M. T. (2016). Climate velocity and the future global redistribution of marine 

biodiversity. Nature Climate Change, 6(1), 83‑88. https://doi.org/10.1038/nclimate2769

Gascuel, D., Bozec, Y., Chassot, E., Colomb, A., & Laurans, M. (2005). The trophic spectrum : 

Theory and application as an ecosystem indicator. ICES Journal of Marine Science, 62(3), 

443‑452. https://doi.org/10.1016/j.icesjms.2004.12.013

Gascuel, D., Morissette, L., Palomares, M. L. D., & Christensen, V. (2008). Trophic flow kinetics 

in marine ecosystems : Toward a theoretical approach to ecosystem functioning. 

Ecological Modelling, 217(1‑2), 33‑47. https://doi.org/10.1016/j.ecolmodel.2008.05.012

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J., Böttinger, M., … Stevens, B. 

(2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for 

the Coupled Model Intercomparison Project phase 5 : Climate Changes in MPI-ESM. 

Journal of Advances in Modeling Earth Systems, 5(3), 572‑597. 

https://doi.org/10.1002/jame.20038

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Heilmayer, O., Brey, T., & Pörtner, H. O. (2004). Growth efficiency and temperature in scallops : 

A comparative analysis of species adapted to different temperatures. Functional Ecology, 

18(5), 641‑647. https://doi.org/10.1111/j.0269-8463.2004.00905.x

Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G., Acuña, J. L., … Kaartvedt, S. 

(2014). Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature 

Communications, 5. https://doi.org/10.1038/ncomms4271

Jennings, S., Melin, F., Blanchard, J. L., Forster, R. M., Dulvy, N. K., & Wilson, R. W. (2008). 

Global-scale predictions of community and ecosystem properties from simple ecological 

theory. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1375‑1383. 

https://doi.org/10.1098/rspb.2008.0192

Jennings, Simon, Greenstreet, Simon. P. R., & Reynolds, John. D. (1999). Structural change in an 

exploited fish community : A consequence of differential fishing effects on species with 

contrasting life histories. Journal of Animal Ecology, 68(3), 617‑627. 

https://doi.org/10.1046/j.1365-2656.1999.00312.x

Jennings, Simon, Warr, K. J., & Mackinson, S. (2002). Use of size-based production and stable 

isotope analyses to predict trophic transfer efficiencies and predator-prey body mass ratios 

in food webs. Marine Ecology Progress Series, 240, 11–20.

Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A. V., & Planque, B. (2018). Food-web 

structure varies along environmental gradients in a high-latitude marine ecosystem. 

Ecography. https://doi.org/10.1111/ecog.03443

Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M. (2015). Climate change 

alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. 

Proceedings of the Royal Society B: Biological Sciences, 282(1814), 20151546. 

https://doi.org/10.1098/rspb.2015.1546

Laurent, A. G. (1963). The Lognormal Distribution and the Translation Method : Description and 

Estimation Problems. Journal of the American Statistical Association, 58(301), 231‑235. 

https://doi.org/10.1080/01621459.1963.10500844

Libralato, S., Coll, M., Tudela, S., Palomera, I., & Pranovi, F. (2008). Novel index for 

quantification of ecosystem effects of fishing as removal of secondary production. Marine 

Ecology Progress Series, 355, 107‑129. https://doi.org/10.3354/meps07224

Lindeman, R. L. (1942). The Trophic-Dynamic Aspect of Ecology. Ecology, 23(4), 399‑417. 

https://doi.org/10.2307/1930126A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Longhurst, A. R. (2007). Ecological geography of the sea (2nd ed). Amsterdam ; Boston, MA: 

Academic Press.

Maureaud, A., Gascuel, D., Colléter, M., Palomares, M. L., Du Pontavice, H., Pauly, D., & 

Cheung, W. W. (2017). Global change in the trophic functioning of marine food webs. 

PloS one, 12(8), e0182826.

Michel, C., Bluhm, B., Gallucci, V., Gaston, A. J., Gordillo, F. J. L., Gradinger, R., … Nielsen, T. 

G. (2012). Biodiversity of Arctic marine ecosystems and responses to climate change. 

Biodiversity, 13(3‑4), 200‑214. https://doi.org/10.1080/14888386.2012.724048

Murphy, E. J., Cavanagh, R. D., Drinkwater, K. F., Grant, S. M., Heymans, J. J., Hofmann, E. E., 

… Johnston, N. M. (2016). Understanding the structure and functioning of polar pelagic 

ecosystems to predict the impacts of change. Proceedings of the Royal Society B: 

Biological Sciences, 283(1844), 20161646. https://doi.org/10.1098/rspb.2016.1646

Niquil, N., Baeta, A., Marques, J., Chaalali, A., Lobry, J., & Patrício, J. (2014). Reaction of an 

estuarine food web to disturbance : Lindeman’s perspective. Marine Ecology Progress 

Series, 512, 141‑154. https://doi.org/10.3354/meps10885

Odum, E. P. (1969). The Strategy of Ecosystem Development. Science, 164(3877), 262‑270. 

https://doi.org/10.1126/science.164.3877.262

Palomares, M. L. D., & Pauly, D. (1998). Predicting food consumption of fish populations as 

functions of mortality, food type, morphometrics, temperature and salinity. Marine and 

Freshwater Research, 49(5), 447. https://doi.org/10.1071/MF98015

Pauly, D., & Christensen, V. (1995). Primary production required to sustain global fisheries. 

Nature, 374(6519), 255‑257. https://doi.org/10.1038/374255a0

Pauly, Daniel, Hilborn, R., & Branch, T. A. (2013). Fisheries : Does catch reflect abundance? 

Nature, 494(7437), 303.

Pauly, Daniel, & Zeller, D. (2016). Catch reconstructions reveal that global marine fisheries 

catches are higher than reported and declining. Nature Communications, 7(1). 

https://doi.org/10.1038/ncomms10244

Peck, L. S. (2016). A Cold Limit to Adaptation in the Sea. Trends in Ecology & Evolution, 31(1), 

13‑26. https://doi.org/10.1016/j.tree.2015.09.014

Peck, L. S., Webb, K. E., & Bailey, D. M. (2004). Extreme sensitivity of biological function to 

temperature in Antarctic marine species. Functional Ecology, 18(5), 625‑630. 

https://doi.org/10.1111/j.0269-8463.2004.00903.xA
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Perry, A. L. (2005). Climate Change and Distribution Shifts in Marine Fishes. Science, 308(5730), 

1912‑1915. https://doi.org/10.1126/science.1111322

Perry, R. I., Cury, P., Brander, K., Jennings, S., Möllmann, C., & Planque, B. (2010). Sensitivity 

of marine systems to climate and fishing : Concepts, issues and management responses. 

Journal of Marine Systems, 79(3‑4), 427‑435. 

https://doi.org/10.1016/j.jmarsys.2008.12.017

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. (2013). Marine Taxa 

Track Local Climate Velocities. Science, 341(6151), 1239‑1242. 

https://doi.org/10.1126/science.1239352

Pinsky, Malin L., Selden, R. L., & Kitchel, Z. J. (2020). Climate-Driven Shifts in Marine Species 

Ranges : Scaling from Organisms to Communities. Annual Review of Marine Science, 

12(1). https://doi.org/10.1146/annurev-marine-010419-010916

Planque, B., Fromentin, J.-M., Cury, P., Drinkwater, K. F., Jennings, S., Perry, R. I., & Kifani, S. 

(2010). How does fishing alter marine populations and ecosystems sensitivity to climate? 

Journal of Marine Systems, 79(3‑4), 403‑417. 

https://doi.org/10.1016/j.jmarsys.2008.12.018

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., 

… Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature 

Climate Change, 3(10), 919‑925. https://doi.org/10.1038/nclimate1958

Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-

Guldberg, O., … Sydeman, W. J. (2016). Responses of Marine Organisms to Climate 

Change across Oceans. Frontiers in Marine Science, 3. 

https://doi.org/10.3389/fmars.2016.00062

Pörtner, H. O., & Farrell, A. P. (2008). ECOLOGY : Physiology and Climate Change. Science, 

322(5902), 690‑692. https://doi.org/10.1126/science.1163156

Pörtner, H. O., Karl, D. M., Boyd, P. W., Cheung, W. W. L., Lluch-Cota, S. E., Nojiri, Y., … 

Zavialov, P. O. (2014). Ocean Systems. In Climate Change 2014 : Impacts, Adaptation, 

and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 

411‑484). [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. 

Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University 

Press, Cambridge, United Kingdom and New York, NY, USA.

Pörtner, H. O., Peck, L. S., & Somero, G. N. (2012). Mechanisms Defining Thermal Limits and 

Adaptation in Marine Ectotherms : An Integrative View. In A. D. Rogers, N. M. Johnston, 

E. J. Murphy, & A. Clarke (Éd.), Antarctic Ecosystems (p. 379‑416). 

https://doi.org/10.1002/9781444347241.ch13

Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries : Towards a 

cause-and-effect understanding. Journal of Fish Biology, 77(8), 1745‑1779. 

https://doi.org/10.1111/j.1095-8649.2010.02783.x

Pörtner, H. O., Storch, D., & Heilmayer, O. (2005). Constraints and trade-offs in climate-

dependent adaptation : Energy budgets and growth in a latitudinal cline. Scientia Marina, 

16.

Reygondeau, G., Longhurst, A., Martinez, E., Beaugrand, G., Antoine, D., & Maury, O. (2013). 

Dynamic biogeochemical provinces in the global ocean : DYNAMIC 

BIOGEOCHEMICAL PROVINCES. Global Biogeochemical Cycles, 27(4), 1046‑1058. 

https://doi.org/10.1002/gbc.20089

Ricklefs, R. E., & Miller, G. L. (2000). Ecology (4th ed). New York: W.H. Freeman & Co.

Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M., & Brown, J. H. (2015). Metabolic theory 

predicts whole-ecosystem properties. Proceedings of the National Academy of Sciences, 

112(8), 2617‑2622. https://doi.org/10.1073/pnas.1423502112

Shephard, S., Fung, T., Houle, J. E., Farnsworth, K. D., Reid, D. G., & Rossberg, A. G. (2012). 

Size-selective fishing drives species composition in the Celtic Sea. ICES Journal of 

Marine Science, 69(2), 223‑234. https://doi.org/10.1093/icesjms/fsr200

Smetacek, V., & Nicol, S. (2005). Polar ocean ecosystems in a changing world. Nature, 

437(7057), 362‑368. https://doi.org/10.1038/nature04161

Stock, C. A., John, J. G., Rykaczewski, R. R., Asch, R. G., Cheung, W. W. L., Dunne, J. P., … 

Watson, R. A. (2017). Reconciling fisheries catch and ocean productivity. Proceedings of 

the National Academy of Sciences, 114(8), E1441‑E1449. 

https://doi.org/10.1073/pnas.1610238114

Strayer, D. (1991). Notes on Lindeman’s Progressive Efficiency. Ecology, 72(1), 348‑350. 

https://doi.org/10.2307/1938928A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J., & Bates, A. E. (2015). Thermal 

biases and vulnerability to warming in the world’s marine fauna. Nature. 

https://doi.org/10.1038/nature16144

Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2011). Global analysis of thermal tolerance and 

latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278(1713), 

1823‑1830. https://doi.org/10.1098/rspb.2010.1295

Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). 

Global patterns and predictors of marine biodiversity across taxa. Nature, 466(7310), 

1098‑1101. https://doi.org/10.1038/nature09329

Worm, B., & Lotze, H. K. (2016). Marine Biodiversity and Climate Change. In Climate Change 

(p. 195‑212). https://doi.org/10.1016/B978-0-444-63524-2.00013-0

A
cc

ep
te

d 
A

rt
ic

le



80°N

70°N

60°N

50°N

40°N

30°N

20°N

10°N

0

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S
160°E140°E120°E100°E80°E60°E40°E20°E020°W40°W60°W80°W100°W120°W140°W160°W

(a)

n=1165

0

1

2

3

4

1950
1980

2010
2040

2070
2100

Year

C
ha

ng
es

 in
 S

S
T

 (
°C

) Polar
(b)

n=1426

0

1

2

3

4

1950
1980

2010
2040

2070
2100

Year

C
ha

ng
es

 in
 S

S
T

 (
°C

) Temperate
(c)

n=3018

0

1

2

3

4

1950
1980

2010
2040

2070
2100

Year

C
ha

ng
es

 in
 S

S
T

 (
°C

) Tropical
(d)

n=174

0

1

2

3

4

1950
1980

2010
2040

2070
2100

Year
C

ha
ng

es
 in

 S
S

T
 (

°C
) Upwelling

(e)



 Other taxa (n=354)  

EcoBase2 

 Finfish (n=1406) 
Data: Biological parameters 

Biomass flow parameters per species: 
𝑷

𝑩
   and  

𝑷

𝑸
 

Data: P/B and P/Q 

Empirical equations3 Meta-analysis 

Step 1 

Data: Catch species composition 

Step 2 
Biomass flow parameters per trophic level: 

𝑷

𝑩
   and  

𝑷

𝑸
 

Step 3 

Data: Ecotrophic 

efficiency & biomass 

accumulation  

1 

EcoBase2 

4 

Biomass transfer parameters of the ecosystem: 

Trophic transfer efficiency and Biomass residence time 

Fraction of the production available 

for predators per trophic level and 

ecosystem type: 

 

1 
+ + 

Data: Trophic level 

           for finfish 

Data: Trophic level for 

           other taxa 
5 



Consumption 

Q𝜏 + 1 

Production 

P𝜏 + 1  Growth & 

Reproduction 
Predation 

Non-predation mortality (1-EE), 

biomass accumulation (Bacc) 

Metabolism losses 

(Respiration, excretion…) 

Production 

P𝜏 

𝑻𝒓𝒐𝒑𝒉𝒊𝒄 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓  

𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =  
𝑷𝝉+𝟏

𝑷𝝉
 

𝑷𝒂𝒓𝒕𝒊𝒂𝒍 𝑻𝑬 =  
𝑷𝝉+𝟏

𝑸𝝉+𝟏
 

used for ECI calculation 



●

●

●
●

10.4 
8.1 

6.5 5.9 

0
2
4
6
8

10
12
14
16
18
20

polar
temperate

tropical
upwelling

Ecosystem type

Tr
op

hi
c 

tr
an

sf
er

 e
ffi

ci
en

cy
 (

%
)

(a)

●

●

●

●

4.4 
2.8 

1.9 
2.9 

0

2

4

6

8

10

12

14

polar
temperate

tropical
upwelling

Ecosystem type

B
io

m
as

s 
re

si
de

nc
e 

tim
e 

(y
ea

r)

(b)

(c) (d)

4

6

8

10

12

0 5 10 15 20 25 30
Sea surface temperature (°C)

Tr
op

hi
c 

tr
an

sf
er

 e
ffi

ci
en

cy
 (

%
)

1

2

3

4

5

6

0 5 10 15 20 25 30
Sea surface temperature (°C)

B
io

m
as

s 
re

si
de

nc
e 

tim
e 

(y
ea

r)





GFDL

IPSL
MPI

7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

1950 1960 1970 1980 1990 2000 2010
Year

Tr
op

hi
c 

tr
an

sf
er

 e
ffi

ci
en

cy
 (

%
)

(a)

GFDL

IPSL

MPI

2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65

1950 1960 1970 1980 1990 2000 2010
Year

B
io

m
as

s 
re

si
de

nc
e 

tim
e 

(y
ea

r)

(b)



GFDL
IPSL

MPI

GFDL

IPSL

MPI

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

2000 2020 2040 2060 2080 2100
Year

C
ha

ng
e 

in
 T

T
E

 (
%

)

RCP2.6
RCP8.5

(a)

GFDL
IPSL

MPI

GFDL

IPSL

MPI

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

2000 2020 2040 2060 2080 2100
Year

C
ha

ng
e 

in
 B

R
T

 (
ye

ar
)

RCP2.6
RCP8.5

(b)

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0

2000 2020 2040 2060 2080 2100
Year

C
ha

ng
e 

in
 T

T
E

 (
%

)

Polar
Temperate
Tropical
Upwelling

(c)

−1.0
−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0

2000 2020 2040 2060 2080 2100
Year

C
ha

ng
e 

in
 B

R
T

 (
ye

ar
)

Polar
Temperate
Tropical
Upwelling

(d)




