

Organic growing media and organic fertilizer's chemistry drive microbial catabolic functions in soilless horticulture.

Louise Paillat, Patrice Cannavo, Lydie Huche-Thelier, Fabrice Barraud, René Guénon

▶ To cite this version:

Louise Paillat, Patrice Cannavo, Lydie Huche-Thelier, Fabrice Barraud, René Guénon. Organic growing media and organic fertilizer's chemistry drive microbial catabolic functions in soilless horticulture.. Greensys 2019, Jun 2019, Angers, France. Acta Horticulturae (à paraître). hal-02869826

HAL Id: hal-02869826

https://institut-agro-rennes-angers.hal.science/hal-02869826

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Organic growing media and organic fertilizer's chemistry

drive microbial catabolic functions

in soilless horticulture

^a EPHor, AGROCAMPUS OUEST, 49045 Angers, France b PREMIER TECH GHA SAS, Le Ciron, 49680 Vivy, France c IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071 Beaucouzé cedex, France

Louise Paillat a,b *, Patrice Cannavo a, Lydie Huché-Thélier c, Fabrice Barraud b, René Guénon a

Consumer demand for healthy products as well as concerns over agricultural impacts on the environment encourage the development of sustainable practices by producers. This pressure leads to a diversification of Growing Media (GM) and fertilizers in favor of sustainable organic materials [1].

Despite GM being widely used, little is known about microbial communities [2]; even less about microbial functions involved into mineralization of organic fertilizer [3].

Objective

How organic fertilization does affect microbial catabolic functions in growing media?

GM physical properties associated with fertilizer chemistry (N content and quality) are suspected as key drivers of microbial functions.

RESULTS

Day 0 mg CO₂-C L⁻¹ h⁻¹ Phytic Ac. 0.8 Glucose Ca. Phosphate Galactose Mannose N-ac.-D-gluc. Arabinose Xylose Glycine Alanine Cellobiose Malic Ac.

17 days

Coir

Urea

N-ac.-D-gluc.

Glycine

Alanine

N limitation in Growing Media

Higher respiration rates:

- With N-sources
- Mostly in Bark

Peat

Ca. Phosphate

Urea

N-ac.-D-gluc.

SIR rates affected GM and fertilizer types (mg CO₂-C L⁻¹ h⁻¹)

Glycine

Alanine \

Lysine

Phytic Ac. Phytic acid Calcium Phosphate Ca. Phosphate N-acetyl-D-glucosamine N-ac.-D-gluc. Hydroxybenzoic acid Hydroxy. Ac. Ellagic Ac. Ellagic acid Malic Ac. Malic acid

mg CO₂-C L⁻¹ h⁻¹

-0 NPK --F1 --F2 --Horn

Glucose

Galactose

Mannose

Arabinose

Xylose

Cellobiose

Fig.1: Catabolic Level Physiological Profiles (CLPPs) in different GM, prior to fertilizer addition.

Galactose

Mannose

(9.4) // Arabinose

Xylose

Cellobiose

mg CO₂-C L⁻¹ h⁻¹

Glucose

Growing Media Fertilizers 300 mg N L⁻¹ C:N C:P **PEAT** HORN 3.3 17 COIR 5.5 25 **BARK** Granular F2^a 13.8 72 ^a plant based granular fertilizers: commercial names are confidential

(25°C, 60% of water holding capacity)

Toolbox: MicroRespTM

Campbell et al. (2003)

C- Sources: from saccharides to aromatics Filling the Deep-well Cellobiose **Monosaccharides**: D-Glucose C₆H₁₂O₆, D-Galactose C₆H₁₂O₆, D-mannose with the sample $C_6H_{12}O_6$, L-Arabinose $C_5H_{10}O_5$, D-xylose $C_5H_{10}O_5$ **Diholosides**: D-Cellobiose C₁₂H₂₂O₁₁, D-saccharose C₁₂H₂₂O₁₁ Acids: DL-acide malique C₄H₆O₅, acide ellagique C₁₄H₆O₈ **Aromatic compounds**: 4-Acide hydroxybenzoïque C₇H₆O₃, catechol C₆H₆O₂ C-, N-, P-sources N- Sources: Amino-acids and Urea addition L-Lysine C₆H₁₄N₂O₂; D-Alanine C₃H₇NO₂; Glycine C₂H₅NO₂; N-acétyl-D-glucosamine C₈H₁₅NO₆; Urea CH₄N₂O Phytic acid **P- Sources** Calcium Phosphate (rock phosphate) CaHPO₄ Phytic Acid C₆H₁₈O₂₄P₆ Detection plate reading: before

> and after incubation Incubation – 6h, 25°C – of the device sealed by metal clamp **Color changes**

related to % CO₂ produced Calculation of Substrate Induced Respiration

(SIR) rates (mg CO_2 –C $L^{-1}h^{-1}$)

Detection Purified Agar 2.5 mM NaHCO₃ Seal with 12.5 µg ml-1 Cresol Red air hole Air space Deep-well Sample + C-, N- or P-Source Bark mg CO₂-C L⁻¹ h⁻¹ Glucose

Galactose

Mannose

Arabinose

Xylose

Cellobiose

Sucrose

Ellagic Ac.

-0 NPK --F1 --F2 --Horn

Ca. Phosphate

Urea

N-ac.-D-gluc.

Glycine

Alanine

Lysine

Assemblage of

MicroRespTM device

ndicator gel

SIR rates highly increased after 7 days and slowed down after 56 days: 10 to 1 fold ratio for both coir and peat and 3 to 1 fold for bark

- ❖ SIR rates after 7 days: Coir > Peat > Bark
 - Coir: C induced respiration with F1, C and P induced respiration with F2
 - Peat: C induced respiration with F1 and F2
 - Bark: N induced respiration with Horn
- ❖ SIR rates after 56 days: GM had similar CLPPs but with different intensities (Bark > Coir > Peat)
 - F2 induced highest SIR (C, N and P)
 - Weak effect with both F1 and Horn

Fig.2: CLPPs after 7 days of incubation

+0 NPK +F1 +F2 +Horn

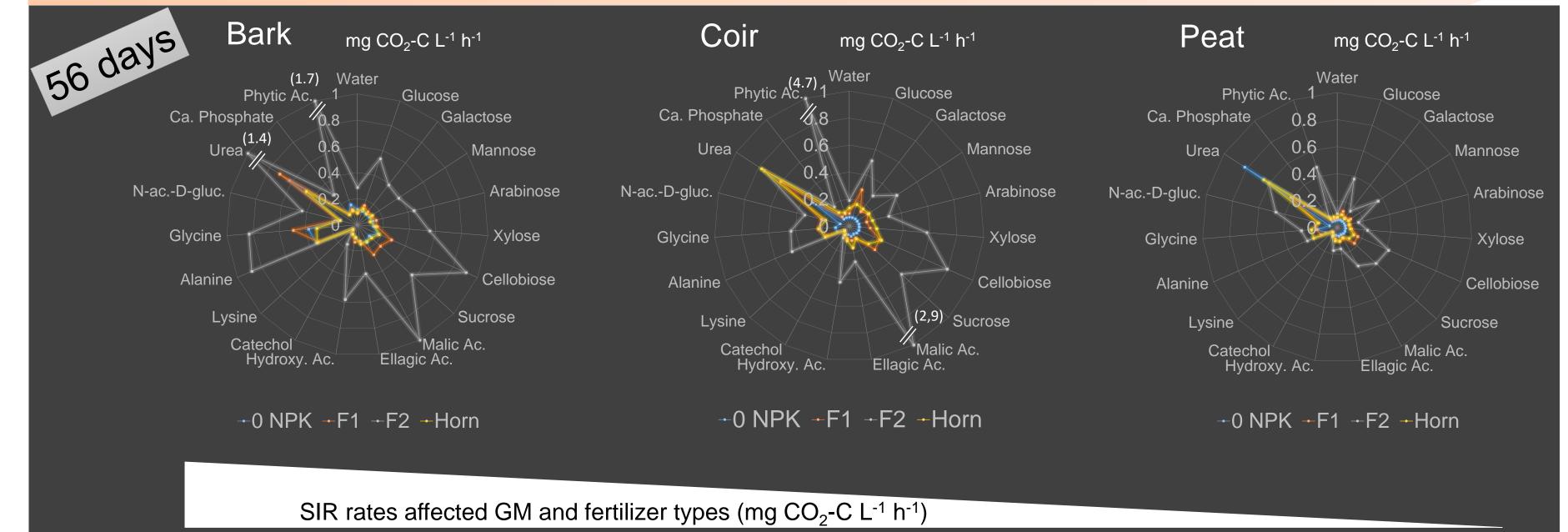


Fig.3: CLPPs after 56 days of incubation

Discussion and conclusions

- Fertilizers turned on microbial activity depending on GM
 - The burst in SIR after 7 days in Coir and Peat indicates a strong C-demand (or C-capacity), especially for simple compounds (saccharides).
 - Microbes in Bark are more prone to degrading recalcitrant C-forms (e.g. Horn).
- CLPPs showed contrasted microbial C, N, P use efficiency depending on fertilizer type
- Higher SIR intensities with F2: N and P were limited after 56 days (higher C:N and C:P ratios vs. F1 or Horn). The need for P was especially high in Coir.
- After 56 days, fertilization no longer affects CLPPS reflecting a return to the physiological state of microbial communities.

Take-Home

- Community Level Physiological Profiles provide deep information on microbial C, N, P use efficiency
- All GM are initially N-limited (Bark > Coir = Peat)
- F2 Fertilizer induces higher microbial catabolism to get nutrients
- Peat and Coir respond strongly to fertilization
- Bark specifically degrade recalcitrant fertilizer

Corresponding author Louise PAILLAT louise.paillat@agrocampus-ouest.fr

ACKOWLEDGEMENT

This work was funded by Premier Tech GHA firm and the National Association of Research and Technology (ANRT, CIFRE)

REFERENCES

[1] Barrett, G.E. et al., 2016. Scientia Horticulturae. DOI: 10.1016/j.scienta.2016.09.030 [2] Montagne, V. et al., 2017. Environmental Chemistry Letters. DOI: 10.1007/s10311-017-0628-0 [3] Grunert, O. et al., 2016. Microb Biotechnol. DOI: 10.1111/1751-7915.12354 [4] Campbell, C.D., et al., 2003. Appl. Environ.

Microbiol. DOI: 10.1128/AEM.69.6.3593-3599.2003