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Introduction
To objectivize ornamental plant visual quality studies, vi-

sual assessments from human perception following non-he-
donic sensory analysis methods represent a powerful and 
pragmatic way to compare the plants. Developed on rose 
bush plants, panelists, thanks to training, seem quite adapt-
able to various supports for plant presentation, at different 
development stages, from different genotypes or cultural 
practices (Boumaza et al., 2009, 2010; Huché-Thélier et al., 
2011; Garbez et al., 2015, 2016). However, upkeeping a pe-
rennial trained panel, limited by fatigue and individual per-
formance, implies also a non-negligible financial cost.

Especially addressed in Garbez et al. (2018), the visual 
appearance of a rose bush is intimately linked to its archi-

 Summary
Sensory methods applied to ornamental plants 

enable studying more objectively plant visual quality 
key drivers of consumer preferences. However, man-
agement upkeep of a trained panel for sensory pro-
file is time-consuming, not flexible and represents 
non-negligible costs. The present paper achieves the 
proof of the concept about using morphometrical de-
scriptors integrating 2D image features from rotating 
virtual rose bush videos to predict their visual appear-
ance according to different sensory attributes. Using 
real plants cultivated under a shading gradient and 
imaged in rotation during three development stages, 
acceptable prediction error of the sensory attributes 
ranging from 6.2 to 19.8% (normalized RMSEP) were 
obtained with simple ordinary least squares (OLS) re-
gression models and linearization. The most accurate 
model obtained was for the flower quantity percep-
tion. Finally, a secondary analysis highlighted in most 
of the studied traits a significant influence of defoli-
ation, stressing therefore the impact of the leaves on 
plant architecture, and thus on the visual appearance.

Keywords
image analysis, linear regression, Rosa hybrida, sensory 
profile, video, woody ornamental plant

Significance of this study
What is already known on this subject?
• Visual quality of ornamental plants is a key parameter 

playing a major role in the purchase triggering for 
consumers. Visual quality can be assessed by a 
panel of consumers from 2D views by considering 
homogeneous plants in their rotation.

What are the new findings?
• Use of morphometric descriptors evaluated in 3D by 

rotation on video by image analysis to predict sensory 
attribute scores for ornamental plants. This method, 
developed from virtual roses (Garbez et al., 2016), 
is validated for real plants with high phenotypic 
variability.

What is the expected impact on horticulture?
• Within ornamental horticulture context, visual quality 

of plants is an important criterion for customers. The 
realization of a sensory evaluation of the aesthetic 
value is important. Its prediction by morphometric 
attributes allows it to be automatized and generalized 
easily and quickly. It’s future tool to help innovation in 
ornamental horticulture.

tecture (Huché-Thélier et al., 2011; Santagostini et al., 2014; 
Garbez et al., 2015). Governed by environmental and geno-
typic influences, architecture is resulting from the different 
botanical entities, with their proper morphologic and geo-
metric characteristics, located in a 3D space and arranged 
topologically either by succession or branching relations 
(Godin, 2000; Barthélémy and Caraglio, 2007; Li-Marchetti 
et al., 2015). To study visual appearance in relation with the 
plasticity of plant architecture in routine without long-term 
panel managements, growers, breeders and scientists, need 
therefore faster and more objective methods providing con-
sistent measurements in order to set automated characteri-
zation processes.

Santagostini et al. (2014) proposed a first method using 
images of single facet of different rose bush cultivars. They 
demonstrated that the “area ratio of the flowers surface 
over complete plant surface” was highly correlated with the 
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number of hand-counted flowers and ‘floribundity’ senso-
ry attributes. For other attributes assessed on 20 rotating 
virtual rose bush videos representing approximately five-
months-old plants after complete petal abscission, Garbez 
et al. (2015) obtained good predictive models with ordinary 
least squares (OLS) regression. The OLS models used very 
few morphometric descriptors (MD) obtained from descrip-
tive statistics summarizing values of image features extract-
ed from 45 side views (facets) all around the plants, i.e., in-
terspaced by 8° rotation interval.

The main goal of this paper is to propose an objective and 
automatic method to characterize 3D visual appearance of 
real rose bush. The genericity of the approach is presented 
with an application domain extension generated using vid-
eos presenting the plants cultivated under different shading 
environments at three stages of development: the first and 
third times with leaves and flowers, interspaced by a second 
stage during rest phase presenting plants without leaves and 
flowers.

With this main goal, two other complementary objectives 
are addressed: (i) the reduction of the number of images for 

the morphometric descriptor computation, considered for 
modeling the sensory attribute related to the flower quantity 
perception; (ii) the impact of plant defoliation before archi-
tecture digitizing. Indeed, during the rest period plants can 
be marketed without leaves and the visual appearance is im-
portant.

Material and methods

Plant material and growth conditions
As fully described in Garbez et al. (2018), plants used 

were ‘Radrazz’ Knock Out® potted rose bushes (Rosa hybrida 
L.). Plant material was obtained from single node cuttings, 
then after rooting and first flowering, three plant batches 
were formed to be outdoor cultivated in container and under 
contrasted shading conditions: natural condition (a control 
without shading screen denoted 0%); under a tunnel cov-
ered with a 55%; or 75% shading screen. During the winter 
(December to February), plants were moved to an unheated 
polyethylene tunnel to prevent any frost damages on roots 
and future young shoots.

12 

 

 
 
 
 
FIGURE 1.  Panel of cropped and reduced size images of three rose bushes from the different shading environments 
(from the left to the right: 0, 55, and 75% of shading) over the three acquisition stages (from the top to the bottom: 
S1, S2, S3), then manually defoliated at the third stage (S3D). 
 
  

Figure 1.  Panel of cropped and reduced size images of three rose bushes from the different shading environments (from the 
left to the right: 0, 55, and 75% of shading) over the three acquisition stages (from the top to the bottom: S1, S2, S3), then 
manually defoliated at the third stage (S3D).
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Plant acquisitions and sensory profile
As fully described in Garbez et al. (2018), multiple front 

views of the plants were imaged using a motorized turntable 
coupled with a CCD camera. This image acquisition made it 
possible to obtain image sequences for image analysis and 
rotating plant videos for sensory profile.

During a year and a half, plants were imaged at three 
stage of development: first stage (S1) was in early summer at 
5 months of age, plants with flowers and leaves; second stage 
(S2) in late autumn-winter, during rest phase, at 12 months 
of age, plants without leafy or flowering axes; and last stage 
(S3) before summer, at 15 months of age in full flowering. For 
studying the impact of removing leaves on plants, plants of 
last stage (S3) were defoliated. Approximately half of them 
were subjected to image acquisition a second time immedi-
ately after defoliation to constitute a separate sample denot-
ed S3D (Figure 1).

Image stacks of the plants were then used to edit videos 
presenting them in rotation.  Thereafter, a panel of 20 trained 
subjects (panelists) was solicited for establishing the visual 
characterization of the plants over the 198 different videos: 
171 videos (19 plants × 3 shading environments × 3 stag-
es) obtained in natural condition, i.e., in flowering during 
plant growth or without leaf and flower during the plant 
rest phase and 27 other videos (9 plants × 3 shading envi-
ronments) manually defoliated after the third acquisition 

stage. Plant videos were anonymized, and thus scored inde-
pendently of the acquisition time and the shading condition 
of the plants. The sensory attributes considered were related 
to plant dimensions, shape, branching, leaves, and flowering. 
In the present study, the attributes beforehand highlighted as 
not enough consensual (Garbez et al., 2018) were not consid-
ered. The studied variables were the attribute average scores 
of the panelists per product (plant video), which were con-
sidered as the response variables to be predicted.

Image analysis and computation of the morphometric 
descriptors

Rose bushes front view image sequences were obtained 
with a specifically devised RGB imaging system detailed in 
Garbez et al. (2018). Each rose bush in its black pot was 
positioned on a black motorized turntable located in room 
with a blue background after image capture of the scene with 
a plant-free pot. Then, front view images of the plant were 
acquired every 1° of the turntable, thus for a total of 360 
plant facets.

The method to process such images is based on a three-
step algorithm developed using MatLab environment (The 
MathWorks®, Inc.) which computes a binary mask of the 
branches and the flowers of the plant from a RGB image. 
Various thresholds are used in this algorithm. Each value of 
threshold is automatically calculated by the method of Otsu 
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FIGURE 2.  Illustration for plant image acquisition and processing (units in px): (a) an image in reduced size of a 
rose bush grown under a 55% shading net at the third acquisition stage (S3); (b) corresponding plant binarized 
image; (c) convex hull projection (in red); (d) location and counting flowering elements. 
 
 
 

Figure 2.  Illustration for plant image acquisition and processing (units in px): (a) an image in reduced size of a rose bush 
grown under a 55% shading net at the third acquisition stage (S3); (b) corresponding plant binarized image; (c) convex hull 
projection (in red); (d) location and counting flowering elements.
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(1979) so that it provides some genericity to the algorithm 
detailed below. (i) First step aims to obtain a unique 
bounding box of the rose bush with its pot for the 360 poses. 
This consists in evaluating the bounding box of the binarized 
z-projection of 8 poses taken every 45°. The binarization of 
image is obtained with a simple thresholding. This bounding 
box is then applied on the 360 images of the plant and the 
image without plant. Such a bounding box both reduces 
the spatial size of images to be processed and the non-
homogeneity of the borders of background. (ii) Second step 
evaluates the position of the pot from the image acquired 
without plant. (iii) Third step is included in a loop for the 
processing of the 360 images. Each image is decomposed 
into two regions: a large region where the background is a 
blue background and a smaller region corresponding to what 
is in front of the black pot and the turntable. In the region 
with the blue background, segmentation by thresholding 
on the blue channel of original RGB image separates the 
branches (but not robustly the flowers) of the plant from the 
background, providing a binary mask for this first region. 
For the region with the pot and turntable, the algorithm 
computes a changing of color space from RGB to HSV where 
the channel “Hue” is selected because branches in front 
of the pot and turntable have a higher hue level than the 
pot and the turntable. This is followed by a thresholding 
segmentation and a non-linear filtering on binary image by 
succession of morphological operations such as erosion/
dilation to eliminate spurious isolated pixels remaining. 
This provides a binary mask for this second region. The 
binary mask of all branches is then rebuilt by combining the 
binary masks obtained for the two regions. For the detection 
of flowers, the RGB image is transformed into YIQ image. 
The intensity channel is selected since it presents the best 
contrast among the tested color space (RGB, YIQ, and HSV) 
between the flowers and the rest of the image. Segmentation 
by thresholding is applied to this channel to obtain a binary 
mask of the flowers. The reconstruction of the complete 
binary mask of the plants: plant binarized images (PBI) 
is the addition of the binary mask of the branches and the 
binary mask of the flowers. With such a binary mask, the 
algorithm both computes a binary mask of the plants with 
filled holes into the branches: plant filled images (PFI) and 
a binary mask of the convex hull of the plants: plant convex 
hull images (PCI) (Figure 2).

From there, image features were then extracted to 
implement various morphometric descriptors (MD) as 
introduced by Garbez et al. (2016), i.e., using descriptive 
statistics of image features along plant rotation considering 
PBI, PCI and PFI, some based on sub-regions sampling 
defined with symmetry axes, and then for flower masks. The 
plant base was always the lowest point for virtual rose bushes 
(presented without pot). With real ones it has to be defined 
as the top of pot center; however axes may still be under this 
point. Thus features previously proposed were adapted and 
completed with a dissociation made for this aspect. For the 
flower mask, features considered here were the number of 
isolated groups of pixels assigned to flowers; the average, 
quantiles, the standard deviation and the cumulated area 
of their surface. As proposed by Santagostini et al. (2014), 
the area ratio of the flowers’ surface to the plant surface was 
also extracted, and then, as for the features obtained from the 
complete plant masks, the corresponding MD variables were 
computed with descriptive statistics of the measurements 
along plant rotation.

Statistical analysis
According to two separate investigations, data manage-

ment and statistical analyzes were conducted under the R 
environment (R Development Core Team, 2015) with addi-
tional functions from additional packages mentioned there-
after.

The first investigation, conducted using the caret pack-
age (Kuhn, 2008, 2016), concerned the main objective of the 
present paper: testing the predictive modeling of the sensory 
attributes scores with MD on real rose bushes. It used the 
171 videos available for the three natural condition stages. 
Sensory attribute variables were defined as the average score 
of the panelists by product and analyzed conjointly with the 
MD. For assessing the relevance of the MD as predictors, the 
analysis was based respectively for calibration and valida-
tion of the models, on a 2:1 ratio random sampling within all 
the nine pairwise crossed conditions (stage × shading).

In a first approach, links between the sensory attribute 
variables and the MD were first evaluated with the Spear-
man’s correlation coefficient (rS) to detect eventual mono-
tonic relationships from the calibration dataset. Then pre-
diction of the sensory attributes variables was tested with 
simple linear regression through ordinary least squares 
(OLS), the most common and simple regression method 
(Næs et al., 2011; Kuhn and Johnson, 2013) using the MD as 
potential predictors one by one and without any stage- or 
shading-based parameters. Goodness of fit was evaluated 
with the traditional coefficient of determination and lack of 
fit with the root mean square error for the entire calibration 
data (respectively R2 and RMSE), and through 10-10 folds 
cross-validation (respectively R2

CV and RMSECV). Coefficient 
of determination and root mean square error of prediction 
computed from the validation dataset (respectively Q2 and 
RMSEP) were then used to assess the predictive ability of 
the models with unknown data. Common transformations 
(power, root, log, exponential and inverse) and normality su-
pervised power-transformation of Yeo-Johnson were applied 
to the predictors (Yeo and Johnson, 2000) with the aim to 
better satisfy required linear modeling assumptions (Kuhn 
and Johnson, 2013) while exploiting more deeply the data 
still using a relatively simple modeling approach. This analy-
sis was conducted on the plants from the three pooled stag-
es, only with the features obtained from the complete plant 
mask over 45 plant facets (8° interval) as previously tested 
for virtual plants.

Secondly, the potential of the MD obtained from the 
masks of the flowers and the image number effect for the 
prediction of the sensory attribute related to flowering were 
separately analyzed using plant videos at S1 and S3 (no flow-
er detected for S2). For this second step, modeling was con-
ducted with the flowering specific MD computed from 120 
images (3° interval, the same used for video edition), then 
45, 15, 3, and finally only one facet. For the one facet test, 
thus only one value per image feature extracted was avail-
able; the image selected was the largest plant facet as done 
in related studies (Boumaza et al., 2010; Huché-Thélier et al., 
2011; Santagostini et al., 2014).

For the second objective: assessing the macroscopic ef-
fects of defoliation on plant before its digitizing, the analy-
sis was conducted with the 54 videos made with the plants 
which were imaged before and after manual defoliation 
during the third stage: 27 S3D videos, and the 27 correspond-
ing S3 videos just before defoliation. Effect of the defoliation 
on plant architecture was assessed for each sensory attribute 
with average scores of the panelists per plant compared with 
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paired data tests. Tests used were performed using the stats 
package functions using the Student’s t-test (Welch’s adapta-
tion for unequal variances) or the Wilcoxon signed-rank test 
(with continuity correction in the normal approximation for 
the p-value) if the Shapiro-Wilk test rejected the normality 
hypothesis with error level α = 0.05.

Results and discussion

Predictive modeling
For each sensory attribute excepted for quantity of 

‘Fruits’, high to very high significant correlations were found 
with many MD from the plant binary masks (rS ranging from 
0.75 to 0.94 in absolute value; Table 1). Cross-validations 
did not highlight specifically overfitted models, however, the 
models minimizing RMSEP reported were not necessarily 
based on the most correlated MD. For dimensions (width, 
volume, and height), habit, density, leaf, flower and branch-
ing quantity related attributes, minimizing RMSEP models 
explained rather quite a large amount of the response vari-
ables (both R2, R2

CV and Q2 > 0.7).
Nonetheless, all the models except for ‘Fruits’ presented 

an acceptable accuracy on calibration and also validation 
datasets (maximum error indices < 1) especially for ‘Volume’ 
with error of 7.8% (normalized RMSE to response range), 
while the worst were for carriers and branching (RMSEP = 
0.93 and 1.00 respectively) leading to prediction errors of 
15.9 and 16.0%. Interestingly, most of the relations report-
ed were not linear, however, few seem tightly specific. For 
instance, for ‘Height’, our model was rather consistent with 
that formerly presented in Garbez et al. (2016), but log trans-
formation better linearized the relation and led to Q2 increas-
ing from 0.83 to 0.87, and NRMSEP decreasing from 10.1 to 
8.8%. Also, in general, it was noteworthy that Yeo-Johnson 
(YJ) normality-supervised power transformation yielded to 
better results. For the ‘Width’, mean width of the bounding 
box (rS = 0.91) did not outperform the measurement of the 
YJ area of plant left part on PCI. While plant MD enabled us 
to report an acceptable model for ‘Flowers’, similar models 
were reported for ‘Branching’ and ‘Carriers’, closely related 
by essence, but none was satisfying for the fruits. This was 
not expected for the flowers, nonetheless this reflects again 
that the number of flowers is tightly associated with the 
plant vegetative development level (Garbez et al., 2018). For 
fruits, no specific image feature was designed since this spe-
cific segmentation seems unfeasible with the color informa-
tion and image analysis methods tested up to now.

Therefore, plant 3D reconstruction does not seem to be 
particularly needed for instance. However, as demonstrated 

with the virtual material (Garbez et al., 2016), multivariate 
models including several MD with feature selection algo-
rithms may be more relevant and accurate (Nœs and Kow-
alski, 1989; Kuhn and Johnson, 2013; Silva et al., 2013). 
Nonetheless, image acquisition and processing may strongly 
benefit from both RGB and depth data sensors as proposed 
by Chéné et al. (2016). Indeed, coupled with color, depth in-
formation represents a valuable way to ease, at least, plant 
segmentation from the background, the turntable, the pot 
and the different organs, but also for testing depth-based 
descriptors giving access to the 3D of the plant facets. Even 
less important than flowers during growth, fruits are also 
decorative for numerous ornamental plants. To the best of 
our knowledge, plant part characterization with 2D image 
features at the organ-scale is well documented. This is es-
pecially true for flowers and leaves of numerous plant spe-
cies, and for fruits and vegetables for which detection and 
characterization by remote sensing is also feasible with good 
accuracy (Gongal et al., 2015; Horgan, 2001; Kawabata et al., 
2009; Ruiz-Altisent et al., 2010; Moreda et al., 2012). Howev-
er within entire ornamental plant products, fruit detection 
and characterization issues have not been addressed yet. 
Thus this need, not especially for the fruits but for all the or-
gans at their own scale, represents another challenge to be 
addressed for non-destructive plant multiscale image-based 
phenotyping tools (Rousseau et al., 2015).

Number of images
Unsurprisingly, for ‘Flowers’ the MD computed from 

flower masks led to quite better models. Interestingly, what-
ever the number of images used, it was the same MD which 
provided the best model with the lower RMSEP (Table 2). In-
deed, the “mean of the cumulated area of the pixels assigned 
to flowers (linearized by square root transformation)” pro-
vided models with R2 ranging from 0.87 to 0.96 and simi-
lar Q2. Nonetheless, while model statistics were not much 
contrasted between the MD computed from 3 to 120 imag-
es, results highlighted that prediction for ‘Flowers’ is quite 
enhanced with more than only one image. Indeed models 
obtained with 3, 15, 45 and 120 images all presented a re-
duced error of prediction by near the half, decreasing RMSEP 
normalized to the variable response range from 10.4% to 
6.2%. Moreover with the largest facet only, both R2

CV and RM-
SECV presented the highest standard deviations strengthen-
ing that for precision and robustness, more than one image 
should be considered. As it is also mentioned by Harmsen 
et al. (2009) for developing multi-target tracking algorithm 
counting flowers, or for enhancing manual and automated 
plant grading (Kohsel, 2001; Kohsel and Bennedsen, 2001), 

Table 2.  ‘Flower’ sensory attribute model performance with square root of “mean of the cumulated area of the pixels assigned 
to flowers” according to the number of images for videos presenting leafy plants (N=114 plant videos from stage 1 and 3).

Nr. of images
Calibration with 10-10 cross-validation Validation2 

rS R² RMSE NRMSE (%) R2
CV RMSECV Q² RMSEP NRMSEP (%)

1 0.92 0.87 0.92 10.28 0.89 ± 0.06 0.91 ± 0.21 0.88 0.86 10.35
3 0.98 0.96 0.52   5.80 0.97 ± 0.02 0.52 ± 0.13 0.96 0.52   6.21
15 0.98 0.96 0.52   5.80 0.97 ± 0.02 0.52 ± 0.13 0.96 0.52   6.21
45 0.98 0.96 0.51   5.75 0.97 ± 0.02 0.51 ± 0.13 0.96 0.52   6.23
120 0.98 0.96 0.51   5.74 0.97 ± 0.02 0.51 ± 0.13 0.96 0.52   6.18

1 Calibration using n=78 plant videos; Spearman correlation (rS), coefficient of determination (R²), root mean square error (RMSE), normalized 
  RMSE (NRMSE), R²cv and RMSEcv values are mean ± standard deviation computed from 10 repeats of 10-fold cross-validation (CV).
2 Validation using n=36 plant videos.
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taking into account several facets of the plants is especially 
recommended. At least, the present study demonstrated it 
robustly with an image analysis-based model for assessing 
the flower quantity perception through a sensory profile ap-
proach.

Effect of defoliation
Except for ‘Flowers’ and ‘Height’ sensory attributes, 

plant defoliation implied highly significant perception modi-
fications (Table 3; p-values at least under 1%). Major impact 
was for the fruits which were more visible without leaves. 
Scores for density and volume as expected were also re-
duced. Also, without leaves, the panel perceived the plants 
as more balanced, maybe since leaves were not regularly 
distributed within the plants; and as less ramified (carriers 
and branching), maybe because panelists overestimated the 
quantity of axes when the plants presented leaves. Nonethe-
less, most critical impacts were for habit and width. Foliar 
mass removal reduced the bending of non-othotropic axes 
and this was effectively perceived by the panel which char-
acterized the defoliated plants as thinner, more erected, but 
not taller. Thus, for studies related to plant shape and growth 
habit, defoliation before architecture digitizing, whatever the 
methods used, should not be recommended. However, plant 
architecture models presented in Garbez et al. (2018) includ-
ed for S3 plants the measurements obtained on defoliated 
plants stored in cold chamber up to two months. Therefore, 
in such studies, it is at least recommended to collect leaf data 
characteristics during or in parallel of stem digitizing, thus 
enabling deeper analysis including visual, metric, and mass 
leaf characteristics within plant virtual models as recently 
addressed for the rose bush (Gao et al., 2012; Demotes-Main-
ard et al., 2013).

Conclusion and perspectives
The results obtained confirm the possibility of an ob-

jective and automated method to characterize 3D visual ap-
pearance of real rose bush. Even with real plants presenting 
rather larger phenotypic diversity, image analysis of several 
plant facets to compute the morphometrical descriptors pro-
posed by Garbez et al. (2016) is an efficient way to establish 
rather good to acceptable predictive models for most of the 
visual traits considered. The possible reduction in the num-

ber of images makes the method easier and opens up wider 
areas of application. The various states of the plants through-
out their development can be integrated implicitly and first 
investigations for the flower quantity perception modeling 
stressed that a limited number of images, here 3, each in-
terspaced by 120°, provided consistent results with those 
obtained from the processing of larger image sequences. 
The good results obtained with or without leaves also open  
possibilities to study the relations between the morphomet-
ric descriptors and the architectural processes (Barthélémy 
and Caraglio, 2007). Thus, such automation possibility rep-
resents an interesting approach for assessing ornamental 
plant visual appearance in relation to architecture plasticity 
and the growing conditions. It allows to integrate on the one 
hand the analysis of the plant from 2D to 3D with for the sen-
sory attribute ‘Flowers’, with a similar Spearman’s correla-
tion coefficient (2D rS = 0.82; 3D rS = 0.88) (Santagostini et 
al., 2014). On the other hand, it makes it possible to calculate 
the correlation coefficient of 9 other criteria with an rS value 
larger than 0.75.

However, for the sake of precision, multivariate models 
may be necessary to obtain better predictive models. In con-
trast for both predictive and explicative modeling purpos-
es, expert knowledge, feature selection algorithms as other 
regression methods assuming either linear and non-linear 
modeling with large predictor numbers is thus recommend-
ed for selecting the most explicative and relevant features in 
relation to the plant material studied, experimental condi-
tions and objectives.

Finally, as hypothesized along related previous studies 
(Garbez et al., 2015, 2016), merging instrumental methods 
related to sensory analysis evaluation and virtual plant mod-
els implemented from architectural data, including leaf visu-
al and physic characteristics, may thus result into a powerful 
integrated methodology to study consumer preferences of 
today and tomorrow with an innovative and scientific visu-
al quality management approach. Like fresh horticultural 
products, especially fruits and vegetables, the evolution of 
sensory sciences can evolve the knowledge and the prac-
tice to favor a good concordance between visual quality and 
consumers preferences (Kohsel and Bennedsen, 2001; Meil-
gaard et al., 2006).

Table 3.  Visual characterization of rose bushes before and after plant defoliation for the sensory attributes not related to 
leaves. Bold names highlight attributes for which significant differences (α = 0.05) were not detected.

Sensory attribute Before1 After1 Variation2 P-value2

Fruits 2.3 ± 0.3 4.1 ± 0.3 2.1 5.9E-06
Density 5.6 ± 0.4 3.9 ± 0.3 -1.6 5.9E-06
Volume 7.3 ± 0.2 6.5 ± 0.2 -0.7 7.1E-12
Habit 4.9 ± 0.2 5.4 ± 0.2 0.5 8.7E-06
Width 7.3 ± 0.1 6.8 ± 0.2 -0.5 4.5E-11
Balance 5.4 ± 0.3 5.8 ± 0.3 0.4 7.2E-05
Branching 6.3 ± 0.3 6.0 ± 0.3 -0.4 4.6E-04
Carriers 5.9 ± 0.2 5.7 ± 0.3 -0.2 9.3E-03
Flowers 5.8 ± 0.4 5.7 ± 0.5 -0.2 2.6E-01
Height 6.8 ± 0.2 6.8 ± 0.2 0.0 9.2E-01

1 Values are mean ± standard error of n=27 plants assessed in rotation on videos made 15 months after cutting through a sensory profile made 
  with 20 trained subjects. Plants used came from three shading conditions (under nets with 55%, 75% of shading, and 0% as control without 
  shading net).
2 P-values and variations are reported according to paired tests: Student’s t-test (Welch’s adaptation for unequal variances t-test); 
  or Wilcoxon (continuity correction method) if the normality assumption was not satisfied (Shapiro-Wilk’s test at the 0.05 threshold).
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