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Societal Impact Statement
For millennia, humans have used plants and fungi, as foods, fuels, fibers, and medi-
cines; and have developed techniques for improving their usefulness to our species, 
mostly through selection of desirable traits. With human populations forecast to rise, 
the availability of arable land likely to fall amid climate change and increasing ur-
banization, and modern communications technologies accelerating the dispersal of 
pathogens, further improvement is urgently needed. However, ensuring long-term 
resilience involves conservation of existing genetic diversity in addition to selection. 
New technologies, particularly those based on molecular biology, are increasingly 
driving conservation and improvement strategies.

Summary 
Humans use plants and fungi for a wide range of purposes and, over millen-
nia, have improved wild species by selecting for and combining genetic variation. 
Improvements in DNA sequencing technologies have enhanced our capacity to iden-
tify and manipulate genetic diversity, increasing the range of variation that can be 
utilized, and accelerating the breeding cycle to reduce the time taken to develop 
and put new varieties to use. Most recently, the CRISPR/Cas9 gene editing technol-
ogy has greatly increased our capacity to directly introduce novel genetic variants 
without unwanted associated material. Moreover, increased knowledge of metabolic 
pathways resulting from genomic analysis can be used to design new varieties with 
desired properties with increased precision. Selecting for, or engineering, desirable 
variants has increased the usefulness of plants and fungi to humans, but at the cost 
of reducing their genetic diversity, decreasing their resilience and reducing the stock 
of variation available for future use. Conservation of genetic biodiversity is thus an 
essential counterpart of crop improvement and is essential to ensure that crop spe-
cies retain resilience to emerging threats. Conservation efforts are focused on or-
phan crops, wild relatives of crop species, and landraces; in and exsitu efforts are 
complementary. Informatic approaches can inform use of these materials in breeding 
programmes even in the absence of genomic information. The application of some of 
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1  | INTRODUC TION

For millennia, humans have used plants and fungi as foods, fuels, 
fibers, and medicines. Early humans gathered plant and fungal ma-
terials from the wild, but agriculture has been practiced for at least 
11,500 years (Fernie & Yan, 2019; Meyer & Purugganan, 2013). 
Humans have not only cultivated these species, but also sought, 
by casual selection and deliberate breeding, to improve yield, re-
silience to biotic and abiotic stress, and the properties of varieties 
under cultivation (Schlegel, 2018). Established plant breeding prac-
tices helped inform the experiments that first elucidated the ge-
netic basis of inheritance, and this understanding has underpinned 
the development of modern scientific breeding programmes, in 
which the recorded characteristics of individuals and lines are 
used to develop new varieties with desirable combinations of 
traits (Voss-Fels, Stahl, & Hickey, 2019). More recently developed 
approaches exploit low-cost techniques for DNA sequencing and 
molecular modification tools to increase the precision with which 
new varieties can be created, and speeding their delivery to mar-
ket (Chen, Wang, Zhang, Zhang, & Gao, 2019; Hickey et al., 2019; 
Lenaerts, Collard, & Demont, 2019). With human populations fore-
cast to rise, the availability of arable land likely to fall amid climate 
change and increasing urbanization, and modern communications 
technologies accelerating the dispersal of plant pathogens, these 
developments are decidedly timely (FAO, 2017; Jorasch, 2019; 
Roell & Zurbriggen, 2020).

Although short-term improvement strategies are focused on 
engineering specific genotypes, maintaining biodiversity is essen-
tial to provide the genetic reservoir from which future crops will 
be developed (Govindaraj, Vetriventhan, & Srinivasan, 2014; Tester 
& Langridge, 2010). Most crop species have undergone just a few 
domestication events, and while repeated rounds of subsequent 
selection have optimized their properties, these have significantly 
reduced the residual genetic diversity present in current populations 
(Smýkal, Nelson, Berger, & Von Wettberg, 2018). Today's crops thus 
bear little resemblance to their wild ancestors, and their genetic ho-
mogeneity threatens our ability to breed for resilience in the face 
of novel threats (Dulloo et al., 2017). There is therefore increasing 
interest in exploring new sources of genetic variation (Castañeda-
Álvarez et al., 2016; Smýkal et al., 2018). For example, there may be 
the potential for significant gains in yield and quality in under-uti-
lized species that have not yet been subject to scientific breeding or 
genetic analysis, and which might mitigate the pressures on existing 

major crops (Castañeda-Álvarez et al., 2016; Pironon et al., 2019; 
Zhang, Li, & Zhu, 2018) if the sociological barriers to their use can be 
overcome (Morel, Revoyron, San Cristobal, & Baret, 2020).

There is also potential for increased use of fungi. For example, 
the combination of genomics, DNA synthesis and biotechnologi-
cal tools available for fermentable fungal species is opening a new 
era for the production of enzymes and bioactive compounds, and 
may also help reduce pressure on wild biodiversity (Cairns, Nai, & 
Meyer, 2018; Deng, Gao, Liao, & Cai, 2017).

2  | TECHNIQUES FOR PL ANT 
IMPROVEMENT

Since the dawn of plant domestication, humans have selected for 
plants that are well-adapted to growth in the agricultural environ-
ment. More recently, farmers and plant breeders have deliberately 
bred from individuals with desirable traits, leading to the develop-
ment of elite lines, whose improvement continues to this day. This 
can be a lengthy process, requiring an initial cross, followed by sev-
eral cycles of growth, phenotyping, and selection. If an existing elite 
line is crossed to a less generally well-adapted variety that nonethe-
less contains certain beneficial genes, the offspring must be repeat-
edly backcrossed to the elite parent to remove unwanted genetic 
material derived from the other parent (Lenaerts et al., 2019). Thus, 
the time taken to introduce a new rice variety to the field is currently 
10 years (Acquaah, 2007), and 6–8 generations of inbreeding are re-
quired to achieve genetic stability. For slow growing tree species, the 
time taken to develop a new variety is considerably longer.

2.1 | Impact of genomics on plant breeding

Genomics, the study of the complete genetic composition of an 
organism, has impacted plant breeding in various ways (Figure 1). 
An understanding of the molecular basis of biological processes 
can enable the reengineering of metabolic pathways, to allow for 
the production of new bioproducts (e.g. synthesis of omega-3 long 
chain polyunsaturated fatty acids Napier, Olsen, & Tocher, 2019; 
Ruiz-Lopez, Haslam, Napier, & Sayanova, 2014). Even without 
mechanistic understanding, the identification of genetic variants 
(markers) that are statistically associated with desirable traits 
(due to their close physical proximity in the genome and hence 

these approaches may be restricted by ethical, legal, or organizational obstacles. 
If these can be overcome, there is great potential to unlock previously untapped 
reservoirs of biodiversity for human benefit.

K E Y W O R D S

breeding, conservation, crops, fungi, genetic diversity, genetic modification, metabolic 
engineering, plants
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likelihood of being co-inherited) allows the prediction of pheno-
type from genotype. This approach, which is referred to as Marker 
Assisted Selection (MAS), has been used by breeders since the 
1990s (Heffner, Sorrells, & Jannink, 2009) to enable rapid and pre-
cise screening for traits of interest at reduced cost (Davey et al. 
2011), thereby increasing the speed and precision of the breeding 
process. Tracking the presence of specific genetic variants also al-
lows for gene stacking, that is, the incorporation of multiple genes 
independently conferring a single trait, such as disease resistance. 
For example, plant pathogens often evolve the ability to over-
come resistance conferred by a single gene following the wide-
spread planting of resistant crops. Stacking multiple resistance 
genes within the genome increases the durability of the trait (e.g. 
wheat resistant to rust fungi has been bred using this approach, 
Ellis, Lagudah, Spielmeyer, & Dodds, 2014). Another potential use 
is the development of more efficient biofuels: research has shown 
the potential of using gene stacking to incorporate several biosyn-
thetic genes which increase the percentage of easily fermentable 
biosugars while reducing the lignin content of plants without re-
stricting overall growth (Aznar et al., 2018), although yield in the 
field remains difficult to predict.

Genomic Selection (GS) utilizes a high-density of markers from 
across the whole genome to statistically predict polygenic traits such 
as yield, reducing the reliance on finding significant associations with 
genes of large effect (Meuwissen, Hayes, & Goddard, 2001; Wang, 

Xu, Hu, & Xu, 2018). As with MAS, it is not necessary to understand 
the molecular mechanisms behind a complex trait to carry out ge-
nomic selection, as long as the phenotypic variation is highly her-
itable, and samples are adequately genotyped and phenotyped. 
Models are developed using a training population in which the geno-
type and phenotype for the trait is known for each individual, using 
the combined effects of all markers to predict the genomic breeding 
value (i.e. the heritable component of the trait) in individuals outside 
the training set. Improvements to the trait are obtained by increasing 
the frequency of favorable alleles in the population or line over many 
generations. Genomic selection methods have been less widely ad-
opted for plant than animal breeding (Hickey et al., 2017), but none-
theless they are increasingly being used in some major crops (e.g. 
soya, maize, wheat and cotton) to increase yields and disease resis-
tance, and hence improve crop quality (Crossa et al., 2017; González-
Camacho et al., 2018; Michel et al., 2018; Rutkoski et al., 2015), 
while proof of concept has also been demonstrated for quality traits, 
such as the baking qualities of bread wheat (Michel et al., 2018). In 
the staple food crop cassava, in which phenotypic selection alone is 
inefficient and heritability of desired traits is low, genomic selection 
has been shown to accurately predict yield traits in multiple trials (de 
Andrade, Sousa, Oliveira, Resende, & Azevedo, 2019). Nevertheless, 
the presence of polyploidy and high heterozygosity in many crop ge-
nomes is currently limiting the widespread application of genomic 
selection (Friedmann et al., 2018).

F I G U R E  1   Utilization of Plant Genetic Resources for Improving the Useful Properties of Crops. Plant Genetic Resources (plant genetic 
materials of current or potential value) comprise crop landraces—genetically diverse crop varieties that are the product of traditional 
seed saving systems not modern plant breeding, commonly associated with local adaptation, and traditional agricultural practices in more 
marginal agricultural environments (Maxted et al., 2020); Crop Wild Relatives (CWR)—wild species that are relatively closely related to a crop 
and may be crossed with the crop either using conventional or genetic engineering techniques to introduce desirable traits from the wild 
species to the crop; and underutilized crops. Traditionally, wild plants have been domesticated and improved through casual selection and 
pedigree breeding. Modern techniques used to characterize breeding lines include genome size association studies (GWAS) and automated 
phenotyping. Approaches to accelerate breeding cycles include marker assisted breeding—the identification and use of genetic markers, 
linked to alleles promoting favorable traits, to identify suitable progeny from crosses at a younger age and lower cost than phenotypically 
screening mature plants; genomic selection– the statistical prediction of quantitative from a genome-wide scan of genetic variants; and 
genetic modification– increasingly performed using the CRISPR/Cas technology
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In long-lived species such as forest trees, the potential advan-
tages of genomic selection are perhaps even greater, especially in 
combination with speed breeding approaches that can consider-
ably shorten the generation time of a crop (Hickey et al., 2019). 
However, its use has been limited by the prohibitive costs of 
obtaining the necessary training datasets (Hickey et al., 2017). 
Recently, methods such as the sequencing of pools of individuals 
with similar phenotypes (e.g. ash trees (Fraxinus excelsior) resistant 
to ash dieback, Stocks et al., 2019) have been shown to reduce 
costs and hence may enable the extension of genomic selection 
to such species.

2.2 | Conventional transgenic approaches

A more radical way to decrease breeding times is through the direct 
genetic modification (GM) of an individual, enabling the introduction 
of a desired gene (potentially sourced from an unrelated species) into 
an elite line without introducing unwanted genetic material. A typi-
cal approach is to use a plant pathogen, Agrobacterium, to carry the 
desired genetic material into a plant (Alok, Sharma, Kumar, Verma, 
& Sood, 2017). A common application of this approach has been to 
enrich the nutrient content of edible crops. For example, transgenes 
have been used to increase the uptake or synthesis of vitamin A, 
iron, and zinc in crops including rice, wheat, maize, and cassava 
(Kumar, Palve, Joshi, Srivastava, & Rukhsar., 2019); folate in rice; 
Omega-3 in oil seed rape (canola), and ascorbate in maize (Chen & 
Lin, 2013). Toxin-encoding genes from the bacterium Bacillus thur-
ingiensis (Bt) have also been inserted to generate resistance to insect 
pests in multiple crop species including cotton, maize, and auber-
gine (Abbas, 2018; Prodhan et al., 2018); and multiple Bt proteins 
have been stacked with no new evident risks to non-target insects 
(Romeis & Meissle, 2020). As of 2016, 185.1 million hectares or 
about 12% of global cropland (54% in low-income countries) have 
been planted with GM crops (Pellegrino, Bedini, Nuti, & Ercoli, 2018). 
Consumption of GM foods is generally considered safe (Nicolia, 
Manzo, Veronesi, & Rosellini, 2014; Ronald, 2011) with no greater 
risks than conventional food (Directorate-General for Research and 
Innovation (European Commission), 2010; National Academies of 
Sciences Engineering & Medicine, 2016), and GM crops have gener-
ally shown increased yields and reduced pesticide usage (Ahmad & 
Mukhtar, 2017; Klümper & Qaim, 2014).

The merits of transgenic technology, however, are partially over-
shadowed by its perceived harm to the environment. One issue 
is the possible transfer of the transgene to crop wild relatives by 
natural pollination (transgene escape) (Ahmad & Mukhtar, 2017; 
Arias & Rieseberg, 1994; Gilbert, 2013), or through the intermixing 
of GM and non-GM seeds via seed sharing between farmers (van 
Heerwaarden, Ortega Del Vecchyo, Alvarez-Buylla, & Bellon, 2012). 
Long-term monitoring of transgenes to study their impact on local 
ecology is currently limited, although recent studies highlight how 
the risks associated with any transgene need to be assessed sepa-
rately for each GM modified species since the ecological impact is 

likely to be influenced by the biology of the crop, wild species, and 
transgene (Ellstrand, 2018).

2.3 | Precision genome editing approaches

An alternative to conventional transgenic methods is the use of 
sequence-specific nucleases to perform targeted manipulation of 
precise locations within the genome to create desirable genetic vari-
ants in situ (Chen, Wang, et al., 2019; Hua et al., 2019). Zinc finger 
nucleases (ZFNs) and transcription activator-like effector nucleases 
(TALENs) have been applied to various crops to modify traits such as 
herbicide tolerance or disease resistance (Zhang, Massel, Godwin, & 
Gao, 2018), but currently the most efficient, flexible, and cheapest 
approach is the use of clustered regularly interspaced short palin-
dromic repeats (CRISPR) to guide editing by CRISPR-associated (Cas) 
enzymes (Zhang, Malzahn, Sretenovic, & Qi, 2019; Zhang, Massel, 
et al., 2018). CRISPR/Cas has been used to generate a range of modi-
fications within the genome, including knockouts (to disrupt gene 
function), insertions/replacements (to introduce new alleles or alter 
gene expression patterns), and base editing (to modify traits con-
trolled by single nucleotide variants or to alter RNA splicing) (Chen, 
Wang, et al., 2019; Zhang, Massel, et al., 2018). The precision and 
speed of these approaches has transformational promise for crop 
improvement (Jaganathan, Ramasamy, Sellamuthu, Jayabalan, & 
Venkataraman, 2018). They have already been applied to food and 
other crops to improve a range of different traits, including yield, 
quality (e.g. nutritional composition, digestibility, shelf-life), disease, 
insect and herbicide resistance, cold and drought tolerance, and 

Box 1 Engineering herbicide resistance in tomato 
and watermelon by CRISPR/Cas genome editing

A modified version of Cas9, an enzyme involved in bacterial 
immune responses (Deltcheva et al., 2011), can be used to 
directly alter genomic DNA to match an RNA template car-
rying a desirable alteration with high fidelity and efficiency 
(Komor, Kim, Packer, Zuris, & Liu, 2016). Acetolactate syn-
thase (ALS) is an enzyme involved in plant amino acid bio-
synthesis and is commonly targeted by herbicides, which 
inhibit its active site (Lonhienne et al., 2018). Mutated 
forms of the ALS gene encoding this enzyme confer resist-
ance to herbicides but it was difficult to breed into some 
crops by conventional means. By using a modified version 
of Cas9, researchers have been able to introduce single nu-
cleotide changes into the ALS genes of tomato (Shimatani 
et al., 2017) and watermelon (Tian et al., 2018), conferring 
heritable herbicide tolerance with no evidence that any 
off-target modifications have been introduced. The speed 
and precision of this approach has revolutionary potential 
for future crop improvement.
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nitrogen use efficiency (Chen, Wang, et al., 2019; Hu et al., 2015; 
Shimatani et al., 2017; Zhang, Massel, et al., 2018); a specific ex-
ample in watermelon and tomato is discussed in Box 1. Moreover, 
the ability to alter multiple genes simultaneously via multiplex edit-
ing and gene stacking (see above) is contributing to efforts to im-
prove complex quantitative traits such as durable disease resistance 
(Nelson, Wiesner-Hanks, Wisser, & Balint-Kurti, 2018) and yield 
(Chen, Wang, et al., 2019; Hua et al., 2019).

While initially this technology was mainly used in major crops, 
it is now being applied to minor crops as well. For example, ortho-
logues of genes known to be involved in tomato domestication and 
improvement have been modified to enhance productivity traits in 
groundcherry (Physalis pruinosa) (Lemmon et al., 2018). Meanwhile, 
a vigorous public debate between different countries is occurring 
about the correct regulatory approach for CRISPR-modified crops. 
European Union legislation treats single nucleotide edits comparably 
to the introduction of foreign DNA (Eriksson et al., 2020), resulting 
in reduced levels of patent filing compared with other parts of the 
world (Martin-Laffon, Kuntz, & Ricroch, 2019).

3  | ADVANCES IN IMPROVING THE 
USEFUL PROPERTIES OF FUNGI

Fungi are used by humans for their intrinsic properties (e.g. as food, 
medicines), as chassis for the production of endogenous and exog-
enous biomolecules, and as transformational agents in processes 
such as bread, alcohol, and cheese production (Prescott et al., 2018). 
Fungi with useful traits were initially stochastically selected from 
wild diversity, as the complex fungal life cycles and sexual incom-
patibilities were obstacles to deliberate breeding. For example, 
breeding the widely cultivated edible mushroom, Agaricus bisporus, 
was impossible before the discovery of new strains with compat-
ible breeding types in the late 1970s (Fritsche, 1983). Since then 
many hybrids have been bred and are being tested for their abil-
ity to make new forms of beer and biofuels (Alexander et al., 2016; 
Savoie, Foulongne-Oriol, Barroso, & Callac, 2013; Singh, Shwet, & 
Sharma, 2017).

In the last 15 years sequencing of fungal genomes and the de-
velopment of bioinformatics tools to predict biosynthetic pathways 
has improved our understanding of how the production of fungal 
secondary metabolites is regulated. This has increased our ability 
to produce fungal bioactive compounds (Nielsen et al., 2017), and 
driven new approaches for screening fungi for new useful products. 
For example, molecules that modify chromatin confirmation are now 
commonly used to induce expression of otherwise “silent” biosyn-
thetic pathways leading to the production of previously unknown 
secondary metabolites (Collemare & Seidl, 2019; Henrikson, Hoover, 
Joyner, & Cichewicz, 2009; Pfannenstiel & Keller, 2019). Alternatively, 
the OSMAC (one strain many compounds) framework uses multiple 
growth conditions to yield new compounds (Romano, Jackson, Patry, 
& Dobson, 2018). The ecological roles of fungal secondary metabo-
lites in microbial communities are also increasingly used to induce 

production of novel compounds (Knowles et al., 2019; Nielsen 
et al., 2017). For example, bacteria-fungi and fungi-fungi co-cultiva-
tion often yields new compounds with important antimicrobial prop-
erties, as recently shown for lagopodin B produced by Coprinopsis 
cinerea in the presence of bacteria (Stöckli et al., 2019), and for 
berkeleylactones produced when two extremophile Penicillium spe-
cies were grown together (Stierle et al., 2017). However, such in-
teractions may be restricted to specific bacterial and fungal species 
(e.g. Schroeckh et al., 2009), and hence this approach may prove dif-
ficult to implement in high-throughput platforms.

4  | INCRE A SING THE POOL OF GENETIC 
DIVERSIT Y TO E XPAND OPPORTUNITIES 
FOR INCORPOR ATING USEFUL TR AITS 
IN SOCIO -ECONOMIC ALLY IMPORTANT 
PL ANTS AND FUNGI

The approaches discussed above have improved the usefulness of 
plants and fungi to humans, but often at the price of narrowing their 
genetic diversity, making them more vulnerable to pests, diseases, 
and unpredictable climates. This recognition has led to the search 
for additional sources of genetic diversity that have the potential to 
enhance productivity, sustainability, and resilience of crops. Such 
genetically diverse materials may be directly bred into commercial 
lines or used for information and inspiration when designing custom 
genetic modifications.

For plants, much work has focused on the identification, con-
servation, and curation of plant genetic resources (PGR, defined as 
“genetic material of current and potential value”, CBD, 1992). Of 
the diversity of PGRs that have been recognized (Maxted, Hunter, 
& Ortiz Rios, 2020), the ones that contain the greatest wealth of 
genetic diversity for breeding are the crop landraces and crop 
wild relatives (CWR). Many CWR already possess potentially use-
ful traits, such as resilience to disease, drought, or salinity (Zhang, 
Li, et al., 2018). There are two broad conservation strategies, each 
comprising a range of techniques to conserve plant genetic diver-
sity (and defined by the CBD (2002): (1) in situ conservation of eco-
systems and natural habitats and the maintenance and recovery of 
viable populations of species in their natural surroundings, and, in 
the case of domesticated or cultivated species, in the surroundings 
where they have developed their distinctive properties; and (2) ex 
situ conservation of components of biological diversity outside their 
natural habitats – especially in seed banks, such as those maintained 
by CGIAR (Byerlee & Dubin, 2009), the Svalbard Global Seed Vault 
(Westengen, Jeppson, & Guarino, 2013), and Kew's Millennium Seed 
Bank for wild plant species (Liu, Breman, Cossu, & Kenney, 2018).

In the long-term, maintaining diversity in situ is fundamental to 
supporting food security (Dulloo, 2019). Conserving landraces and 
CWRs on-farm or in the wild allows the plants to adapt and evolve 
in their own niche environments and develop unique properties that 
make them major providers of genetic materials for use by breed-
ers and farmers. Although CWR diversity is found in numerous 
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protected areas, CWRs per se are rarely actively conserved (i.e. the 
populations are not actively managed to maximize the maintenance 
of genetic diversity) or made available to users. A more systematic, 
complementary approach to PGR conservation that includes active 
in situ/on-farm conservation has the potential to more than double 
the genetic diversity available to breeders and farmers for crop im-
provement (Dulloo, 2011; Maxted et al., 2020).

Initiatives such as “Adapting Agriculture to Climate Change” 
(Dempewolf et al., 2014) have helped plug gaps in ex situ CWR col-
lections, and ensure that seed material is curated and stored appro-
priately to safeguard its long-term viability. However, it is estimated 
that 8%–20% of angiosperm species produce desiccation-sensitive 
seeds that are recalcitrant to “standard” seed banking methods 
(Wyse & Dickie, 2017), hence alternative approaches such as cryo-
preservation (Li & Pritchard, 2009) and pollen storage are being de-
veloped. Overall, it is recommended that a combination of in situ and 
ex situ techniques are applied to each species to provide backup if 
one method fails (Dulloo et al., 2017).

CWRs and landraces often lack the necessary characterization 
and evaluation (C&E) data needed for their systematic utiliza-
tion in breeding programs (Dempewolf et al., 2017; FAO, 2017). 
Nevertheless, predictive characterization approaches that 
combine geospatial analyses together with environmental and 
agro-ecological data can support the selection of candidate ac-
cessions that are suitable for investigating a specific trait from 
uncharacterized germplasm (Thormann et al., 2016). They build 
on the hypothesis that different environments exert divergent 
selective pressures on plant populations, and thus populations 
growing in a specific environment will possess a suite of adap-
tive traits shaped by selection pressures unique to these environ-
ments. The potential for a trait to be present is enhanced by (1) 
matching of biotic and abiotic characteristics associated with a 
collection site; (2) ecogeographical information associated with a 
collection site; and (3) previously records of trait occurrence as-
sociated with a set of locations different from those where the 
germplasm being examined has been collected or observed. In 
each case a predictor is used to build a hypothesis that germplasm 
from a particular location will be genetically differentiated. One 
of the first systematic applications of this approach, the Focused 
Identification of Germplasm Strategy (FIGS) (Mackay & Street, 
2004; Street et al., 2008), applied the biotic and abiotic matching 
techniques mainly to major crops. Building on this, more recent 
studies using ecogeographical information or previously recorded 
C&E data have been developed and tested for their applicability 
to CWR (Thormann, 2012), exploring the so-called ecogeograph-
ical filtering and calibration methods (Thormann et al., 2014; 
Thormann et al., 2016). Although predictive characterization does 
not replace actual field trials, it considerably reduces the size of 
the trial required by reducing the set of candidate accessions 
which need to be screened before finding novel alleles for target 
traits; it has been used successfully in several species including 
barley (Endresen, 2010) and white clover (García Sánchez, Parra-
Quijano, Greene, & Iriondo, 2019).

5  | FUTURE DE VELOPMENTS
Many of the technologies discussed above are still relatively new 
but have the potential for further development. For example, ad-
vances in DNA synthesis and heterologous expression systems 
(Skellam, 2019) are providing new opportunities to explore fungal 
biodiversity for novel bioactive compounds and use fungi to produce 
them. The number of known fungal pathways remains limited with 
only 277 biosynthetic pathways characterized compared to 1,611 
bacterial ones (Kautsar et al., 2019). There is a clear need to further 
characterize fungal biosynthetic genes and link them to the fungal 
chemical landscape. In particular, bioinformatics tools dedicated 
to fungal genomes are needed to efficiently and accurately mine 
genomes.

Large-scale genomic studies are also needed to prioritize func-
tional studies and avoid studying already characterized biosynthetic 
pathways (Bushley & Turgeon, 2010; Chooi & Tang, 2012; Navarro-
Muñoz & Collemare, 2020). With increased numbers of characterized 
pathways, we may be able to produce new-to-nature natural prod-
ucts, such as biosynthetic enzymes engineered to perform chemical 
reactions that are difficult to obtain synthetically due to their spec-
ificity (Fürtges, Obermaier, Thiele, Foegen, & Müller, 2019), or pro-
duce higher yields of potentially useful compounds (Rebets, Brötz, 
Tokovenko, & Luzhetskyy, 2014). For example, the combination of 
biosynthetic genes from the autinoid pathway in Aspergillus nidulans 
and A. calidoustus (Valiante et al., 2017) has redirected the pathway 
toward the production of the insecticide calidodehydroaustin in the 
fermentable A. nidulans strain (Mattern, Valiante, Horn, Petzke, & 
Brakhage, 2017). Chimeric enzymes and combinatorial expression 
of biosynthetic genes can also result in novel derivatives of known 
compounds as shown for fungal macrolide lactones with potential 
anti-tumor, anti-malarial, and anti-bacterial activities (Xu, Jiang, 
Zhang, Ma, & Guo, 2014a; Xu, Zhou, et al., 2014) and fungal cyclode-
psipeptides with novel antiparasitic activity to treat, for example, 
the potentially fatal Chagas disease and Leishmaniasis (Steiniger 
et al., 2017). Indeed, combining genes from different pathways is a 
very promising approach to increase the diversity of chemicals pro-
duced by fungi (Frandsen et al., 2018; Li et al., 2018). Yet although 
scalable platforms for heterologous expression in fungal strains are 
becoming available (Harvey et al., 2018), optimization is needed to 
consistently reach high production levels. This will require not only 
improvement of the primary metabolism as already performed but 
also better coordination of the expression of biosynthetic genes and 
improved metabolic fluxes through better compartmentalization of 
biosynthetic steps.

While the use of genome editing tools such as the CRISPR/
Cas systems have great promise for improving traits in plants and 
fungi, there are still challenges arising, for example, from the low 
frequency of successful gene editing in somatic cells and the pre-
cision with which the desired modifications in the DNA sequences 
are achieved. Nevertheless, advances are continually being made, 
improving precision and efficiency (Bharat, Li, Li, Yan, & Xia, 2019; 
Hu et al., 2015; Hua et al., 2019; Kang et al., 2018; Shan & 
Voytas, 2018; Shimatani et al., 2017). Recent developments in the 



     |  415KERSEY Et al.

genome editing repertoire include (1) the development of novel 
RNA editing systems (Anzalone et al., 2019; Bharat et al., 2019) (al-
though the application of these in plants has yet to be realized); (2) 
the genetic engineering of the Cas9 enzyme to extend the range of 
target sites that can be edited (Niu et al., 2020); and (3) novel ap-
proaches that can achieve spatial (e.g. cell-, tissue- or organ-spe-
cific) and/or temporally localized modified genes by including 
tissue- or cell-specific promoters (e.g. CRISPR/TSKO (Tissue 
Specific Knock Out), Decaestecker et al., 2019; Ali, Mahfouz, & 
Mansoor, 2020). Examples of potential applications being pur-
sued include the development of more efficient biofuel crops. To 
achieve this the aim is to restrict the expression of genes involved 
in lignin production to xylem vessels where it is essential, while 
reducing lignin content in fibre cells (Liang et al., 2019) where it 
can decrease the efficiency of converting plant mass into energy. 
The recent identification of unique genomic characteristics of 
the way that CRISPR/Cas9 operates in filamentous fungi (Yamato 
et al., 2019), which are widely used in the bioprocessing, food, and 
fermentation industries, is likely to facilitate more flexible genome 
editing in these organisms as well.

In addition to breeding techniques that focus directly on genetic 
material, other approaches currently in development include selec-
tion for stable epigenetic modifications (Gallusci et al., 2017), uti-
lizing the microbiome of plants to increase their resilience (Carrión 
et al., 2019), and the production of hybrids at commercial scale for 
self-pollinating species (such as wheat) through the genetic modifi-
cation of genes controlling fertility (Gupta et al., 2019).

There is the further potential to combine genome editing tech-
niques with synthetic biology approaches to introduce traits that 
are entirely novel to a given species. For example, nitrogen-fix-
ing capabilities could be extended to new plant species by using 
CRISPR/Cas systems to insert synthetic DNA sequences (genes 
or regulatory elements) into their genomes (Chen, Wang, et al., 
2019), reducing the need for artificially fixed nitrogen (Wurtzel 
et al., 2019), while the efficiency of the photosynthetic cycle 
could be increased in common cereal crops by changing the 
pathway for carbon fixation (Ermakova, Danila, Furbank, & von 
Caemmerer, 2020). However, there are broad biological con-
straints upon these processes beyond the enzymatic repertoire, 
and these goals are unlikely to be realized in the near future. The 
use of genome editing for the de novo domestication of wild plants 
as potential novel crops has also been highlighted, and species that 
might be good candidates for such an approach have been pro-
posed (Fernie & Yan, 2019).

A recent report from the World Resources Institute concluded 
that “the case for using [genetic engineering] is compelling when 
the full range of potential gains and costs is taken into consider-
ation” (Searchinger et al., 2019). Nonetheless, public perception of 
GM crops remains poor in many countries, with limited scientific 
understanding amongst many of the public and the perception that 
GM crops are “unnatural” and therefore unsafe (Babar et al., 2020; 
McFadden & Smyth, 2019; McPhetres, Rutjens, Weinstein, & 
Brisson, 2019). Interestingly, conventional breeding in sweet potato 

has selected for genes introduced to the species by Agrobacterium in 
the wild (Kyndt et al., 2015), similarly to the way GM is performed 
in the laboratory, and overall, the evidence clearly suggests that 
the risk to the environment of a new variety should be consid-
ered primarily in light of its phenotype and not in the methodolog-
ical approach used to produce it (National Academies of Sciences 
Engineering Medicine, 2016). However, in some jurisdictions, the 
regulatory environment does not reflect the scientific consensus. 
For example, European Community law is heavily process-focused 
and is much more restrictive of the use of genetic modification than 
of untargeted mutagenesis (Anzalone et al., 2019; Callaway, 2018). 
An evidence-based regulatory approach is essential if the potential 
benefits of these technologies are to be realized.

Even with the use of genomic approaches, phenotyping is still 
necessary when exploring biological mechanisms, identifying marker 
loci, and confirming that the desired phenotype is achieved at the end 
of the process. Recent advances in automated phenotyping (which 
enable rapid and accurate screening of large numbers of plants) in-
clude remote sensing (at various scales), and the development of 
automated greenhouses and large growth chambers with sophisti-
cated climate control (Zhao et al., 2019). A common characteristic 
of these novel approaches is that they are extremely data-genera-
tive, leading to a growing interest in machine-learning techniques 
to assess and interpret their outputs (Mochida et al., 2018; Taghavi 
Namin, Esmaeilzadeh, Najafi, Brown, & Borevitz, 2018; Ziamtsov 
& Navlakha, 2019). One example is the phenotyping of root traits 
(e.g. quantifying root growth), which have historically been difficult 
to observe under realistic conditions (Chen, Palta, Wu, & Siddique, 
2019). Until recently this had been achieved by “shovelomics”, i.e. 
digging root systems out of the soil and visually assessing them 
(Trachsel, Kaeppler, Brown, & Lynch, 2011). The novel methods of 
phenotyping plant roots now being developed are likely to acceler-
ate the improvement of root traits and their inclusion in plant breed-
ing programmes (Tracy et al., 2020).

We can also expect a continued fall in the cost of genome se-
quencing, leading to the increased availability of high-quality refer-
ence genomes (e.g. of currently utilized plants and fungi, and their 
relatives), and large scale low coverage sequencing of, for example, 
progeny in breeding programmes, cultivars, landraces, CWRs, and 
wild populations. In seed and fungal biobanks, it is likely that an in-
creasing proportion of all material will be sequenced, establishing 
the relatedness between individuals (Singh et al., 2019) and the com-
pleteness of collections (Milner et al., 2019). This will enable the most 
appropriate material to be selected for novel phenotypic screening 
programmes and breeding schemes. DivSeek (https://divse ekintl.
org/), a global initiative bringing together most of the world's largest 
seed banks, aims to develop standards for the generation and cura-
tion of genotypic and phenotypic information and provide the link 
between plant breeders and public germplasm collections. The ob-
stacles to delivering this vision are as much sociological as they are 
technical, including the linkage of access to genetic material (and de-
rived information) to benefit sharing, and are being discussed in the 
context of the Convention on Biological Diversity (CBD), amongst 

https://divseekintl.org/
https://divseekintl.org/
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other forums (Williams et al., 2020). The failure to deliver expected 
direct economic benefits from the use of biodiversity to date may 
be due to defects in the model explicit in the CBD (whereby biodi-
versity conservation is effectively expected to pay for itself) (Laird 
et al., 2020) as well as in its implementation. Nonetheless, if these 
difficulties can be overcome, there is great potential for further uti-
lizing the global genetic diversity to advance the common good.
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