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ABSTRACT
The discrete kernel-based regression approach generally provides pointwise estimates
of count data that do not account for uncertainty about both parameters and re-
sulting estimates. This work aims to provide probabilistic kernel estimates of count
regression function by using Bayesian approach and then allows for a readily quan-
tification of uncertainty. Bayesian approach enables to incorporate prior knowledge
of parameters used in discrete kernel-based regression. An application was proposed
on count data of condition factor of fish (K) provided from an experimental project
that analyzed various pond management strategies. The probabilistic distribution
of estimates were contrasted by discrete kernels, as a support to theoretical results
on the performance of kernels. More practically, Bayesian credibility intervals of K-
estimates were evaluated to compare pond management strategies. Thus, similarities
were found between performances of semi-intensive and coupled fishponds, with for-
mulated feed, in comparison with extensive fishponds, without formulated feed. In
particular, the fish development was less predictable in extensive fishpond, depen-
dent on natural resources, than in the two other fishponds, supplied in formulated
feed.

KEYWORDS
Aquaculture; discrete kernel; fishpond; prior and posterior distributions;
uncertainty analysis

1. Introduction

Let (Xi, Yi)i=1,2,...,n ⊆ Nd × R be a sequence of i.i.d. random variables related by the
unknown count regression function (c.r.f.) m(·) = E(Y |X = ·) on a discrete support S,
including in the set Z of integers. Many works in the literature abound for parametric
and nonparametric modeling of the c.r.f. m. Nonparametric regression methods were
developed with the advantage to avoid any assumption on the form of the count data
distribution to estimate. As such, the kernel-based estimation is among the most popu-
lar smoothing methods since it is globally efficient and easy to implement [19]. Discrete
kernel regression approaches were adapted from continuous kernel ones to primarily
estimate the function m at each target point x ∈ S [3]. The accuracy of discrete kernel
regression estimators depends on choices of both a discrete kernel and a smoothing
bandwidth. Classical kernel-based estimation methods only provides pointwise values
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of kernel estimates, without taking into account any type of uncertainty and variabil-
ity in data and parameters. Considering the lack of information or wrong information
(uncertainty) on data and parameters or their heterogeneous nature (variability) will
enable to assess the reliability of pointwise kernel-based estimation. Only few ap-
proaches exist in the literature to quantify uncertainty about kernel-based estimates.
For instance, the imprecise functional estimation using maxitive kernels provides in-
terval range of continuous kernel-based estimates [13]. One well-recognized approach
to conduct uncertainty analysis is the Bayesian one, which is used to update the prior
knowledge of parameters into their posterior distributions by using the information
from the data. Bayesian (nonparametric) hierarchical models are also widely developed
to accomodate dependence in multivariate and longitudinal data collected in biomed-
ical studies [6] and aquatic sciences [15]; see also [2], for more details on bayesian
nonparametric models. To our knowledge, the development of Bayesian approach for
kernel-based estimators is restricted to bandwidth selection to obtain a better accu-
racy of the resulting estimates than the cross-validation procedure, in density kernel
estimation [4, 21] and nonparametric kernel regression [20].

This work is concerned with a larger investigation of the possibility that the Bayesian
approach provides to incorporate (informative or non-informative) prior knowledge of
parameters used in nonparametric discrete kernel-based estimation. The main objec-
tive of this work is to provide a probabilistic kernel estimation of c.r.f. m at each target
point x ∈ S, rather than just a point estimate. The Bayesian analysis thus enables to
provide 95% Bayesian credibility interval of kernel estimates of data. This work points
out also other practical advantages of Bayesian analysis in kernel-based estimation for
practitioners, such as to compare the performance of different kernel functions, as a
support to the theoretical results on their comparison.

We illustrate the method through an example in the context of an aquaculture
project that aimed to mobilize ecosystem services towards aqua-ecosystem (combining
productive system and its natural trophic web) to design a new aquaculture system
and to monitor performances. The study focused both on fish production supported by
formulated feed supplied and the ability of pond planted with macrophytes to improve
water quality. Fishpond performances were evaluated by collecting count data of the
evolution of fish in experimental ponds with some indicators of fish development. We
illustrate how combining kernel-based and Bayesian approaches improves the reliability
of fishpond performances by providing probabilistic distribution of estimates of count
data of a given indicator of fish development (K) and by improving estimates of K to
evaluate fish growth performances.

2. Discrete nonparametric kernel regression

Consider the sequence (Xi, Yi)i=1,2,...,n ⊆ Nd × R of i.i.d. random variables (r.v.) such
that

Yi = m(Xi) + ϵi, (1)

where m is the unknown c.r.f. on a discrete support S, defined as being the conditional
expectation of Y on X, and the ϵi’s are assumed to have zero mean and finite variance.
For a fixed point x ∈ S and a bandwidth parameter h > 0, the discrete nonparametric
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regression estimator m̂ of m is defined as

m̂(x) =

n∑
i=1

YiKernx,h(Xi)∑n
j=1Kernx,h(Xj)

=: m̂Kern,h(x), (2)

whereKernx,h is the discrete associated kernel and h = h(n) > 0 an arbitrary sequence
of smoothing parameters that fullfills limn→∞ h(n) = 0 [3]. The following section
provides a brief recall of the kernel method for estimating discrete functions on support
S ⊆ Z [11].

2.1. Generalities on discrete kernels

Definition. The discrete associated kernel Kernx,h in equation (2) is a probability
mass function associated with a r.v. Kx,h, i.e.

0 ≤ Kernx,h(y) = Pr(Kx,h = y) ≤ 1 and
∑
y∈Sx

Kernx,h(y) = 1,

on support Sx having its probability at target point x such that

Kernx,h(x) → Dx(x) = 1 as h → 0, (3)

where Dx is the Dirac type kernel. The idea is that the discrete associated kernel must
attribute the probability mass closest to one at target x ∈ S, while having a smoothing
parameter h > 0 to take into account the probability mass at points y ∈ Sx\{x} in the
neighbourhood of x. The following expressions of Kernx,h’s expectation and variance
result from Equation (3):

(E1) : E(Kx,h) = x+ a(x, h) and (E2) : Var(Kx,h) = b(x, h),

where both a(x, h) and b(x, h) tend to 0 as h goes to 0 [17]. The kernel function and
the bandwidth parameter are the two most important issues of the discrete associ-
ated kernel procedure, since they affect the accuracy of estimates and the degree of
smoothing.

Classes of kernels. Two classes of discrete associated kernels were proposed, de-
pending on whether they satisfy Equation (3) or not (Figure 1). For x in S, p in the
set N of nonnegative integers and h > 0, the first class of kernels contains discrete
symmetric triangular kernels Kernp;x,h on support Sp;x = {x, x ± 1, ..., x ± p} such
that

Kernp;x,h(y) =
(p+ 1)h − |y − x|h

(2p+ 1)(p+ 1)h − 2
∑p

k=0 k
h
=: Tp;x,h(y).

The mean of Kernp;x,h associated with the r.v. Tp;x,h is equal to x and its modal
probability and variance can be expressed as follows:

(E3) : Pr(Tp;x,h = x) = 1− 2hA(p)+O(h2) and (E4) : Var(Tp;x,h) = 2hV(p)+O(h2),
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with A(p) = p log(p + 1) −
∑p

k=1 log(k) and V(p) = {p(2p2 + 3p + 1)/6} log(p + 1) −∑p
k=1 k

2 log(k) [17].
The second class of kernels contains standard asymmetric kernels constructed from

usually discrete probability distributions (Table 1). They are similar to continuous
asymmetric kernels such as beta [5] and inverse and reciprocal inverse Gaussian kernels
[9]. The behaviour of discrete standard kernels are generalized through expressions
(E5)− (E6) of both their probability mass at target x and variance (Table 1).

Table 1. Summary of properties of discrete asymmetric standard kernels [17]

Discrete kernel Distribution Support Sx E(Kx,h) Var(Kx,h)

Poisson P(x+ h), with h > 0 N x+ h x+ h

Binomial B
(
x+ 1, x+h

x+1

)
, with h ∈ (0, 1] {0, 1, . . . , x+ 1} x+ h (x+ h)

(
1−h
x+1

)
Negative binomial NB

(
x+ 1, x+1

2x+1+h

)
, with h > 0 N x+ h (x+ h)

(
1 + x+h

x+1

)
Generalized properties

Modal probability (E5) : Pr(Kx,h = x) = (1− h2)Kernx;0(x) +O(h2)(∗)

Variance (E6) : Var(Kx,h) = VK(x) + hUK(x) +O(h2)(∗∗)

(∗) where
∑

y∈Sx\{x} Pr(Kx,h = y) = 1− (1− h2)Kernx;0(x) +O(h2) and Kernx;0(x) being the probability

at mode x when h → 0
(∗∗) the terms VK and UK depend on the discrete kernel
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Figure 1. Discrete symmetric triangular and asymmetric standard kernels on support Sx = {1, 2, . . . , 10}
with target point x = 5 and bandwidth parameter h = 0.1.

The main difference between those two classes of kernels is that the discrete stan-
dard kernels do not satisfy Equation (3), unlike the discrete symmetric triangular
kernels; but, the discrete standard kernels may be more efficient for estimating small
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or moderate sample sizes [11, 17]. Particularly, they can be less affected by boundary
bias effect.

Remark 1. To find the optimal h-value, the cross-validation is one of the main
method applied as an entirely data-driven procedure [14]. For discrete symmetric tri-
angular kernel estimators, the cross-validation procedure minimizes h while p ∈ N
remains fixed. In the literature, there is a gap in searching the potential pairs of
parameters (p, h) ∈ N \ {0} × (0,∞), which provide good quality of adjustment for
estimates.

2.2. Comparison of kernels

We now provide results on the comparison of discrete symmetric triangular kernels and
standard asymmetric kernels, details not presented in existing references on discrete
associated kernels.

Comparison of modal probabilities. First, we provide a result on the comparison
of modal probability of discrete symmetric triangular kernels with respect to parameter
p ∈ N.

Proposition 2.1. Consider any fixed x ∈ N and h > 0. Under the expression (E3),
for p ∈ N, the modal probability of discrete symmetric triangular satisfies:

Pr(Tp;x,h = x) ≥ Pr(Tp+1;x,h = x), as h → 0.

Thus, more discrete symmetric triangular kernels have smaller p-values more they
attribute an important probability mass at the target point as h → 0.

Comparison of variances. Similar to the previous part on comparison of modal
probabilities of discrete kernels, we provide a proposition on the variance of discrete
symmetric triangular kernels with respect to p ∈ N.

Proposition 2.2. Consider any fixed x ∈ N and h > 0. Under the expression (E4),
for p ∈ N, the variance of discrete symmetric triangular satisfies:

Var(Tp;x,h) ≤ Var(Tp+1;x,h), as h → 0.

Ultimately, next result compares discrete symmetric triangular kernels and standard
asymmetric kernels via their modal probability and variance.

Proposition 2.3. Consider (x, p) ∈ N×N and h > 0. As h → 0, the modal probability
and variance of discrete symmetric triangular (Tp;x,h) and standard kernels (Kx,h)
satisfy:

Pr(Tp;x,h = x) ≥ Pr(Kx,h = x) and Var(Tp;x,h) ≤ Var(Kx,h).

The ranking of modal probability and variance of discrete standard kernels were
already provided in [17] such that, as h → 0, Pr(Bx,h = x) ≥ Pr(Px,h = x) ≥
Pr(NBx,h = x) and Var(Bx,h) ≤ Var(Px,h) ≤ Var(NBx,h).

Proofs of Propostitions 2.1 to 2.3 are postponed to Appendix.

5



2.3. Comparison of regression estimators

Previous results enable to contrast mean integrated squared error (MISE) of m̂Kern,h

by the different discrete kernels, as h → 0. To this end, we consider the following
expressions of m̂Kern,h’s bias and variance such that, as h → 0,

Bias{m̂Kern,h(x)} =

{
m(2)(x) + 2m(1)(x)

(
f (1)

f

)
(x)

}
V ar(Kx,h)

2
+O

(
1

n

)
+ o(h),

and

Var{m̂Kern,h(x)} =
Var(Y |X = x)

nf(x)
{Pr(Kx,h = x)}2 + o

(
1

n

)
,

where f is the probability mass function of r.v. X and, f (1), m(1) and m(2) are finite
differences of f and m [3]. The expression of m̂Kern,h’s variance traduces that as n
increases, the variance term tends to 0 since it is penalized by the factor 1/n. As
n → ∞ and h → 0, the decrease in m̂Kern,h’s variance term leads to considering
mainly the influence of m̂Kern,h’s bias term on approximate mean integrated squared
error (AMISE) such that we obtain

MISE(m̂) =
∑
x∈N

Bias2{m̂(x)}+
∑
x∈N

Var{m̂(x)} = AMISE(m̂) + o

(
h2 +

1

n

)
.

It can be seen that the estimator m̂ using discrete symmetric triangular kernels is con-
sistent, i.e AMISE(m̂T,p,h) goes to 0 since Var(Tp;x,h) → 0 as h → 0. At the opposite,
the estimator m̂ using discrete standard kernels is non-consistent since Var(Kx,h) does
not tend to as h → 0. However, this theoretical drawback of discrete standard ker-
nel estimators is balanced by their interesting features in small/medium samples. The
comparison of variances of discrete symmetric triangular (T) and standard kernels (K)
in the Proposition 2.3 results in the following inequality about AMISE of regression
estimators m̂, as h → 0,

AMISE(m̂T,p,h) ≤ AMISE(m̂K,h).

On the basis of Propositions 2.1 and 2.2, the function p 7→ AMISE(m̂T,p,h) in Equation
(4) is increasing, for h fixed and h → 0, such that discrete symmetric triangular kernels
with p = 1 are practically recommended. The case p = 0 coincides with Dirac type
kernel.

3. Bayesian inferences

Bayesian point of view. Let (xi, yi), i = 1, 2, ..., n be i.i.d. bivariate observations and
let ϵi be i.i.d. residuals following the Gaussian distribution N (0, σ2) with mean zero
and constant variance σ2. Nonparametric kernel inferences on the c.r.f. m require an
optimization step to find the point value of parameters involved in kernel estimation,
such as h, p and σ2. By contrast, optimization has nothing to do with inferences in
the Bayesian context. The Bayesian treatment of a model only relies on the theory
of probability. For instance, by simply considering the parameter h as random and
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assigning a prior probability density function to it, the Bayesian approach enables us
to express the posterior probability distribution of the parameters h and σ2 given the
observed data yn.

Consider the following expression of the model in equation (1) given by:

Yi −m(Xi) ∼ N (0, σ2).

Let θ denote the vector of parameters involved in kernel-based estimation. The likeli-
hood function for the set of observations y1, y2, . . . , yn given parameter θ is

L(y1, y2, . . . , yn|θ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

{yi − m̂(xi)}2
]
. (4)

For the nonparametric estimator m̂Kern,h using binomial kernel with h ∈ (0, 1] and
Poisson kernel with h > 0, we assume a (non-informative) uniform prior on (0, 1], which
corresponds to a beta prior distribution B(α, β) with positive parameters α = β = 1.

For nonparametric estimator m̂Kern,h using discrete symmetric triangular kernels,
continuous and discrete non-informative uniform priors are assumed for h > 0 and
p ∈ N \ {0}, respectively. Particularly, one objective is to investigate the variations
of h according to p since until now these parameters are chosen independently from
each other. Without loss of generality, Gamma(g1, g2) density, with g1 = g2 = 0.001,
is considered for prior of precision τ = 1/σ2 since it is a natural conjugate distribution
for the variance in a Gaussian likelihood model. The set of parameters considered
is either the triplet (h, p, τ) or the pair (h, τ), when using either discrete symmetric
triangular kernels or binomial and Poisson kernels, respectively.

The JAGS software. The estimation of the posterior p.d.f. is realized by means
of the Markov Chain Monte Carlo (MCMC) algorithms [7, 8] using the JAGS soft-
ware (http://mcmc-jags.sourceforge.net; release 3.4.0;[1]) through the rjags package
(www.Rproject.org;[16]). JAGS only requires the declaration of the Bayesian model,
which consists of the prior density of unknown variables, the sampling distributions
relating the data and the variables and the deterministic equations linking the vari-
ables.

Details on expressions of prior distributions of parameters h and σ2 and on MCMC
sampling procedure within the framework of kernel estimation can be found in [18].

4. Application and results

4.1. Experimental design and datasets

Our case study is an experimental design to assess the impact of a formulated feed sup-
plied on fishpond. We compared the fish growth performances between three different
treatments.

Experimental data were collected in IMTA EFFECT Project (Integrated Multi
Trophic Aquaculture for EFFiciency and Environmental ConservaTion). Different fish
species were reared together in each fishpond: roach (Rutilus rutilus), common carp
(Cyprinus carpio) and perch (Perca fluviatilis). The choice of these species was based
on the complementarity of their trophic level and behavior in order to maximize use of
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natural resources. Each experimental pond had an area of 500 m2 and two replicates
of each treatment were done (Figure 2):

• the first treatment represented extensive fishponds (No508 and No509) with a
low fish density and fishes ate only natural biomass produced in the fishpond
itself from nutrients available in the water.

• the second treatment represented semi-intensive fishponds (No504 and No505)
with a fish density equivalent to the double of the previous treatment. Fish were
fed with a commercial formulated feed on the basis of carp requirements (in
quantity and quality). Formulated feed was issue from a unique batch to be
sure that the same formula and the same raw material was used during all the
experiment.

• the third treatment called “coupled” was composed of fishponds (No502 and
No507), similar to the semi-intensive fishponds described above, associated to a
pond of a similar size, planted with macrophytes. It was expected that plants
play a role in purification of the water and as support for biodiversity. A water
pump was set to circulate water between fishpond and planted pond (Figure 2).

Separated analyses were conducted in each pond, for the experimental design was not
the same.

Figure 2. Experimental design of fishpond systems.

Throughout this study, we only consider carps. At the beginning of the experiment,
the sample of carps stocked in each fishpond was assumed to be similar and repre-
sentative from a total population of carps. The number of carps was observed and
indicators of fish growth performances were measured, at the beginning and the end
of the experiment (from March to December 2016). Fish weight (w in gram) and length
to caudal fork (l in centimeter) were measured for each fish individually and the con-
dition factor K was calculated as K = w/l3 (without unit). The condition factor K is
an indicator of body shape, and gives information on the nutritional status of the fish:
higher the value of K is and more the fish has a round shape, meaning that resources
in its environment were sufficient for its development. At the end of the experimental
time, the count data distribution of the condition factor of carps was compared be-
tween two replicates within the same treatment. The values of K are classified in 4
categories (1 : 1.5 < K ≤ 2, 2 : 2 < K ≤ 2.5, 3 : 2.5 < K ≤ 3, 4 : 3 < K ≤ 3.5). The
K-classes were set to obtain an homogeneous repartition of number of fish similar to
each fishpond. For each fishpond, the count dataset of carps (with sample size around
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one hundred) was randomly selected at the end of the experiment (Table 2). Thus, we
were concerned with the sequence of K-class (xi) and observations of number of carps
(yi) in each class, i = 1, . . . , nK , nK = 4, to estimate c.r.f. m.

Table 2. Samples of carps randomly selected in each experimental
fishpond and replicate from the total population of carps, at the end of
the experiment. The size N of each sample was around one hundred.

Observed numbers of carps (yi) per K-class in fishponds

K-class
Extensive Semi-intensive Coupled

(xi) No508 No509 No504 No505 No502 No507

1 6 2 12 0 1 1
2 68 54 21 16 31 20
3 31 45 71 89 72 83
4 0 1 18 9 3 9

Total N 105 102 122 114 107 113

4.2. Results

We used results obtained from the extensive fishpond No509 to illustrate our approach.
We presented descriptive statistics of estimated number of carp fish-species at har-
vesting. We provided descriptive statistics of discrete kernel estimates using Bayesian
approach (Table 3). Performance of discrete kernel regression estimators m̂Kern,h of
observations yi of number of carp fish-species at harvesting was assessed using the root
mean squared error (RMSE) such as

RMSE =

√√√√ 1

nK

nK∑
i=1

{m̂Kern,h(xi)− yi)},2

with xi being the K-classes and nK = 4 their total number.

4.2.1. Choices of parameters for discrete symmetric triangular kernels

The discrete kernel estimation using Bayesian approach provided joint and marginal
posterior probability density functions (p.d.f.) of parameters (Figure 3). This was
particularly informative when using discrete triangular symmetric kernels to point
out the behavior of parameter p ∈ {1, 2, 3, 4, 5} according to parameter hBayes > 0.
Joint distributions showed that the parameter p was highly correlated to bandwidth
parameter hBayes > 0 and precision parameter τ > 0. The marginal posterior mode
of p was at p = 1. A strong negative linear correlation was found between values of p
and h (correlation coefficient ρ = −0.99). Hence, a similar quality of fit was obtained
by different pairs of parameters values, e.g. the pairs (p = 1, hBayes-mean ≈ 0.55),
(p = 2, hBayes-mean ≈ 0.45), (p = 3, hBayes-mean ≈ 0.40) (Figure 3). The correlations
between parameters p and τ (ρ = 0.59), on one side, and h and τ (ρ = −0.55), on
other side, appeared to be slightly weaker than between parameters p and hBayes.

In what follows, we applied the semiparametric estimation-procedure using discrete
symmetric triangular kernel with p = {1, 2} in comparison with asymmetric Poisson
and binomial kernels.
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Figure 3. Joint and marginal posterior distributions of parameters p ∈ {1, 2, 3, 4, 5}, hBayes > 0 and
τ (tau) > 0 involved in the discrete symmetric triangular kernel estimation using Bayesian approach, for
count data distributions of carps per K-class in the extensive fishpond No509.

4.2.2. Probabilistic kernel estimates of count data

As expected, incorporating Bayesian approach with kernel-based regression enabled
to provide probabilistic kernel estimates of number of carps in each K-class, which
is helpful to visualize the uncertainty and/or reliability linked to the use of a given
discrete kernel (Figure 4). The p.d.f of Bayesian kernel-based estimates had a sym-
metric shape when using discrete triangular kernels (Figure 4). In addition, the p.d.f.
of Bayesian kernel estimates had generally higher modal probabilities than when us-
ing the other discrete kernels, for each K-class. That indicated a high reliability of
estimates with reduced count uncertainty. The discrete symmetric triangular kernel
regression with p = 1 using Bayesian approach barely took into account any uncer-
tainty, consequentially the means of the p.d.f. of kernel estimates was almost equal to
pointwise observations for each K-class (Table 3). The discrete symmetric triangular
kernel regression with p = 2 using Bayesian approach enabled to take into account
more uncertainty than with p = 1. However, kernel-based estimates were affected
by boundary bias, in particular with p = 2, in the sense of attributing probability
mass at points outside the support S = N of the count data to estimate. Thus, for
K-class= 1 and p = 2, the discrete symmetric triangular kernel Kernp=2;x=1,h had
support Sp=2,x=1 = {−1, 0, 1, 2, 3} * N, which resulted in negative estimated frequen-
cies when incorporating Bayesian approach (e.g., see the K-class= 4, Table 3). A
solution was proposed through a modified version p0 of the parameter p ∈ N\{0} [12],
but we did not illustrate this solution in this work. This did not change the sense of
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our results.
The p.d.f. of Bayesian kernel estimates had an asymmetric shape when using Poisson

and binomial kernels (Figure 4). By using these two discrete kernels, the obtained
results obtained were generally less reliable (traduces by smaller values of probability
density) than those obtained by using discrete symmetric triangular kernels. Poisson
and binomial kernels were not affected by boundary bias effect, as it was defined above
for discrete symmetric triangular kernels, since they have support Sx ⊆ N, for each
K-class. A global bias reduction was proposed in the literature when using binomial
kernel but we did not illustrate it in this study [10].
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Figure 4. Marginal posterior probability density functions (p.d.f.) of discrete kernel-estimates of count data
distributions of carps per K-class obtained in the extensive fishpond No509

4.2.3. Bayesian credibility intervals

The RMSE criterion was calculated between observations and mean values of Bayesian
kernel estimates for count data of fishpond No509 (Table 3). According to the previous
results, using discrete symmetric triangular kernels provided most accurate results in
term of RMSE. Except for the discrete symmetric triangular kernel with p = 1, the
calculated RMSE was smallest when using the discrete symmetric triangular kernel
with p = 2. Then, the discrete kernel regression estimator incorportating Bayesian
approach provided smaller RMSE when using the binomial kernel than the Poisson
kernel.

The discrete kernel regression estimator incorportating Bayesian approach enabled
to obtain variation ranges of the total number of observations n = 102, by summing
up the upper and lower limits of the 95% Bayesian credibility interval CI95% of es-
timates. The estimated total number of observations n̂ stayed within the intervals
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[70; 141] and [17; 115], using binomial and Poisson kernels, respectively. According to
previous comments, the total number of observations barely had any uncertainty using
discrete symmetric triangular kernel with p = 1 ( n̂ ∈ [101; 102]), while using discrete
symmetric triangular kernel with p = 2 provided a variation range that was biased by
negative estimates at K-class= 4 ( n̂ ∈ [92; 112]).

Table 3. Main statistics of Bayesian posterior estimates of count data of carps per K-class in the extensive
fishpond No509. Statistics of marginal posterior distribution of bandwidth parameter are in parenthesis.

pond No509

K-class No of Poisson kern. Symm. triang. kern. p = 1

obs. mean CI95% mean CI95%
(hBayes = 19.5) (hBayes ∈ [0.50; 48.19]) (hBayes = 0.5508) (hBayes ∈ [0.5504; 0.5511])

1 2 13.5 [4.5; 29.6] 2.0 [1.8; 2.1]
2 54 13.0 [4.5; 29.6] 54.0 [53.8; 54.1]
3 45 12.2 [4.4; 28.9] 45.0 [44.9; 45.1]
4 1 11.5 [4.3; 26.7] 1.0 [0.9; 1.1]

RMSE 27.4 0

K-class No of Binom. kern. Symm. triang. kern. p = 2

obs. mean CI95% mean CI95%
(hBayes = 0.29) (hBayes ∈ [0.01; 0.84]) (hBayes = 0.459) (hBayes ∈ [0.457; 0.462])

1 2 27.3 [19.6; 46.3] 3.6 [1.2; 6.1]
2 54 42.6 [39.4; 46.0] 52.7 [50.1; 55.2]
3 45 24.4 [7.6; 30.7] 45.9 [44.1; 47.7]
4 1 13.5 [3.7; 18.2] −0.2 [−2.8; 2.6]

RMSE 18.4 1.3

The discrete kernel regression estimator incorportating Bayesian approach was ap-
plied to the other fishponds. A similar behavior as in Figure 3 was generally observed
for marginal distributions of parameters p ∈ {1, 2, 3, 4, 5} and h > 0 involved in discrete
symmetric triangular kernels. We were particularly interested in discrete symmetric
triangular kernel with p = 2, since using Poisson and binomial kernels provided lower
performances and discrete symmetric triangular kernel with p = 1 did not enable to
take into account dispersion in observed counts. Table 4 presents means and 95th
percentile of Bayesian posterior credibility intervals resulting from using discrete sym-
metric triangular kernel with p = 2. One could also observe that the boundary bias
affected the estimated number of carp fish-species for K-class= 4 for fishponds No508
- No509 and for K-class= 1 for fishponds No504 - No505 and No502 - No507. The bias
effect resulted in negative values of the lower limit of confidence intervals. Finally, the
quality of adjustment varied according to observed count data of each fishpond: the
smallest RMSE was obtained for fishpond No509.

5. Interpretations

Incorporating uncertainty about parameters via Bayesian analysis enabled to eval-
uate the reliability linked to use of a given discrete kernel in nonparametric kernel
regression. Discrete symmetric triangular kernel with p = 2 appeared as a compro-
mise between discrete symmetric triangular kernel with p = 1 that did not allow to
incorporate any uncertainty of parameter h > 0 and Poisson and binomial kernels that
had a quality of adjustment not sufficiently reliable and accurate. By using discrete
symmetric triangular kernel with p = 2, the 95% Bayesian CI generally contained ob-
served count data of carps (Table 4). These CI were larger for the modal K-class: that
concerned the K-class= 3 for pairs of fishponds No502 - No507 and No504 - No505, and
the K-class= 2 for fishpond No508. However, estimates of number of carps in K-class
at boundary values of CI were affected by bias effect. The most accurate estimation
were obtain for fishpond No509, which also had the smallest RMSE in comparison
with the other fishponds.
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Table 4. Comparison of posterior means and 95% Bayesian credibility intervals (CI) of estimated

count data distributions of carps per K-class in all fishponds, by aplying the discrete kernel regression
estimator using symmetric triangular kernel with p = 2 .

K-class
Extensive

pond No508 pond No509
Number of observations Bayesian estimates Number of observations Bayesian estimates

mean CI95% mean CI95%
1 6 14.1 [6.5; 34.5] 2 3.6 [1.2; 6.1]
2 68 60.0 [27.2; 73.8] 54 52.7 [50.1; 55.2]
3 31 34.4 [26.6; 37.6] 45 45.9 [44.1; 47.7]
4 0 −2.0 [−14.5; 31.8] 1 −0.2 [−2.8; 2.6]

RMSE 6.0 1.3

Semi-intensive
pond No504 pond No505

Number of observations Bayesian estimates Number of observations Bayesian estimates
mean CI95% mean CI95%

1 12 12.8 [−5.5; 40.6] 0 0.9 [−25.9; 43.7]
2 21 28.1 [25.5; 31.8] 16 25.8 [23.1; 30.1]
3 71 54.9 [23.7; 78.6] 89 66.1 [18.7; 100.3]
4 18 29.2 [22.2; 40.3] 9 25.4 [14.7; 43.7]

RMSE 10.4 14.9

Coupled
pond No502 pond No507

Number of observations Bayesian estimates Number of observations Bayesian estimates
mean CI95% mean CI95%

1 1 −0.9 [−15.3; 33.6] 1 1.3 [−21.9; 42.5]
2 31 35.2 [27.0; 39.0] 20 27.7 [27.0; 29.1]
3 72 62.1 [27.4; 78.6] 83 64.2 [19.7; 92.8]
4 3 12.4 [2.9; 34.9] 9 23.4 [13.1; 42.9]

RMSE 7.2 12.4

Figure 5. The 95% Bayesian credibility intervals (CI95%) of the kernel estimates of counts data (carps) per
K-class in all fishponds. The discrete symmetric triangular kernel with p = 2 was used.

Similarities between replicates within the same fishpond (coupled and semi-
intensive) were pointed out through overlapping of Bayesian CI of the kernel esti-
mates of count data (Figure 5). For semi-intensive and coupled fishponds at harvest-
ing, kernel-based estimates of the number of carp counted in each K-class were similar
with a maximum amount of carps in the K-class= 3. Nevertheless, there was a sig-
nificant amount of fish belonging to the three other K-classes, particularly for the
fishpond No504 belonging to the semi-intensive fishpond. Thus, fish fed with formu-
lated feed had a relatively high value of K. This is in accordance with the fact that
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K is a synthetic factor representing fish nutritional status.
For the extensive fishpond, at harvesting, count data distributions of carps for the

two fishponds had a maximum amount of carps belonging to the K-class= 2. It is
worth noting that no carp had its condition factor belonging to the K-class= 4 for
fishpond No508 and one carp had its condition factor belonging to this K-class for
fishpond No509. The fish development in extensive fishpond depends on natural re-
sources available that makes it less predictable than the fish development in the two
other fishponds supplied in formulated feed. That was traduced by differences between
the count data of carps in K-classes of each replicate within the extensive fishponds.
The 95% Bayesian CI of kernel-based estimates of count data in fishponds No508 and
No509 did not overlap for K-class= {1, 3} (Table 4 and Figure 5).

Note finally that the 95% Bayesian CI of kernel-based estimates of count data within
extensive fishpond No509 did not overlap with those obtained in semi-intensive and
coupled fishponds, particularly for K-classes= {2, 4} (Table 4).

6. Concluding remarks

Bayesian approach enables to incorporate prior knowledge of parameters used in non-
parametric discrete kernel-based approach to provide posterior probability distribu-
tion of estimates instead of classical pointwise results. To use together Bayesian and
kernel-based approaches is useful to assess the reliability of estimates by assessing how
uncertainty in parameters estimates propagate to results. Moreover, the Bayesian ap-
proach would eventually allow to incorporate additional sources of information in the
analysis through the use of informative priors. Depending on the research purpose,
the judicious application of Bayesian approach offers a novel type of analysis in the
portfolio of practitioners, that now has the opportunity to choose between the pure
frequentist approach and the Bayesian approach for continuous and discrete kernel
estimation.

Illustrative examples also contrasted the performance of different kernel functions,
as a support to theoretical results on comparison of discrete kernels. Thus the discrete
symmetric triangular kernel with parameter p = 1 provides an accurate estimation
but barely integrates uncertainty, while the discrete symmetric triangular kernels with
parameter p = 2 provides less accurate estimates but with the advantage to better
integrate uncertainty. In addition, providing credibility intervals of pointwise kernel
estimates enables to assess the performances of fishpond via hypotheses on the evo-
lution of the number of fish from the beginning to the end of considered experiment.
In our case study, the fish development was found to be less predictable in extensive
fishpond, dependent on natural resources, than in the two other fishponds, supplied
in formulated feed.

Research prospects would consist of performing a Bayesian nonparametrical hier-
archical modeling with nonparametric kernel estimators, if data are collected under
the same experimental design. A Bayesian risk analysis would be also conducted to
investigate the probability of an undesirable event in discrete nonparametric kernel
estimation of count data. For instance, one should be able to estimate the probabil-
ity P (X < xthreshold) that the realization of a count variable X does not exceed a
threshold value xthreshold.

14



Acknowledgments

The dataset was obtained in the IMTA-Effect project funded by Agence Nationale de
la Recherche (ANR, France grant ANR-15-COFA-0001) in the framework of ERANET
COFASP.

Appendix

Proof of Proposition 2.1

Let us express the difference

Pr(Tp;x,h = x)− Pr(Tp+1;x,h = x) = 2h{A(p+ 1)−A(p)}.

To establish this proof, we just show that the function A(p) is increasing with respect
to p ∈ N. One has

A(p+1)−A(p) = (p+1) log(p+2)−p log(p+1)− log(p+1) = (p+1) log
(p+ 2

p+ 1

)
> 0.

�

Proof of Proposition 2.2

Let us express the difference

Var(Tp+1;x,h)−Var(Tp;x,h) = 2h{V (p+ 1)− V (p)}+O(h2).

To establish this proof, we show that the function p 7→ V (p) is increasing. One has

V (p+ 1)− V (p) =
(p+ 1){2(p+ 1)2 + 3(p+ 1) + 1}

2
log(p+ 2)

−p(2p2 + 3p+ 1)

2
log(p+ 1)− 3(p+ 1)2 log(p+ 1)

=
(p+ 1)(2p2 + 7p+ 6)

2
log(p+ 2)− (p+ 1)(2p2 + 7p+ 6)

2
log(p+ 1)

=
(p+ 1)(2p2 + 7p+ 6)

2
log

(
p+ 2

p+ 1

)
> 0.

�
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Proof of Proposition 2.3

Comparison of modal probabilities We express the ratio of modal probabilities
of kernels in (E3) and (E5), by using a Taylor expansion as h → 0, such that:

r1(x) =
Tp;x,h(x)

Kx,h(x)
≈ 1− 2hA(p)

(1− h2)K(x; 0)(x)
=

1− 2hA(p)

K(x; 0)(x)
+O(h2),

where r1(x) → {K(x; 0)(x)}−1 and, particularly, r1(0) → 1 as h → 0. In addition,
we show hereafter that the function x ∈ N 7→ r1(x) is increasing, for each discrete
standard kernel.

For the Poisson kernel, by using Taylor expansion as x → ∞, we get

ln

{
r1(x+ 1)

r1(x)

}
≈ ln

{
K(x; 0)(x)

K(x+ 1; 0)(x+ 1)

}
= 1−x ln

(
1 +

1

x

)
= 1−x

(
1

x
− 1

2x2

)
> 0.

Hence, we have both r1(x + 1) ≥ r1(x) and r1(0) → 1 as h → 0. Thus, we get
Pr(Tp;x,h = x) ≥ Pr(Px,h = x) as h → 0, with Px,h being the r.v. associated with the
Poisson kernel.

For binomial kernel, we get

ln

{
r1(x+ 1)

r1(x)

}
≈ ln

{(
x

x+ 1

)x(x+ 2

x+ 1

)(x+1)
}

= (x+ 1)

(
1

x+ 1
− 1

2(x+ 1)2

)
− x

(
1

x
− 1

2x2

)
=

1

2x(x+ 1)
> 0.

That results in Pr(Tp;x,h = x) ≥ Pr(Bx,h = x) as h → 0, with Bx,h being the r.v.
associated with the binomial kernel.

Finally, denoting NBx,h the r.v. associated with the negative binomial kernel, we
also obtain Pr(Tp;x,h = x) ≥ Pr(NBx,h = x) as h → 0 since

ln

{
r1(x+ 1)

r1(x)

}
≈ ln

{(
x+ 1

2x+ 1

)x+1(2x+ 3

x+ 2

)x+2
}

= (x+ 2) ln

(
1− 1

2(x+ 2)

)
− (x+ 1) ln

(
1− 1

2(x+ 1)

)
+ ln(2)

≈ ln(2) > 0.

Comparison of variances We study the ratio

r2(x) =
Var(Tp;x,h)
Var(Kx,h)

.

As the variance of discrete symmetric triangular kernel at the numerator of r2 is
independent on x, for each discrete standard asymmetric kernel, we get

r2(x+ 1)

r2(x)
=

Var(Kx,h)

Var(Kx+1,h)
.
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Hereafter, we show that the function x ∈ N \ {0} 7→ r2(x) is decreasing and less than
1 by using the expression of Tp;x,h’s variance in (E4).

For the Poisson kernel, one has directly r2(x+ 1)/r2(x) = (x+ h)/(x+ 1 + h) < 1.
Moreover, for 0 < h < 1 and h → 0, we get r2(1) = 2h/(1 + h)V (p) + O(h2) <
V (p)+O(h2) ≤ 1 since V (1) = log(2) < 1, p ∈ N. Thus, we have shown that r2(x) ≤ 1
and Var(Tp;x,h) ≤ Var(Px,h), as h → 0.

For the binomial kernel, by using a Taylor expansion as x → ∞, we successively
obtain

ln

{
r2(x+ 1)

r2(x)

}
= ln

(
x+ h

x+ 1 + h
× x+ 2

x+ 1

)
= ln

(
1 +

1

x+ 1

)
− ln

(
1 +

1

x+ h

)
≈ 1

x+ 1
− 1

x+ h
< 0,

resulting in r2(x+ 1)/r2(x) < 1. For any p ∈ N, we then get

r2(1) =
4h

1− h2
V (p) +O(h2) < V (p) +O(h2), 0 < h <

√
5− 2,

with V (p) < 1 at p = 1. Hence, we get Var(Tp;x,h) ≤ Var(Bx,h), as h → 0.
Similarly, for the negative binomial kernel, we show that Var(Tp;x,h) ≤ Var(NBx,h),

as h → 0. To this end, as x → ∞, we show that

ln

{
r2(x+ 1)

r2(x)

}
= ln

 (x+ h)
(
1 + x+h

x+1

)
(x+ 1 + h)

(
1 + x+1+h

x+2

)


= ln

(
1 +

1

x+ 1

)
− ln

(
1 +

1

x+ h

)
− ln

(
1 +

1

2x+ 1 + h

)
− ln(2)

≈ 1

x+ 1
− 1

x+ h
− 1

2x+ 1 + h
− ln(2) ≤ 0, for 0 < h ≤ 1.

Moreover, for any p ∈ N, we obtain

r2(1) =
4h

(1 + h)(3 + h)
V (p) +O(h2) < 1 +O(h2).

�
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