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Abstract

Marine organisms show population structure at a relatively fine spatial scale, even in open

habitats. The tools commonly used to assess subtle patterns of connectivity have diverse

levels of resolution and can complement each other to inform on population structure. We

assessed and compared the discriminatory power of genetic markers and otolith shape to

reveal the population structure on evolutionary and ecological time scales of the common

sole (Solea solea), living in the Eastern English Channel (EEC) stock off France and the UK.

First, we genotyped fish with Single Nucleotide Polymorphisms to assess population struc-

ture at an evolutionary scale. Then, we tested for spatial segregation of the subunits using

otolith shape as an integrative tracer of life history. Finally, a supervised machine learning

framework was applied to genotypes and otolith phenotypes to probabilistically assign

adults to subunits and assess the discriminatory power of each approach. Low but signifi-

cant genetic differentiation was found among subunits. Moreover, otolith shape appeared to

vary spatially, suggesting spatial population structure at fine spatial scale. However, results

of the supervised discriminant analyses failed to discriminate among subunits, especially for

otolith shape. We suggest that the degree of population segregation may not be strong

enough to allow for robust fish assignments. Finally, this study revealed a weak yet existing

metapopulation structure of common sole at the fine spatial scale of the EEC based on

genotypes and otolith shape, with one subunit being more isolated. Our study argues for the

use of complementary tracers to investigate marine population structure.
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1. Introduction

Recent advances suggest that, even in open habitats, populations of marine fish are commonly

structured at relatively fine scales [1–3]. The degree of connectivity varies along a continuum

of population segregation, from complete mixing (i.e. panmixia) to full isolation [4–6]. Some-

where in between, metapopulations display varying degrees of internal connectivity [1]. Mech-

anisms underlying the spatial structure of marine fish are (i) biophysical processes involved in

egg and larval dispersal patterns [7,8] and (ii) post-larval (i.e. juvenile and adult) movements

related to homing vs straying behavior and migration strategies [9]. The paradigm suggesting

that larval dispersal acts as the main driver of population structure and connectivity [7] has

been revised such that a significant contribution of adult-mediated dispersal is acknowledged

[10]. Populations of marine resources experience many pressures among which habitat degra-

dation and fragmentation, fishing exploitation and climate change [11]. In such a context, the

resilience of marine species relies on their dispersal capability throughout their life cycle [12].

From a conservation point of view, assessing connectivity and spatial structure is crucial since

isolation might put a population at risk and eventually lead to extinction if the isolated popula-

tion is small and experiences external pressures. From a fisheries perspective, understanding

population connectivity and spatial structure is a prerequisite to sustainable exploitation. In

case of mismatch between biological population and harvest stock unit (i.e. the spatial unit

used for assessment and management), overexploitation or even collapse might dramatically

arise [13–16].

A wide range of methods exist to assess the structure and connectivity of marine fish popu-

lations [17,18]. Insights in population segregation are available from, among others, larval dis-

persal modelling [19,20], mark-recapture experiments [21,22] and natural tracers such as

morphometry and meristics [23–26], microchemistry (e.g. [27,28]) and genetics [29,30]. These

tools enable estimation of spatial population structure over ecological and evolutionary time-

scales [27]. Tracers covering an ecological time scale, like otolith-based tracers, inform about

the population structure and connectivity throughout the fish life cycle. Genetic tracers

provide information across generations at an evolutionary time scale. The choice of tracers is

paramount since each has its own ecological interpretation, spatiotemporal resolution, dis-

criminatory power and cost [27]. The comparison of tracers is advised since one single tracer

may fail to detect population structure. If a tracer fails to detect heterogeneity, it might be

because (i) the population is homogeneous, or (ii) because the spatiotemporal resolution of the

tracer is not adapted to detect population structure, or finally (iii) because the discriminatory

power of the tracer is too low. Among the broad panel of methods, genetics and otolith-based

approaches are commonly used complementarily to resolve population structure and connec-

tivity (e.g. [31–34]).

Genetic markers are well established tools used to inform on population structure at the

evolutionary scale [29,30]. The main constraint of genetic markers is that limited exchanges of

individuals suffice to maintain genetic homogeneity, hence failing to detect populations segre-

gation over evolutionary time scales [35]. However, the power of genetic markers to detect

subtle population differentiation is consistently increasing [36–38] and these markers now

have the potential to detect fine-scale structure [39]. Especially, Single Nucleotide Polymor-

phisms (SNPs) are abundant and widespread changes in single nucleotides at loci situated in

coding or non-coding regions of the genome [40]. SNPs are well adapted to detect weak

genetic structuring at medium to fine spatial scales (e.g. [41–43]). However, failure to detect

fine-scale population structure from genetic information is still a relatively common situation

[35] and the use of complementary tracers is advised [44].
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Otolith shape is a proven morphometric tracer suited to detect spatial population structure

throughout the fish life cycle [44]. An otolith is a small calcified structure located in the inner

ear of the fish. It grows continuously and conservatively from the birth to the death of the fish

following its somatic growth dynamics [45]. Otolith external shape integrates the whole history

of fish growth and is thus influenced by numerous and potentially confounding factors such as

ontogeny (i.e. developmental stage, age, total fish length and sex), genotype and environment

(e.g. hydrology, depth, substrate and diet composition; [46–48]). By focusing on individuals of

the same cohort, length or sex, the ontogenetic influence is limited and spatial variations of

otolith shape might be related to residual genetic and/or environmental effects, suggesting

population spatial structure at an ecological timescale [44]. Moreover, compared to other natu-

ral tracers, otolith shape is relatively cheap and easy to use in routine with a dedicated software.

Consequently, otolith shape may suitably complement genetic analyses to capture the various

scales at which dispersal processes happen [49,50]. Comparing tracers that integrate informa-

tion at the ecological and evolutionary time scales may allow to detect spatial population struc-

ture and its stability over time [51].

The common sole (Solea solea (Linnaeus, 1758), Soleidae, Actinopterygii) of the Eastern

English Channel stock (EEC; ICES division VIId; Fig 1) is a species of large economic interest

that has been overexploited over the last decades [52]. This flatfish reproduces in early spring

on spawning grounds off France and the UK. After hatching, larvae drift with currents towards

shallow coastal nursery grounds where individual metamorphose [53]. Juvenile sole grow for

about two years in coastal nursery grounds before joining the adult stock in deeper waters

[54]. The internal structure of this stock has been questioned [55–57]. Biophysical modelling

has suggested low larval connectivity [53] and high juvenile sedentariness has been evidenced

from various approaches [58]. Based on the EEC underwater topography and the results of the

biophysical modelling [53], a functioning in three subunits have been hypothesized (Fig 1).

Life history traits at the population scale supported the spatial structure in three putative sub-

units ([59, 60]; Fig 1) and mark-recapture experiments estimated low exchanges between these

subunits ([22]; Fig 1). However, the population structure has not been investigated yet at the

individual level, nor a potential genetic differentiation. This study thus aimed to compare the

discriminatory power of genetic and otolith shape analyses and assess their complementarity

to describe the common sole population structure in the EEC. We first analyzed genetic struc-

ture over an evolutionary timescale with SNP genotypes. Then, we assessed population spatial

structure over the lifespan using the phenotypic patterns of otolith shape. Finally, a supervised

machine learning framework was applied on genetic markers and otolith shape descriptors to

assess their respective discriminatory powers.

2. Material and methods

2.1. Ethic statement

In accordance with European Commission recommendation 2007/526/EC, on revised guide-

lines for the accommodation and care of animals used for experimental and other scientific

purposes, fish sampling in the wild without experimental handling did not require an ethical

agreement. Fish were caught with beam trawls or nets on professional fishing vessels or during

a scientific survey. After being caught, fish were immediately immersed in ice to be sacrificed

by hypothermia. The present field study did not involve endangered or protected species.

2.2. Sample collection

For the genetic analysis, a total of Ng = 215 (Table 1) adult common sole was sampled on the

spawning grounds in French, off the rivers Seine (SW) and Somme (NE), and UK waters
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(Fig 1) in April and May 2017 and 2018 from commercial fishing vessels during tagging exper-

iments [22]. An exception was made in July 2018, when individuals from the English part of

the EEC were collected during the UK Beam Trawl Survey. Each fish total length was measured

(in cm) and sex was determined by visual inspection of the gonads. A caudal fin clip was sam-

pled and stored in pure ethanol for genetic analysis. For each fish, paired sagittal otoliths were

removed and photographed. The right otolith was then used for age determination.

Fig 1. Map of the sampling sites of common sole in the three putative subunits (SW, NE and UK) of the Eastern English

Channel stock (ICES area VIId). Dashed black ellipses show the sampling location of adults in the spawning grounds. Shading

refers to rocky reefs.

https://doi.org/10.1371/journal.pone.0241429.g001

Table 1. Number of adult sole sampled within each subunit of the Eastern English Channel (SW, NE and UK subunits) used for genetic (Ng, split in Ng2017 and

Ng2018) and otolith shape (Ns, split in Ns2016, Ns2017 and Ns2018) analyses.

Ng2017 Ng2018 Ns2016 Ns2017 Ns2018

SW 47 41 354 128 17

NE 31 42 64 30 73

UK 42 12 12 80 21

EEC 120 95 430 238 111

Total Ng = 215 Ns = 779

https://doi.org/10.1371/journal.pone.0241429.t001
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The otolith sample size collected during tagging experiments and surveys appeared too low

to ensure a reliable discriminatory power for the otolith shape analysis [27]. Otoliths collected

from fish markets between 2016 and 2018 were thus added to increase the discriminatory

power and resolution of the spatiotemporal analysis. A total of Ns = 779 were available for oto-

lith shape analysis (Table 1).

A more precise description of the fish sampled for both genetic and otolith shape analyses is

provided on S2 Appendix (Table S2.1.).

2.3. Genetic analysis

Construction of genomic libraries and bioinformatics. SNP markers were identified

using double digest restriction-site associated DNA (ddRAD) sequencing on 215 adult sole

(Table 1) [61]. DNA was extracted from fin clips [62]. Two separate libraries were built (i.e.

samples of year 2017 / 2018) based on the protocol of [63] with the restriction enzymes SbfI
and SphI. After enzymatic digestion and adapter ligation, sequences were size-selected (320–

590 bp) and PCR amplified (16 cycles). Fragments between 300 and 600 bp were selected and

libraries were sequenced paired-end on an Illumina HiSeq 2500 platform (Genomics Core,

KU Leuven, Belgium).

De novo assembly was performed with the dDocent variant calling pipeline after demulti-

plexing [64]. More details about the de novo assembly and SNP calling are available in S1

Appendix. Because of stochasticity in generating RAD fragments [65,66], only 12 loci were left

when combining samples from 2017 and 2018 during the SNP calling process. Consequently,

the samples from 2017 and 2018 were analyzed separately.

After demultiplexing the 2017 library, 421 390 451 reads were available; 20 995 bi-allelic

SNPs were retained through SNP calling. A comparable number of 234 348 163 reads was

obtained from the 2018 library, resulting in 67 169 bi-allelic SNPs. These SNPs were filtered

following criteria of allelic depth, allelic balance, allelic frequency, occurrence over all individ-

uals, minimum heterozygosity threshold, Hardy-Weinberg Equilibrium (HWE) and threshold

of linkage disequilibrium (LD). Information on these filters is provided in S1 Appendix. In

2017, 2 902 SNPs were retained for 120 individuals after SNP filtering. In 2018, 435 SNPs were

retained for 95 fish.

Statistical analyses. Global and pairwise FST values [67] were evaluated using the hierfstat
R package [68]. Significance of pairwise FST tests was computed by bootstrap (1000 permuta-

tions) and resulted in 95% interval credibility (i.e. 95% CI). A Discriminant Analysis of Princi-

pal Component (DAPC) was computed with the adegenet R package [69] for the 2017 and

2018 data sets separately. The number of PCs retained for the DAPC was assessed by the

DAPC cross-validation procedure using the xvalDapc function of the adegenet R package. This

procedure randomly leaves out a certain percentage of the data, runs DAPC, and then assesses

if the data that was left out is correctly assigned into the population. Here, 90% of the whole

data set composed the baseline and the remaining 10% individuals were assigned. The maxi-

mum number of PCs was set to 30 and 1000 replicates were computed.

2.4. Otolith shape analysis

After cleaning, pairs of otoliths were scanned with the sulcus side facing upward under

reflected light at high resolution (3200 dpi). Individual images were extracted with the TNPC 7
software (www.tnpc.fr).

Fourier analysis. The elliptical Fourier descriptors are among the most powerful methods

based on otolith shape to discriminate among fish populations (e.g. [25,26,70,71]). This

approach consists of extracting shape parameters from Fourier harmonics and investigating
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spatial differences in these parameters. The first 99 elliptical Fourier harmonics of each otolith

were extracted from the scanned image via TNPC 7 software. Normalization with respect to

the first harmonic ensured the invariance of harmonics from the otolith size, rotation and

starting point of contour description. Each harmonic k, described by 4 coefficients ak, bk, ck
and dk, yielded 392 shape descriptors (98 harmonics with 4 coefficients per harmonic). To

reduce the number of descriptors, the number of harmonics nj of each otolith j was adjusted

such that the contour was reconstructed with a precision of 99.9% (i.e., the proportion of vari-

ance in contour coordinates accounted for by the harmonics) as measured by the cumulative

Fourier power F (Eq 1):

FðnjÞ¼
Xnj

k¼1

ak
2 þ bk

2 þ ck2 þ dk
2

2
¼ 99:9% ð1Þ

The maximum number of harmonics n = max(nj) across all otoliths was then used to

describe their contour to ensure a precision of at least 99.9% for each of them.

The number of elliptical Fourier descriptors was further reduced using a principal compo-

nent analysis (PCA) with the prcomp function of the stats R package. The number of principal

components (PC) was then chosen so that 99% of the variance was explained. The matrix of

chosen principal components (S) thus represents the otolith shape matrix.

The differences in otolith shape between subunits was visualized using the mean otolith

shape of each subunit formed by the outline reverse Fourier transform of the first n = max(nj)
normalized harmonics. This visualization gave a first insight into spatial otolith shape

variations.

Then, spatial (Subunit), total fish length (Length), otolith side (left or right, Side), sex (Sex)

and sampling year (Year) effects were tested on the otolith shape matrix (S) using a redun-

dancy analysis (RDA) with the rda function of the vegan R package [72] (Eq 2):

ðSÞ � Subunit þ Lengthþ Sideþ Sexþ Year ð2Þ

Permutation tests using the anova.cca function assessed the relative influence of each vari-

able on the shape matrix. This analysis informed on the strength of ontogenetic and spatial

otolith shape variations.

Shape indices. In addition to Fourier analysis, otolith length L0 (i.e. the longest distance

along the antero-posterior axis), width l0 (i.e. the longest distance along the ventro-dorsal

axis), perimeter P0 and area A0, were measured to calculate shape indices [73] (Table 2).

Redundancy between shape indices was tested using the Pearson correlation test. Circular-

ity and form coefficient (r = -0.99, p< 0.001) and ellipticity and roundness (r = -0.89,

Table 2. Shape indices as functions of otolith size measures [73].

Shape indices Formulae

Ellipticity (L0-l0)/(L0+l0)
Circularity P02/A0
Rectangularity A0/(L0×l0)
Roundness (4A0)/(πL02)
Form coefficient (4πA0)/P02

L0, l0, P0 and A0 are the length, width, perimeter and area of otoliths, respectively.

https://doi.org/10.1371/journal.pone.0241429.t002
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p< 0.001) were negatively correlated. Each shape index was kept in further analyses because

they were not correlated with more than one index.

Spatial (Subunit), total fish length (Length), otolith side (left or right, Side), sex (Sex) and

sampling year (Year) effects were tested on each shape index (SI) using a linear model with

Gaussian error (Eq 3):

SI � Subunit þ Lengthþ Sideþ Sexþ Year þ ε ð3Þ

The strength of each effect on shape indices was investigated using a type III Anova with

the car R package. Post hoc tests with the HSD.test function of the agricolae R package [74]

highlighted significant pairwise differences of shape indices between subunits.

2.5. Discriminatory power of genetic and otolith shape approaches

The discriminatory power of genetic and otolith shape approaches was investigated using

the assignPOP R package. This package allows to analyze genetic, non-genetic and inte-

grated data and is thus particularly suited to compare the discriminatory powers of

genetic and otolith shape tracers. The package provides a machine learning framework

whose principle is to assign individuals from different source populations by dividing the

entire data set into training (i.e. baseline) and test data sets (i.e. unknown individuals) and

building a machine learning classification function [75]. The predictive model is then

applied to all unknown individuals (i.e. individuals that are not in the baseline) to assign

them to their population of origin probabilistically. In practice, we applied a K-fold cross-

validation procedure. The K-fold cross-validation method divided the whole data set in K

subsets that were alternatively used as a training (i.e. baseline) or testing dataset (i.e. the

remaining individuals). In our case, best accuracies were obtained by dividing each subunit

into K = 3 groups. This procedure prevents from unbalanced training data sets among

source populations [75]. Assignments of fish corresponded to the highest membership

probability across the tests. An individual was correctly assigned if the predicted member-

ship corresponded to the sampling subunit. Here, the predictive model was built using the

Linear Discriminant Analysis (LDA) of the MASS R package [76]. The assign.matrix func-

tion of the assignPOP R package was used to compute a pairwise assignment matrix with

mean and standard deviation of assignment accuracies across all assignment tests for each

data type (i.e. genetic and otolith shape) and sampling year (i.e. 2017 and 2018). This

method was used as a direct comparison of the discriminatory power of genetic and otolith

shape approaches.

Prior to the assignment analyses, genetic and otolith shape data sets were pre-computed.

Regarding the genetic approach, all loci were used to build the predictive model. Before the

LDA was computed, a PCA was automatically applied on the genetic data for reducing the

dimensions. Individual genotypes of the 2017 and 2018 data sets were clustered independently,

since libraries were built separately.

Regarding the otolith shape approach, the predictive model was built using the more dis-

criminant otolith shape descriptors among Fourier and shape indices or both (see 3.2). The

potentially confounding factors on otolith shape (i.e. length, sex and otolith side) were

removed prior to the clustering analysis using the residuals of linear models that tested these

confounding effects on each otolith shape descriptors. In order to compare genetic and otolith

shape discriminatory power, the 2017 and 2018 otolith shape data sets were also clustered

independently (the discriminatory power analysis for 2016 otolith samples is not presented).
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3. Results

3.1. Genetic analysis

Weak global genetic structure was found in 2017 and 2018 with low yet significant FST values

(Table 3). Pairwise FST comparisons between subunits revealed distinct genetic pools between

the three subunits in 2017 and between the SW and NE subunits in 2018 (Table 3).

These results were in line with the DAPC conducted on the 2017 and 2018 samples sepa-

rately (Fig 2). 25 PCs and 20 PCs were retained for 2017 and 2018, respectively. The DAPC

cross-validation procedure indicated that the mean successful assignment number was 71% in

2017 and 45% in 2018. Weak overlap between subunits was observed, especially for 2017 sam-

ples, supporting spatial genetic variation (Fig 2).

3.2. Otolith shape analysis

Otoliths were reconstructed at 99.99% with 28 Fourier harmonics. The mean outline shapes of

right and left otoliths were plotted to visualize the overlaps and variations between subunits

(Fig 3). The spatial variations of the otolith mean shape appeared higher for the left otoliths,

especially between the SW and the two other subunits (Fig 3a).

The dimension of the Fourier descriptors was reduced with a PCA that resulted in 33 prin-

cipal components (PC) corresponding to 99% of total inertia. The redundancy analysis did not

Table 3. Pairwise FST values between the three subunits SW, NE and UK and the corresponding 95% confidence interval CI (upper and lower limits).

Year Spatial comparison Lower limit of 95% CI FST value Upper limit of 95% CI

2017 SW/NE 0.0019 0.0031� 0.0043

SW/UK 0.0030 0.0044� 0.0060

UK/NE 0.0045 0.0058� 0.0074

Global 0.0035 0.0045� 0.0063

2018 SW/NE 0.0004 0.0031� 0.0058

SW/UK -0.0037 0.0028 0.0108

UK/NE -0.0033 0.0024 0.0095

Global 0.0008 0.0029� 0.0132

‘�’ indicate significant values.

https://doi.org/10.1371/journal.pone.0241429.t003

Fig 2. Plot of the Discriminant Analysis of Principal Components on the SNP genotypes of sole collected in 2017

(a) and 2018 (b).

https://doi.org/10.1371/journal.pone.0241429.g002
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reveal spatial or temporal differences in Fourier descriptors (Table 4). Effects of total fish

length, sex and otolith side were predominant.

In contrast, analysis of variance of shape indices highlighted significant spatial differences

in form coefficient and circularity indices (Table 5).

More precisely post hoc tests indicated significant differences of circularity and form coeffi-

cient between the SW and NE subunits, with relation to the higher otolith metrics (i.e. otolith

length, width, perimeter and area) in the SW subunits (S2 Appendix, Table S2.2.).

3.3. Discriminatory power of genetic and otolith shape approaches

Genetic approach. Genetic assignments revealed a weak yet significant genetic structure

for 2017 samples with fish from the SW and NE subunits mainly assigned to the SW (Fig 4).

In 2017, across all the tests, mean self-assignment (i.e. assignment of individuals to their

sampling subunit) was high in the SW (73%), moderate in the UK (60%) and low in the NE

subunit (45%) (Table 6).

The 2018 genetic data revealed weaker population structure (Fig 5). Self-assignment was

high in the SW (73%), moderate for the NE (57%) and null in the UK subunit (Table 6).

Otolith shape approach. Otolith shape indices were selected for the discriminant analysis

since Fourier descriptors failed to detect spatial variation in otolith shape (see 3.2). Compared

to genetic assignments, otolith-based assignments revealed even lower discriminatory power

for the 2017 (Fig 6) and 2018 (Fig 7) data sets. For the 2017 otolith shape data set, fish from

each subunit were mainly assigned to the SW subunit, whereas in 2018, individuals were

mostly assigned to the NE subunit (Table 6).

Fig 3. Mean otolith outline shapes formed by reverse Fourier transform of the outline using the first 28

harmonics for the left (a) and right (b) otoliths in the three subunits of the EEC. Values are centered and scaled.

https://doi.org/10.1371/journal.pone.0241429.g003

Table 4. Results of the redundancy analysis and permutation test performed on the Fourier shape matrix com-

posed of 33 principal components of otolith shape.

Variable DF F p-value

Subunit 2 0.79 0.589

Length 1 7.48 0.001 ���

Side 1 128 0.001 ���

Sex 1 8.84 0.001 ���

Year 2 1.02 0.415

Statistical significance:

‘���’ P < 0.001.

https://doi.org/10.1371/journal.pone.0241429.t004
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Table 5. Results of the type III ANOVA performed on the otolith shape indices.

Shape index Variable DF F p-value

Ellipticity Subunit 2 0.37 0.832

Length 1 15.8 0.001 ���

Side 1 81.3 0.001 ���

Sex 1 12.3 0.001 ���

Year 2 1.58 0.453

Circularity Subunit 2 7.33 0.026 �

Length 1 0.09 0.770

Side 1 74.4 0.001 ���

Sex 1 23.8 0.001 ���

Year 2 7.87 0.020 �

Rectangularity Subunit 2 0.31 0.857

Length 1 2.21 0.137

Side 1 0.97 0.325

Sex 1 2.57 0.109

Year 2 2.75 0.253

Roundness Subunit 2 0.76 0.683

Length 1 10.8 0.001 ���

Side 1 74.6 0.001 ���

Sex 1 7.89 0.001 ���

Year 2 1.65 0.438

Form coefficient Subunit 2 7.48 0.024 �

Length 1 0.11 0.745

Side 1 75.7 0.001 ���

Sex 1 24.0 0.001 ���

Year 2 7.48 0.024 �

Statistical significance:

‘�’ P < 0.5,

‘���’ P < 0.001.

https://doi.org/10.1371/journal.pone.0241429.t005

Fig 4. Membership probabilities of individuals in the three subunits based on the 2017 genotypes (Ng2017 = 120

with Ng2017,SW = 47, Ng2017,NE = 31 and Ng2017,UK = 42). Each bar represents an individual sole. Individuals are

ordered by increasing membership probabilities in each subunit. Panels correspond to the subunits where individuals

were sampled. Probabilities were estimated using all loci (2902 SNPs) and K = 3 folds.

https://doi.org/10.1371/journal.pone.0241429.g004
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4. Discussion

In this study, we made progress with the understanding of the population structure of com-

mon sole in the EEC. The aim was to provide information on the population structure by com-

paring genetic and otolith shape analyses, and assessing their respective discriminatory power

and complementarity. The genetic analysis highlighted low but significant differentiation

between subunits, suggestive of a long-term weak population structure. The otolith-based

approach provided a more unsettled signal of spatial structure. While Fourier descriptors did

not detect spatial variation, straightforward shape indices suggested differences between two

subunits. Finally, the comparison of the respective discriminatory power of genetic and otolith

shape approaches revealed low self-assignment in subunits, especially for the otolith-based

tracer.

Table 6. Mean assignment percentages ± standard deviation of individuals across all assignment tests for each data type, sampling year and subunit. Grey cells indi-

cate the subunit where individuals were mostly assigned.

Estimated subunit of origin

Data Type Sampling Year Sampling Subunit SW NE UK

Genetic 2017 SW (Ng2017,SW = 47) 0.73 ± 0.06 0.04 ± 0.04 0.23 ± 0.09

NE (Ng2017,NE = 31) 0.45 ± 0.08 0.38 ± 0.18 0.16 ± 0.12

UK (Ng2017,UK = 42) 0.38 ± 0.23 0.02 ± 0.04 0.60 ± 0.22

2018 SW (Ng2018,SW = 41) 0.73 ± 0.25 0.25 ± 0.22 0.02 ± 0.04

NE (Ng2018,NE = 42) 0.43 ± 0.19 0.57 ± 0.19 0 ±0

UK (Ng2018,UK = 12) 0.83 ± 0.14 0.17 ± 0.14 0 ± 0

Otolith shape 2017 SW (Ns2017,SW = 128) 0.94 ± 0.05 0.01 ± 0.02 0.05 ± 0.05

NE (Ns2017,NE = 30) 0.74 ± 0.22 0 ± 0 0.26 ± 0.22

UK (Ns2017,UK = 80) 0.78 ± 0.10 0 ± 0 0.22 ± 010

2018 SW (Ns2018,SW = 17) 0 ± 0 0.97 ± 0.10 0.03 ± 0.10

NE (Ns2018,NE = 73) 0.05 ± 0.08 0.86 ± 0.14 0.09 ± 0.12

UK (Ns2018,UK = 21) 0.04 ± 0.09 0.92 ± 0.14 0.04 ± 0.09

https://doi.org/10.1371/journal.pone.0241429.t006

Fig 5. Membership probabilities of individuals in the three subunits based on the 2018 genotypes (Ng2018 = 95

with Ng2018,SW = 41, Ng2018,NE = 42 and Ng2018,UK = 12). Each bar represents an individual sole. Individuals are

ordered by increasing membership probabilities in each subunit. Panels correspond to the subunits where sole were

sampled. Probabilities were estimated using all loci (435 SNPs) and K = 3 folds.

https://doi.org/10.1371/journal.pone.0241429.g005
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4.1. Genetic differentiation at fine spatial scale

SNPs revealed spatial differentiation at a fine spatial scale between the SW, NE and UK sub-

units. Even if genetic differentiation (FST values) was low, pairwise FST values were significant

for most comparisons, suggesting weak but significant isolation of the three proposed subunits

over an evolutionary time scale. Moreover, low spatial overlapping of genotypes was

highlighted by the DAPC, especially in 2017. The population structure of common sole at the

scale of the North-East Atlantic Ocean based on microsatellites and mtDNA markers split in

four groups. The North Sea and EEC group differentiated from the Bay of Biscay and to a

lesser extent the Irish/Celtic Seas [77]. Using state-of-the-art SNPs, [78] confirmed a separa-

tion between the North Sea/English Channel population and the Bay of Biscay/Atlantic Iberian

coast population. To the best of our knowledge, the present study was the first investigation of

genetic differentiation on a fine spatial scale (i.e. < 200 km) of common sole in the North-East

Atlantic Ocean.

The low FST values provided information on the degree of connection between subunits.

However, such an analysis does not allow us to understand whether the connection is histori-

cal or whether the divergence between subunits is recent [79,80]. Thus, further investigations

Fig 6. Membership probabilities of individuals in the three subunits based on the 2017 otolith shape data set

(Ns2017 = 238 with Ns2017,SW = 128, Ns2017,NE = 30 and Ng2017,UK = 80). Each bar represents an individual sole.

Individuals are ordered by increasing membership probabilities in each subunit. Panels correspond to the subunits

where sole were sampled. Probabilities were estimated using the residuals of a linear model that tested the length, sex

and side effect on the otolith shape indices. Probabilities were estimated with K = 3 folds.

https://doi.org/10.1371/journal.pone.0241429.g006

Fig 7. Membership probabilities of individuals in the three subunits based on the 2018 otolith shape data set

(Ns2018 = 111 with Ns2018,SW = 17, Ns2018,NE = 73 and Ng2018,UK = 21). Each bar represents an individual sole.

Individuals are ordered by increasing membership probabilities in each subunit. Panels correspond to the subunits

where sole were sampled. Probabilities were estimated using the residuals of a linear model that tested the length, sex

and side effect on the otolith shape indices. Probabilities were estimated with K = 3 folds.

https://doi.org/10.1371/journal.pone.0241429.g007
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would be required to understand the process that generate the observed weak genetic

structure.

We found that genetic spatial differentiation was less distinct in 2018 compared to 2017.

Three explanations might be proposed for these temporal differences. First, the connection

between subunits could have been stronger in 2018. This explanation is unlikely since a mark-

recapture study has suggested low adult movement across the EEC over decades [22], which is

in line with the spatial genetic pattern found in 2017. Second, the observed differences could

be due to a library effect. According to empirical library comparisons and simulations, library

preparation and sequencing result in variation in the rate of missing data rather than in popu-

lation-level effects [65,66]. Third, the smaller sampling size and lower number of SNP markers

in 2018 may have altered the power to detect population structure for this sampling year. This

latter explanation is consistent with larger confidence intervals for FST in 2018 as compared to

2017 (Table 3).

4.2. Moderate spatial heterogeneity of otolith shape

We found no spatial variation of otolith shape using Fourier descriptors whereas the straight-

forward otolith shape indices suggested spatial differences of otolith shape between the SW

and NE subunits. Various statistical methods have been developed to detect subtle variation in

otolith shape. Fourier descriptors are particularly recommended in studies of spatial popula-

tion structure and stock identification since they are considered as highly sensitive to variation

in otolith shape [26,81]. Shape indices are basic otolith shape descriptors mainly used to sup-

plement Fourier analysis [73]. Compared to Fourier descriptors, shape indices are expected to

be less sensitive to subtle variation in otolith shape [82,83]. Moreover, Fourier descriptors and

shape indices are supposed to be partially redundant information since Fourier descriptors are

precise reconstructions of otolith outline whereas shape indices are considered as less integra-

tive, yet accurate, metrics [84]. To our knowledge, not any study has previously presented spa-

tially heterogeneous shape indices in a single analysis without significant spatial signal in

Fourier descriptors. The high number of Fourier harmonics needed to reach the shape recon-

struction threshold of 99% could be linked with these results. Too many subtle outline features

compared to simpler yet perhaps more characteristic shape indices [26] might have led to

draw different pictures of fish otolith (dis)similarities among spatial units. Although these con-

trasted results were unusual, they suggested that otolith shape of common sole varied spatially

in the EEC.

Otolith shape is related to a complex combination of genetic, ontogenetic and environmen-

tal factors [47,85–87]. Here, the ontogenetic effect was neutralized considering fish length,

year and sex effects together with side effect in the analysis. The results of otolith shape

appeared congruent with the genetic findings, suggesting that the origin of otolith shape varia-

tions might be linked, to some extent, to genetic differentiation. Environmental factors such as

water temperature and diet may also impact otolith shape through a change of growth [46,88].

However, in the EEC, environmental variables, and especially water temperature, are poorly

contrasted [89]. The observed spatial pattern of otolith shape was in line with studies of life his-

tory traits at population scale: using the von Bertalanffy function to model the growth, [60]

found that common sole from the SW presented higher asymptotic length than the two other

subunits. Similarly, we found significant variation of otolith shape between the SW and the NE

subunits. [60] proposed that the lasting signal of spatial pattern of growth might be due to con-

trasted fishing exploitation rate across the stock, with the SW subunit being the least exploited

subunit. The theory behind this assumption is that fishing acts as a non-random genetic selec-

tion that favors individuals with early maturation and slow growth [90,91]. As a result, the

PLOS ONE Multidisciplinary interpretation of fish metapopulation structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0241429 November 5, 2020 13 / 20

https://doi.org/10.1371/journal.pone.0241429


lower exploitation rate in the SW subunit would favor larger fish. Therefore, the spatial varia-

tion of otolith shape was congruent with the result of long-term analysis of spatial pattern of

growth for the common sole of the EEC. Therefore, a combination of genetic and environmen-

tal factors along with fishing pressure might contribute to the observed spatial pattern of oto-

lith shape for the common sole of the Eastern English Channel.

Temporal variations of otolith shape were found for both Fourier descriptors and shape

indices. Even if growth conditions vary between year (59), the spatial pattern of otolith shape

was maintained from 2016 to 2018. Therefore, in this study, the strength of the spatial signal

overrode the temporal pattern of otolith shape, suggesting a lasting spatial population

structure.

4.3. Comparing the discriminatory power of tracers

Each tracer has its specific ecological meaning, but also its own resolution. Here the number of

samples in each of the two approaches was based on previous knowledge of their resolution

power [27]. This is the reason why additional samples were collected from fish markets to

ensure a reliable discrimination power for otolith shape. Thus, sufficient samples were avail-

able for each analysis.

Our comparison of genetic and otolith shape discriminatory power demonstrated that the

genetic approach outperformed otolith shape to discriminate among subunits in the EEC.

However, both approaches showed low self-assignment percentages. In contrast to the FST and

DAPC analyses, genetic assignment analysis suggested extremely weak spatial genetic struc-

ture within the population, with exchanges between subunits. This might be due to the low

capability of the K-fold cross-validation method to accurately discriminate individuals from

the three subunits using genetic data. There are a wide range of methods to assign or cluster

individuals based on genetic data, each having advantages and limitations. For instance, other

programs such as GENECLASS2 [92] or STRUCTURE [93] propose to cluster individuals

based on their genotype, but these methods tend to lesser perform when sampling is unbal-

anced between locations [94]. Considering that FST and DAPC results converged towards a

genetic structure for the common sole, the results of the assignment analysis appeared weakly

informative.

It was not surprising that the otolith shape discriminatory power was even lower since the

strength of otolith shape spatial pattern was relatively weak, with a fewer number of discrimi-

natory variables compared to SNP markers. Indeed, only two shape indices upon five (i.e. the

circularity and form coefficient) allowed to detect spatial variations and those two shape indi-

ces were highly correlated. Moreover, the assignPOP framework is designed to assign both

genetic and non-genetic data sets in an homogeneous manner [75]. This method allowed to

compare the discriminatory power of genetic and otolith shape approaches. The assignPOP R

package is supposed to limit the bias in assignment due to unbalanced sample size between

sources [94]. We chose the K-fold cross-validation method to limit such a bias. However,

whatever the tracer or year data sets used; assignment results suggested that individuals were

mostly assigned into the subunits where sample size was the highest. Then, the unbalanced

sample size between locations probably contributed to the low discriminatory power of genetic

and otolith shape approaches. The low discriminatory powers observed might thus be due to

the weak signal of spatial structure in the genetic and otolith shape data sets and to the unbal-

anced sampling between locations. The intensity of the spatial pattern of genetic and otolith

shape was likely too small to assign individuals correctly. It logically underlined that the

strength of the spatial pattern required for assignment tests is higher than for the simple detec-

tion of a spatial pattern.
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4.4. Fine-scale population structure in the common sole of the Eastern

English Channel evidenced from genetic and otolith-based approaches

The genotype and the otolith shape spatial variations were congruent and suggested a weak

metapopulation (i.e. a set of subpopulations linked by dispersal; [95]) structure in three sub-

units, with a noticeable isolation of the SW subunit. These results were in line with former

analyses of common sole population structure focusing on the adult stage. Estimation of von

Bertalanffy growth parameters highlighted long-term differences between spatial subunits in

the EEC [59,60]. In addition, density-at-age analysis suggested the isolation of the SW subunit

from the rest of the stock [59,60]. Moreover, the results of a mark-recapture study demon-

strated low dispersal across the EEC stock [22]. Therefore, it seems that the low connectivity

observed at early life stages [53,58] is maintained at the adult stage and contributes to the weak

metapopulation structure. Rocky reefs (Fig 1) and the deep central channel covered by gravels

[96] are natural barriers for common sole in the EEC that could limit the exchanges of individ-

uals [97], resulting in this metapopulation structure.

Finally, our genetic and otolith shape results confirmed previous analyses and suggested a

misalignment between the common sole biological unit and EEC stock. The weak metapopula-

tion structure proposed in this study should be considered in stock assessment and manage-

ment to reach sustainable exploitation and long-term resilience of the metapopulation [30,98].

Ignoring even a weak metapopulation structure may lead to inaccurate estimate of population

productivity and abundance and may bias the stock assessment and management [14,56],

increasing the risk of overexploitation.
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20. Stuckas H, Knöbel L, Schade H, Breusing C, Hinrichsen H-H, Bartel M, et al. Combining hydrodynamic

modelling with genetics: can passive larval drift shape the genetic structure of Baltic Mytilus popula-

tions? Mol Ecol. 2017; 26: 2765–2782. https://doi.org/10.1111/mec.14075 PMID: 28238204

21. Le Bris A, Fisher JAD, Murphy HM, Galbraith PS, Castonguay M, Loher T, et al. Migration patterns and

putative spawning habitats of Atlantic halibut (Hippoglossus hippoglossus) in the Gulf of St. Lawrence

revealed by geolocation of pop-up satellite archival tags. ICES J Mar Sci. 2018; 75: 135–147. https://

doi.org/10.1093/icesjms/fsx098

22. Lecomte J-B, Le Pape O, Baillif H, Nevoux M, Vermard Y, Savina-Rolland M, et al. State-space model-

ing of multi-decadal mark-recapture data reveals low adult dispersal in a nursery-dependent fish meta-

population. Can J Fish Aquat Sci. 2020 [cited 16 Jul 2019].

23. Allaya H, FALEH AB, Rebaya M, Zrelli S, Hajjej G, Hattour A, et al. Identification of Atlantic Chub mack-

erel Scomber colias population through the analysis of body shape in Tunisian waters. Cah Biol Mar.

2016; 57: 195–207.

24. Sley A, Jawad LA, Hajjej G, Jarboui O, Bouain A. Morphometric and meristic characters of blue runner

Caranx crysos and false scad Caranx rhonchus (Pisces: Carangidae) from the Gulf of Gabes, Tunisia,

Eastern Mediterranean. Cah Biol Mar. 2016; 57: 309–316.

25. Hüssy K, Mosegaard H, Albertsen CM, Nielsen EE, Hemmer-Hansen J, Eero M. Evaluation of otolith

shape as a tool for stock discrimination in marine fishes using Baltic Sea cod as a case study. Fish Res.

2016; 174: 210–218. https://doi.org/10.1016/j.fishres.2015.10.010
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47. Mérigot B, Letourneur Y, Lecomte-Finiger R. Characterization of local populations of the common sole

Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape anal-

ysis. Mar Biol. 2007; 151: 997–1008. https://doi.org/10.1007/s00227-006-0549-0

48. Vignon M. Disentangling and quantifying sources of otolith shape variation across multiple scales using

a new hierarchical partitioning approach. Mar Ecol Prog Ser. 2015; 534: 163–177. https://doi.org/10.

3354/meps11376

49. Campana SE, Thorrold SR. Otoliths, increments, and elements: keys to a comprehensive understand-

ing of fish populations? Can J Fish Aquat Sci. 2001; 58: 30–38. https://doi.org/10.1139/f00-177

50. Delerue-Ricard S, Stynen H, Barbut L, Morat F, Mahé K, Hablützel PI, et al. Size-effect, asymmetry,

and small-scale spatial variation in otolith shape of juvenile sole in the Southern North Sea. Hydrobiolo-

gia. 2018. https://doi.org/10.1007/s10750-018-3736-3

51. Delerue-Ricard S. Connectivity of larval and juvenile common sole at a small and large spatial scale.

2019. https://lirias.kuleuven.be/2811378.

52. ICES. ICES WGNSSK Report—Sole in Division7d (Eastern English Channel). 2019. https://www.ices.

dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/Fisheries%20Resources%

20Steering%20Group/2019/WGNSSK/20_WGNSSK%202019_Section%2018_Sole%20in%207d.pdf.

53. Rochette S, Huret M, Rivot E, Le Pape O. Coupling hydrodynamic and individual-based models to simu-

late long-term larval supply to coastal nursery areas: Modelling larval supply to coastal nurseries. Fish

Oceanogr. 2012; 21: 229–242.

54. Riou P, Le Pape O, Rogers SI. Relative contributions of different sole and plaice nurseries to the adult

population in the Eastern Channel: application of a combined method using generalized linear models

and a geographic information system. Aquat Living Resour. 2001; 14: 125–135.

55. Rochette S, Le Pape O, Vigneau J, Rivot E. A hierarchical Bayesian model for embedding larval drift

and habitat models in integrated life cycles for exploited fish. Ecol Appl. 2013; 23: 1659–1676. https://

doi.org/10.1890/12-0336.1 PMID: 24261047

56. Archambault B, Le Pape O, Baulier L, Vermard Y, Véron M, Rivot E. Adult-mediated connectivity affects
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2010; 53.

90. Swain DP, Sinclair AF, Hanson JM. Evolutionary response to size-selective mortality in an exploited fish

population. Proc R Soc Lond B Biol Sci. 2007; 274: 1015–1022. https://doi.org/10.1098/rspb.2006.0275

PMID: 17264058

91. Law R. Fisheries-induced evolution: present status and future directions. Mar Ecol Prog Ser. 2007; 335:

271–277. https://doi.org/10.3354/meps335271

92. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A. GENECLASS2: A Software for

Genetic Assignment and First-Generation Migrant Detection. J Hered. 2004; 95: 536–539. https://doi.

org/10.1093/jhered/esh074 PMID: 15475402

93. Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype

Data. Genetics. 2000; 155: 945–959. PMID: 10835412

94. Wang J. The computer program structure for assigning individuals to populations: easy to use but easier

to misuse. Mol Ecol Resour. 2017; 17: 981–990. https://doi.org/10.1111/1755-0998.12650 PMID:

28028941

95. Kritzer JP, Sale PF. Marine Metapopulations. Academic Press; 2010.
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