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Abstract 

Background: Segmentation of structural parts of 3D models of plants is an important step for plant phenotyping, 
especially for monitoring architectural and morphological traits. Current state-of-the art approaches rely on hand-
crafted 3D local features for modeling geometric variations in plant structures. While recent advancements in deep 
learning on point clouds have the potential of extracting relevant local and global characteristics, the scarcity of 
labeled 3D plant data impedes the exploration of this potential.

Results: We adapted six recent point-based deep learning architectures (PointNet, PointNet++, DGCNN, PointCNN, 
ShellNet, RIConv) for segmentation of structural parts of rosebush models. We generated 3D synthetic rosebush mod-
els to provide adequate amount of labeled data for modification and pre-training of these architectures. To evaluate 
their performance on real rosebush plants, we used the ROSE-X data set of fully annotated point cloud models. We 
provided experiments with and without the incorporation of synthetic data to demonstrate the potential of point-
based deep learning techniques even with limited labeled data of real plants.

Conclusion: The experimental results show that PointNet++ produces the highest segmentation accuracy among 
the six point-based deep learning methods. The advantage of PointNet++ is that it provides a flexibility in the scales 
of the hierarchical organization of the point cloud data. Pre-training with synthetic 3D models boosted the perfor-
mance of all architectures, except for PointNet.
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Background
Automatic plant phenotyping based on computer vision 
techniques has become essential for enabling high 
throughput experiments in botanical and agricultural 
research [1]. While 2D image-based processing facili-
tates high-throughput phenotyping, advances in 3D data 
acquisition and modeling provide precise estimation of 
traits through full, occlusion-free 3D geometric informa-
tion of plants [2, 3].

Several measurements related to plant phenotyping 
require segmentation of plant parts, such as branches 
and individual leaves. Shape-related phenotypical traits 
of potted ornamental plants are especially important for 
assessing their visual quality [4]. Architectural traits can 
be simple, such as the diameters of branches, the num-
ber of internodes and stem length [5]. An extended list 
of more complex architectural traits for rosebush plants 
is given in [6]. Examples to such traits are number of 
axes terminated in a flower bud, number of branching 
orders, lengths of axes and branching angles. Estimation 
of length, width and area of leaves provides information 
for modeling of rose genotypes [7]. In order to automati-
cally extract these phenotypical traits from acquired 3D 
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plant data, a necessary step is identifying the structural 
category of each 3D point. After stem, flower and leaf 
points are identified, further processing can be applied to 
determine individual organs, such as individual leaves, to 
extract their statistical and geometric characteristics [8]. 
Stem points can be processed to detect branching points, 
which are fundamental for measuring architectural traits 
[9].

A large body of research has been conducted in recent 
decades for organ segmentation of plants using machine 
learning approaches through 2D images and 3D recon-
structions [10–21]. The common practice for segmenta-
tion of 3D models is to extract hand-crafted local surface 
features, such as eigenvalues of local covariance matrix 
[22] or the second tensor [12], Fast Point Feature Histo-
grams (FPFH) [14, 16, 23, 24], and surface curvature [15]. 
Local features can as well be extracted from volumetric 
representations of plants. Extraction of eigenvalues of 
the second-moments tensor of the 3D neighbourhood 
[25], a breath-first flood-fill algorithm with a 26-con-
nected neighbourhood [18], extraction of multi-scale 
texture and edge features [26] are examples to volumet-
ric approaches. In [16, 22, 24, 26], semantic segmentation 
methods are equipped with supervised learning tech-
niques such as Support Vector Machines and Random 
Forests. Markov Random Fields (MRF)-based smoothing 
over class labels [15, 24] or region growing [16, 23] are 
occasionally used to ensure consistency of point labels 
within local regions.

Apart from segmentation methods based on local fea-
tures, graph-based approaches involving spectral embed-
ding and clustering [17, 27] can also be effective. Another 
strategy is fitting geometric primitives such as ellip-
ses, tubular structures, cylinders or rings to 3D data for 
semantic segmentation [11, 13, 28, 29].

Deep learning methods, in contrast to the use of hand-
crafted features, have the advantage of being able to learn 
features from raw input data and model the within-class 
and between-class variations of the features simultane-
ously. Their application to 2D image-based plant detec-
tion, phenotyping and part-segmentation have been 
proven to be successful [30–38]. Despite this trend, 
deep learning methods that directly consume 3D point 
clouds have not been explored for 3D plant phenotyp-
ing. The main factor that impedes this exploration is 
the requirement for large amount of training data and 
the lack of large annotated 3D plant data sets [39]. Even 
moderate size annotated data sets of full plant models 
are not available. As opposed to the speed of acquiring 
and annotating 2D images, the procedures for 3D model 
reconstruction and annotation of real plants are time-
demanding and error-prone.

A strategy to reduce this time consuming step is using 
synthetic data generated with their associated ground 
truth. This approach has been extensively used in plant 
phenotyping with 2D images [40–43, 43–47]. Incorpora-
tion of synthetic plants through generative models such 
as Lindenmayer systems (L-systems) [48, 49] into train-
ing data is effective with 2D plant phenotyping [50]. The 
same scheme of creating synthetic 3D plant models can 
be applied to supply sufficient training data to machine 
learning frameworks [39].

Virtual plant modeling has been used in agricultural 
and plant sciences to simulate plant behaviour and ana-
lyze interactions of the plants with their environment 
[51–53]. Examples to platforms that constructs virtual 
plant models are L+C modelling language [54, 55] and 
L-Py framework [56], both of which are based on the for-
malism of L-systems [48]. Despite the availability of such 
platforms capable of generating synthetic plants with 
complex architectures, employing them as 3D training 
data in the form of point clouds for plant phenotyping is 
not yet practiced.

Research on deep learning methods that directly con-
sume 3D points clouds as input data exploded since the 
publication of the pioneering work of Qi et al. [57], intro-
ducing the PointNet [58–60]. Guo et  al. [58] provide a 
recent and comprehensive review on deep learning for 
point clouds. For semantic part segmentation application 
only, Guo et  al. [58] compare 30 point-based architec-
tures that have been developed since 2017. It is beyond 
the scope of this paper to mention all these architectures 
here. The benchmarks with which these architectures are 
commonly tested are data sets including indoor scenes 
(S3DIS [61], ScanNet [62]) or outdoor urban scenes 
(Semantic3D [63], Semantic KITTI [64, 65]).

Despite the fast progress in research on point-based 
3D deep learning techniques, their application on plant 
sciences and agriculture is limited to very few stud-
ies. For example, Wu et al. [66] modified the PointNet 
architecture for separating foliage and woody compo-
nents in terrestrial laser scanning data. In [67], Point-
Net was used to estimate the proper grasping pose of 
apples for autonomous harvesting. In some studies 
aiming part segmentation of 3D plant models, Con-
volutional Neural Networks (CNN) were applied to 
2D multi-view images and the inferences were back-
projected to 3D for post-processing [68, 69]. In [70] a 
voxel-based convolutional neural network (VCNN) 
was designed for maize stem and leaf classification 
and segmentation. The point clouds were converted to 
volumetric models before being processed. The authors 
briefly compared their method to PointNet and Point-
Net++ in terms of segmentation accuracy. To the 
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best of our knowledge, this is the only work where the 
authors reported part segmentation results on 3D plant 
models using point-based deep learning architectures.

Exploration of the performance of recent deep learn-
ing techniques on 3D plant phenotyping is imperative 
since these approaches have the promise of simultane-
ous extraction of relevant information from the data 
at various scales and learning to design classifiers that 
model the variability in the data. They have been proven 
to outperform classical machine learning methods that 
rely on hand-crafted features. However, the recently 
developed 3D point-based deep learning architectures 
have not previously been analyzed for their suitability 
for organ segmentation of full 3D plant models.

The objective of this work is to address this lack of 
analysis and to provide a benchmark for application 
of 3D point-based deep learning methods to plant 
part segmentation. The target data set is the recently 
introduced ROSE-X data set, which includes eleven 
3D models of real rosebush models obtained through 
X-ray imaging [26]. The models are fully annotated 
with three semantic labels: (1) Flower, (2) Leaf, and (3) 
Stem (branches and petioles). As baseline methods, six 
recent 3D point-based deep learning architectures were 
modified with the help of synthetic models and evalu-
ated for the segmentation of real rosebush plants to 
their structural parts.

We used a simulator based on L-networks in order 
to generate 3D synthetic rosebush (Rosa x hybrida) 
models. Although 3D synthetic plant models were pre-
viously utilized for rendering 2D images for 2D deep 
learning methods, to the best of our knowledge, they 
were not previously used in full 3D form for directly 
enriching the 3D training data for deep learning. In 
addition to providing a first exploration of the potential 
of various 3D point-based deep networks for plant phe-
notyping, this work also presents a first investigation of 
the contribution of 3D synthetic models for modifying 
and training such networks. This investigation is par-
ticularly important for addressing the challenge of lim-
ited labeled 3D plant data.

In summary, the contributions of this work are

• a first analysis of the performance of various 3D 
point-based deep learning techniques on segmen-
tation of structural parts of full 3D models of real 
plants;

• employment of synthetic 3D plant models for 
adapting and training 3D point-based deep learning 
networks;

• a benchmark for future developments of 3D point-
based architectures targeting 3D plant phenotyp-
ing.

Methods
We address the application of 3D point-based deep 
learning segmentation methods to the specific problem 
of segmentation of 3D plant models to their structural 
parts. We considered six such architectures for adapta-
tion to the problem and compared their shortcomings 
and strengths. The architectures are (1) PointNet [57], (2) 
PointNet++ [71], (3) Dynamic Graph CNN (DGCNN) 
[72], (4) PointCNN [73], (5) ShellNet [74], and (6) RIConv 
[75]. We employed the recently introduced ROSE-X data 
set [26], which includes eleven 3D models of real rose-
bush plants to train and evaluate the networks. The data 
set is accompanied with ground truth information in the 
form of point-level labels of the plant shoot correspond-
ing to three classes: (1) Flower, (2) Leaf, and (3) Stem 
(branches and petioles).

In order to explore the contribution of using synthetic 
data for modifying and training the networks, we cre-
ated a data set consisting of 48 synthetic rosebush (Rosa 
x hybrida) models. The models were generated by a sim-
ulator developed by Favre et al. [76]. The simulator was 
implemented with L-studio software [55] based on L-sys-
tems. The point clouds extracted from the synthetic data 
are used to modify and pre-train the networks. Using 
transfer learning [77], the networks are updated using the 
training set of point clouds of the ROSE-X data set. The 
results on the test models from the ROSE-X were com-
pared with those of the default networks trained without 
the use of the synthetic data.

Data sets
In this study, we utilized two sets of 3D models of rose-
bush plants. The first set is the ROSE-X data set, which is 
composed of 11 fully annotated 3D models of real rose-
bush plants acquired through X-ray scanning. The sec-
ond is the set of synthetic rosebush models which were 
generated using the L-studio-based simulator developed 
by Favre et al. [76]. The details of the data sets are pro-
vided in the following subsections. The ROSE-X data set 
is open to public use at [78].

ROSE‑X data set
The models in the ROSE-X data set were acquired from 
real rosebush plants using a 3D X-ray imaging sys-
tem. The volumetric models were fully annotated with 
manual supervision and then converted to 3D point 
clouds. The details of the procedure for annotation and 
the data structure can be found in [26]. Each point in a 
point cloud belongs to one of three organ classes: Leaf, 
stem, and flower. The petioles between leaflets were also 
labeled as stem, since they have branch-like structures 
and their inclusion to the architecture of branches is 
important for further analysis.
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In most 3D phenotyping experiments, especially for 
plants of complex architecture, the number of annotated 
3D models will be limited. Thus, we set the number of 
real rosebush plants reserved for training as three. The 
distribution of points to the three classes for these mod-
els is given in Table 1.

Although the data size in terms of the number of real 
plants is limited, the plants in the data set are of moder-
ately large ones (30 to 50cm in height) and possess com-
plex architectures with significant variations of the shape 
and organization of organs within a plant. Furthermore, 
the plant data is partitioned into blocks each of which is 
separately processed by the deep learning architectures. 
The point density of the 3D models allows sampling 
of 4096 points in each block. From the three rosebush 
plants reserved for training and validation, we extracted 
251 blocks, leading to a moderate amount of data for the 
purposes of training a machine learning algorithm. For 
the eight real plants reserved for testing, the number of 
blocks is even higher (525 blocks) allowing a reliable per-
formance assessment of the deep learning architectures.

Synthetic rosebush models
To create synthetic rosebush (Rosa x hybrida) models, 
we used a simulation procedure originally developed by 
Favre et al. [76], and updated in [79]. The procedure was 
implemented with the L-studio software [55], which pro-
vides a modular framework for plant development based 
on the literature on parametric L-systems [48, 80]. This 
framework makes it possible to integrate measurable 
characteristics associated with individual modules of spe-
cific plant species [81]. For the synthetic rosebush model 
of Favre et al. [76], such characteristics were derived from 
observations on real plants. Morphometric measure-
ments (i.e. diameter and length of organs), architectural 
structures (i.e. leaf formation order) and physiological 
data were analyzed and integrated into the model. The 
simulation model of Favre et al. [76] was further updated 
in [79] with three core architectural parameters: (1) the 
number of axes; (2) their location or topology; and (3) 
their morphologic type (short or long), determined from 
a five-months old crop of pot plants cultivated in a green-
house under controlled non-restrictive conditions [82].

Using this simulation procedure, we generated 48 dif-
ferent rosebush models in the form of triangle meshes. 
The triangle mesh and the point cloud of a sample syn-
thetic rosebush model are given in Fig.  1. Each trian-
gle in a model is inherently classified into one of seven 
organs: Leaflet, petiole, stem, stipule, petal, sepal, and 
receptacle (Fig.  1a). Since the ROSE-X labels are not 
as fine-grained, the petiole, stem and stipule classes 
were merged together to form the stem class and the 
sepal, petal and receptacle classes were merged into 
the flower class after converting the mesh model into a 
point cloud (Fig. 1b).

In order to generate point clouds from these trian-
gle mesh models, we homogeneously sampled points 
from the triangular surfaces. A point cloud is a set of 
3D points P = {p1, p2, ..., pN } , where each point pi ∈ P 
is represented with the point’s coordinates (x,  y,  z) in 
the 3D space. N is the number of points in the P , and 
it defines the size of the point cloud. The sampling rate 
was set to 120 points per square unit resulting in point 
clouds of size of 150,000 to 300,000 points per plant. 
The dimensions of synthetic models in x− , y− and z− 
axes are in the range of 30 to 50 cm, in accordance to 
the scale of the real rosebush models.

Table 1 Distribution of classes in 3D rosebush point clouds (%)

Leaf Stem Flower

ROSE-X training models 84.56 10.63 4.81

ROSE-X test models 81.00 11.51 7.49

Synthetic models for training 65.80 17.95 16.25

Synthetic models for validation 66.84 17.14 16.02

Fig. 1 Synthetic plant as a triangle mesh model (a) and the 
corresponding sampled point cloud (b)
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For each of the deep learning architectures explored in 
this paper, we applied many modifications to their default 
parameters in order to adapt them to segmentation of 
plants. We modified these parameters experimentally by 
dividing the synthetic rosebush data into a training and 
validation set. From the 48 synthetic rosebush models, 8 
plants were randomly selected and reserved for valida-
tion. The rest of the point clouds are used for training the 
networks. Similar to the plants in ROSE-X dataset, the 
synthetic plants are processed through block partition-
ing. For the total number of blocks extracted from the 
two sets, please see the Results section.

Data preprocessing
The point-based deep learning architectures accept fixed-
size data as input. Feeding the entire rosebush model to 
the networks requires a large sub-sampling rate resulting 
in a significant loss of geometric information. Therefore, 
we follow the strategy commonly used with point-based 
deep learning methods to handle large-scale point clouds 
[73]: We partition a rosebush point cloud into fixed-size 
cubic blocks, each of which is then processed as an inde-
pendent point cloud by the deep neural networks. The 
block size in terms of edge length is set as 10 cm through 
experimentation with the synthetic data set. The net-
works are trained to segment the organs present in these 
blocks. At the inference phase, an input plant model 
is partitioned into blocks, and the predictions from the 
blocks are combined to obtain a full segmentation.

In general, the choice of the block size depends on the 
resolution of the input point cloud. A large cube size will 
correspond to loss of detail due to subsampling to attain 
a fixed number of points and a smaller cube will reduce 
contextual information among semantic parts. Starting 
from a block size that results in an adequate resolution 
of the organ surfaces and that covers multiple organs, 
we varied the block size to increase the performance on 
the validation set. In our experiments, we found that the 
performance margin was around 3% for the networks, by 
halving or doubling the initial size.

The points in a block should be sampled such that each 
block includes a fixed number N of points (N is 4096 
for the architectures used in this study). We followed a 
semi-random sampling strategy in order to ensure that 
the sampled points are distributed in a homogeneous 
fashion and structures possessing fewer points (like thin 
branches) are not lost. If there are less than 10% of N 
points in a block, the block is discarded and the points 
in this block are included to a neighboring block. Then, 
the distribution of the points in each block is analyzed 
through partitioning the block into voxels with fixed grid 
size (0.2 cm in this work). The average of the number of 
points in the voxels is calculated. For voxels that have 

points fewer than the average value, the number of points 
they contain is increased to the average value by adding 
copies of the points to the data. Finally, if the points in 
the block are higher than the allowed number of points, 
mutually exclusive subsets of N points are selected ran-
domly to form multiple blocks representing the same 
region. Finally, the blocks with number of points less 
than N are populated through random point repetition 
before the training phase.

To enrich the training data, block partitioning is per-
formed with two different offset values (0 and 5 cm) for 
each training plant model, keeping the block size fixed. In 
this way, two sets of blocks containing different data from 
each model are created, providing additional input train-
ing data for the networks.

For segmentation of a new test point cloud, two offset 
values are used during block partitioning and the blocks 
of the two sets are fed into the network. As a result, for 
each point in the point cloud, two sets of probability 
scores for the part classes are obtained. The class with the 
highest probability score is assigned to the point.

3D point‑based deep learning architectures
We considered six different 3D point-based deep learn-
ing architectures for the problem of part segmentation of 
rosebush models: (1) PointNet [57], (2) PointNet++ [71], 
(3) Dynamic Graph CNN (DGCNN) [72], (4) PointCNN 
[73], (5) ShellNet [74], and (6) RIConv [75]. As will be 
described in detail in Results section, we performed vari-
ous experiments involving real and synthetic models. We 
performed extensive experiments with synthetic data 
alone to modify the architectures in terms of the num-
ber of layers, the number of feature channels in the lay-
ers, neighborhood sizes, point sampling rates in local 
neighborhoods, and other hyper-parameters. The final 
modifications on these parameters correspond to the 
best-performing settings on the validation set of the syn-
thetic data. The weights of the modified and pre-trained 
networks are then fine-tuned with real rosebush data. 
The validation set of real data was instrumental for decid-
ing which weights will be updated during retraining. For 
the experiments where we excluded synthetic data and 
used only real models for training, we kept the default 
settings of the architectures.

In the following subsections, we briefly describe the 
key approaches of these architectures to the problem of 
encoding local geometric structure of 3D point clouds. 
We present the parameters of the architectures that 
yielded the best performance in the validation set of the 
synthetic data. For the default structures of the archi-
tectures and for other details, please refer to the original 
articles.
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PointNet
PointNet architecture [57] is the first deep neural net-
work architecture that directly accepts a point cloud as 
input. It uplifts the (x, y, z) coordinates of each 3D point 
separately to high-dimensional features through Multi-
layer Perceptrons (MLP) with shared weights. A single 
maximum pooling operation is applied to summarize 
all the point features followed by fully-connected (FC) 
MLPs. The result is a single global feature vector describ-
ing the input point cloud. This feature vector is concat-
enated to individual point-based features to be processed 
by successive layers. Weight-shared MLP layers are 
applied to the concatenated features to extract the class 
scores for each point.

As with other architectures, we modified the default 
PointNet architecture using the synthetic rosebush mod-
els. We inserted an additional FC layer after max-pooling. 
An additional MLP layer was inserted after the global and 
point-wise features were concatenated. The number of 

channels at various layers were also altered. The modified 
PointNet architecture for segmentation is given in Fig. 2.

PointNet processes each point in an isolated manner 
upto the max-pooling operation, which generates a global 
feature vector. The final predictions heavily depend on 
the locations of the points rather than the local geomet-
ric organization around them. There are no connections 
in the architecture to relate points in close proximity to 
each other in the Euclidean space.

PointNet++
PointNet++ architecture [71] was devised to summarize 
point-based features in different local scales instead of on 
the global level. The input point cloud is partitioned into 
overlapping local regions, and the PointNet is applied 
to these regions resulting in feature vectors capturing 
geometric details of local neighbourhoods. Grouping 
and feature extraction are performed in a hierarchical 
manner.

Fig. 2 Modified PointNet architecture
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PointNet++ architecture incorporates two types 
of layers: (1) Set abstraction layer (SA) and (2) Fea-
ture propagation layer (FP). SA layer consists of two 
phases: sampling and grouping. In the sampling phase, 
P representative points are selected using farthest point 
sampling algorithm. In the grouping phase, a local neigh-
borhood of fixed radius R is formed around each repre-
sentative point, resulting in overlapping local groups. In 
this neighborhood, M points are randomly selected to 
form a group. PointNet is applied individually to each 
group to extract features summarized over all the points 
in the group. FP layers are responsible to propagate the 
group-based feature vectors to the original points in the 
input point cloud. The propagation of features to a point 
is performed via interpolation from the features of its 
closest neighbours. By combining the interpolated and 
existing features of SA phase, PointNet architecture is 
used to update the features of each point.

In Fig.  3, the modified PointNet++ architecture for 
segmentation of rosebush point clouds is given. We 
increased the number of SA and FP layers from 4 to 5, 
adjusting the radius of the local regions (R) and the num-
ber of sampled points (P) at each layer to improve the 
performance on our plant models. We also altered the 
number of channels of MLPs within the SA and FP layers.

DGCNN
Dynamic Graph CNN (DGCNN) architecture [72] was 
designed to integrate local neighborhood information of 
3D points directly into the network, rather than a sepa-
rate grouping process as done in PointNet++. The local 
neighbourhood of a point is represented with a graph 
structure. A neural network module called EdgeConv is 
applied to extract edge features to encode the spatial rela-
tionship between a point and its K neighbours. The edge 
features are extracted through MLPs applied to edge rep-
resentations instead of point locations.

Unlike the CNN structures used in regular grids, fixed 
graphs are not used. The graphs are updated since the K 
nearest neighborhoods of the point-wise features change 
at each layer. Only in the first layer, geometrical proximity 
between nearest points are considered. In the following 
layers, edge representations are formed between nearest 
neighbours that are close in the feature space. That might 
be an advantage in terms of diffusing the information 
with respect to the proximity in the feature space; how-
ever, a multi-scale hierarchical local spatial grouping is 
not present in DGCNN. The local geometric structure is 
only captured at a very localized level; i.e. only within the 
nearest neighbours of a point.

The modified DGCNN architecture for segmentation is 
given in Fig. 4. We reduced the number of EdgeConv lay-
ers from three to two and altered the number of channels 
in MLPs. We increased the number of nearest neighbors 
K used to form edge representations in spatial and fea-
ture space from 20 to 32.

PointCNN
A convolution operator that weights the features of 
the neighbours of a point has been introduced with 
PointCNN architecture [73]. In this convolution process 
defined as X-Conv, a K × K-sized transformation matrix 
is predicted for K adjacent points with multi-layer per-
ceptrons. Typical convolution layers are then applied to 
the transformed features. To define larger receptive fields 
for convolution, representative points are generated 
by farthest point sampling, and features resulting from 
X-conv are aggregated onto these representative points. 
By dilating points by a factor and hierarchically applying 
X-conv, point features are aggregated into fewer points, 
representing larger spatial areas. For segmentation, 
point-based features are processed through an encoder-
decoder structure.

Fig. 3 Modified PointNet++ architecture



Page 8 of 23Turgut et al. Plant Methods           (2022) 18:20 

In Fig. 5, the PointCNN architecture is shown. K cor-
responds to the number of nearest neighbours that are 
used in convolution. P indicates the number of sampled 
points, and D is the point dilation rate. The default val-
ues of these parameters yielded the best performance 

for the synthetic validation data. We inserted an addi-
tional fully connected layer and modified the number of 
channels in the fully connected layers prior to obtain-
ing point-wise class scores.

Fig. 4 Modified DGCNN architecture

Fig. 5 Modified PointCNN architecture
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ShellNet
The ShellConv convolution operator, introduced with 
the ShellNet architecture [74], is applied to areas within 
the concentric shells of the local neighbourhood of a 
3D point. The size of the sphere is increased until fixed 
number of points are included in each shell. Descriptive 
features are extracted for each shell using statistical infor-
mation of the points within the shell. Since a sequence 
of convolution was defined outwards from starting 
the inner shell, the output of the convolution became 
relatively independent of the ordering of the points. To 
remove the dependency on the order of points within 
each shell, maximum pooling is applied to the point-wise 
features in the shell. ShellConv is applied hierarchically 
by sub-sampling the points to representative points, thus 
operating on larger receptive fields at subsequent layers.

The modified ShellNet architecture for segmentation 
is given in Fig. 6. Using the synthetic data, we tuned the 
parameters P and D, corresponding to the number of 
sampled points in the neighborhood and the number of 
shells, respectively. The number of nearest neighbours 
(K) that are used in convolution was kept at its default 
value. We also altered the number of channels in the 
fully connected layers prior to obtaining point-wise class 
scores.

RIConv
Many 3D deep learning architectures rely on the raw 
3D coordinates of the input points, hence are inherently 
dependent on pose variations of objects in the scene. To 
provide some form of rotation-invariance, data augmen-
tation with rotated versions of the point clouds is applied. 
However, the networks cannot model unseen rotations. 
To ensure rotation invariance, a new convolution process 

called RIConv is proposed in [75]. The main idea is to 
define the convolution process on rotation-invariant fea-
tures such as angle and distance between points, rather 
than the raw 3D coordinates. The learned model is effec-
tive against transformations such as translation and rota-
tion in 6-axis space. A simple binning approach for the 
point permutation problem is integrated into the fea-
ture extraction process. The disadvantage of aggregating 
distances and angles is the loss of geometric data; since 
two different constellations of 3D points can result in the 
same rotation-invariant features.

The encoder-decoder architectural structure of RIConv 
for segmentation is given in Fig. 7. K corresponds to the 
number of nearest neighbours that are used in convolu-
tion. P indicates the number of sampled points, and D is 
the number of bins. As with ShellNet, these parameters 
are tuned through synthetic rosebush data for RIConv, 
and the number of channels at the final fully-connected 
layers are altered for higher performance.

Results
We adapted and tested six 3D point-based deep learn-
ing architectures for segmentation of rosebush models 
to their structural parts. We used recall (Re), precision 
(Pr) and Intersection over Union (IoU) to evaluate the 
success of each architecture. We denote the number 
of true positives, false positives and false negatives for 
each class as TPC , FPC , and FNC , respectively, where 
C ∈ {Flower, Leaf , Stem} is the class of the structural part 
of a rosebush. Recall (Re), precision (Pr) and Intersection 
over Union (IoU) per semantic class are then defined as

(1)Re =
TPC

TPC + FNC

Fig. 6 Modified ShellNet architecture
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We also use the mean of the IoU scores over all three 
classes (MIoU) and the total accuracy (Acc). Acc is 
defined as the ratio of all correctly classified points to the 
total number of points in the model.

Using the synthetic data generated by L-studio and 
the real rosebush models from ROSE-X data set, we 
conducted seven types of experiments with each point-
based deep learning algorithm:

• Single real rosebush model for training (I): We used 
a single plant model from the ROSE-X data set of 
real rosebush models for training the networks. 
96 blocks were extracted from the point cloud to 
provide training data. 20% of the blocks were used 
as the validation set. The corresponding networks 
trained using one real rosebush plant are called as 
I-trained networks.

• Two real rosebush models for training (II): In this 
experiment, 159 blocks extracted from two real 
rosebush models are used as training data, where 
20% of the blocks are reserved for validation. The 
corresponding networks trained using two real 
rosebush models are called as II-trained networks.

• Three real rosebush models for training (III): In this 
experiment, 251 blocks extracted from three real 
rosebush point clouds are used as training data, 
where 20% of the blocks are reserved for validation. 
The corresponding networks trained using three 

(2)Pr =
TPC

TPC + FPC

(3)IoU =
TPC

TPC + FNC + FPC
.

real rosebush plant are called as III-trained net-
works.

• Synthetic data for training (S): 40 of the 48 of the syn-
thetic models generated by L-studio are used as train-
ing data. 8 models are reserved for validation. Using 
the results on the validation models, the parameters 
of each architecture are optimized. The correspond-
ing trained networks are denoted as S-trained net-
works.

• S-trained networks updated with single real rosebush 
model (S+I): The S-networks, which are initially 
trained and optimized with synthetic data, are re-
trained using the blocks extracted from a single real 
rosebush model. We call these updated networks 
S+I-trained networks.

• S-trained networks updated with two real rosebush 
models (S+II): In this experiment, the S-networks are 
re-trained using the blocks extracted from two real 
rosebush models. We call these updated networks 
S+II-trained networks.

• S-trained networks updated with three real rosebush 
models (S+III): In this experiment, the S-networks 
are re-trained using the blocks extracted from three 
real rosebush models. We call these updated net-
works S+III-trained networks.

Table 2 gives the total number of training and validation 
blocks extracted from the synthetic and real rosebush 
models. Recall that the point cloud sampled from each 
block is treated independently by the networks. The 48 
synthetic plants are partitioned such that blocks from 
40 plant models are used for training and blocks from 
8 plant models are used for validation. The training and 
validation sets of the synthetic data is used extensively 

Fig. 7 Modified RIConv architecture
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to modify the networks, to determine hyper-parameters 
of the networks and other parameters such as block and 
grid sizes. For the real plant models from the ROSE-X 
data set, 20% of the blocks are randomly chosen for vali-
dation from the full set of blocks reserved for training. 
This validation set of the real data is used to set experi-
mentally the layers for which the weights will be updated 
during transfer learning [77].

For the experiments where synthetic data is not 
involved (I, II, and III) the default settings of the archi-
tectures (such as number of features extracted at each 
layer) are left unchanged. For details of the default set-
tings, please refer to the original articles introducing the 
architectures.

For the experiments where synthetic data is used to 
pre-train the modified architectures (S+I, S+II, and 
S+III), the training stopped after 250 epochs. Similarly, 
while retraining with real data, the training stopped after 
250 epochs. For all cases, the weights of the last epoch 
are preserved for testing.

The hyper-parameters of the networks determined 
using the synthetic data are given in Table 3.

Table 4 gives the segmentation results of the S-trained 
networks on the 8 synthetic validation models. Point-
Net++, DGCNN, ShellNet and PointCNN were able 
to produce performance success over 90% for all meas-
ures. For the synthetic models, local geometric variations 
at the organ level (e.g. leaf shape, branch thickness) are 
limited to the variations imposed by the generation rules 
of the simulator. Hence, the networks were easily able to 
model the geometric characteristics that distinguish the 
three organs. PointNet produced an MIoU below 60% 
due to its inability to encode geometric information at 
various scales.

For the rest of the experiments, the networks are tested 
on the point clouds extracted from 8 real rosebush mod-
els from the ROSE-X data set through block partitioning. 
The predictions on the blocks are merged to obtain the 
final segmentation of the full plant models as described 
in the section for data preprocessing.

In Fig.  8, we visualized the segmentation results on a 
sample real rosebush model obtained with III-trained 
networks; i.e. only three real rosebush models were used 
for training. In Fig.  9, the segmentation results on the 
same test model with S+III-trained networks are given.

Table 5 gives the segmentation results obtained with 
PointNet on the real test plants. Columns in Table  5 
correspond to the segmentation results of the seven 
types of experiments. The results correspond to the 
performance values averaged over 8 models. Despite 

Table 2 Number of training and validation blocks used in the 
experiments

Data # blocks for 
training

# blocks for 
validation

S Synthetic 3026 511

I Real 80 19

II Real 127 32

III Real 201 50

Table 3 Hyper-parameters used to train the networks

Learning rate Batch Decay step/rate Weight decay

PointNet 0.001 48 30000/0.8 0.005

PointNet++ 0.005 12 200000/0.7 None

DGCNN 0.005 12 200000/0.5 None

PointCNN 0.005 8 10000/0.8 1e-8

ShellNet 0.005 12 5000/0.8 1e-8

RIConv 0.005 12 10000/0.8 1e-6

Table 4 Segmentation results on the validation set of the 8 synthetic rosebush models. 40 synthetic rosebush models were used to 
train the networks

PointNet PointNet++ DGCNN ShellNet PointCNN RIConv

Re Flower 64.85 99.48 99.21 99.64 99.71 97.29

Leaf 95,28 98.43 99.59 99.54 99.56 97.98

Stem 45.16 97.82 97.36 96.87 98.23 78.71

Pr Flower 88.19 99.78 99.68 99.59 99.59 98.57

Leaf 81.42 99.39 99.28 99.20 99.56 94.28

Stem 77.39 94.04 98.15 98.22 98.32 91.60

IoU Flower 59.67 99.26 98.90 99.24 99.30 95.94

Leaf 78.27 97.84 98.87 98.74 99.13 92.48

Stem 39.90 92.11 95.60 95.19 96.61 73.41

MIoU 59.28 96.40 97.79 97.73 98.35 87.28

Acc 81.82 98.50 99.15 99.10 99.36 94.57
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Fig. 8 A real rosebush model segmented with the networks trained with with three real rosebush models (III)



Page 13 of 23Turgut et al. Plant Methods           (2022) 18:20  

Fig. 9 A real rosebush model segmented with the networks trained with synthetic models and updated with three real rosebush models (S+III)
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the increase in the training data and the incorpora-
tion of synthetic data, the segmentation performance 
of PointNet is low, especially for the flower and stem 
parts. Not being able to capture the distinguishing geo-
metrical structures of the parts, PointNet seems to 
favor the leaf class due to the imbalance in the training 
data (Fig. 8b).

The segmentation results of 8 test real rosebush mod-
els yielded by PointNet++ with seven experimental 
setups are given in Table 6. The increase of the training 
data from a single rosebush model to two and then three 
models led to an increase in the performance, especially 
for the stem class. The use of synthetic data alone for 
training was not effective; however when the network 
pre-trained with synthetic data was updated with real 
rosebush models the performance was improved. The 
results with PointNet++ are promising with an accu-
racy rate over 95% and a mean IoU rate over 85%. The 
main sources of errors are the confusion between stems 
and thick parts of flowers (Fig. 10a), between leaves and 

petals of flowers (Fig.  10b), and between petioles and 
leaves (Fig. 10c, 10d).

The effect of using synthetic data on the segmentation 
results is even more pronounced for DGCNN (Table 7), 
PointCNN (Table 8), and ShellNet (Table 9). Rather than 
training a network with real data from scratch (as in the 
cases of I, II, and III), using the real data to fine-tune a 
network trained by synthetic data (as in the cases of S+I, 
S+II, and S+III) boosts the performance, especially for 
the stem and flower classes.

We can observe from Fig. 8d that with DGCNN, parts 
of main stems were classified as leaves and the flower 
class is not retrieved at all (27.94% and 7.12% recall rates 
for the flower and stem classes, respectively, in Table 7). 
We conjecture that DGCNN is only encoding the geo-
metric structure at the very local level; the spatial recep-
tive field was limited to the K-neighbours of each point 
in 3D. The data imbalance in the training data in favor 
of leaves limited the capacity of DGCNN to learn fea-
tures from stem and flower regions. The effect of data 

Table 5 Segmentation results on 8 real rosebush models from ROSE-X data set with PointNet

PointNet I II III S S + I S + II S + III

Re Flower 10.50 11.92 19.18 20.44 14.79 13.85 8.45

Leaf 94.77 97.77 97.55 96.52 90.43 94.63 96.18

Stem 5.47 2.30 3.15 2.20 9.21 7.25 8.62

Pr Flower 27.43 34.67 40.35 41.61 31.48 34.95 41.24

Leaf 81.77 82.05 82.62 82.52 82.18 82.52 82.06

Stem 19.33 29.13 45.07 15.9 14.41 20.16 28.07

IoU Flower 8.22 9.73 14.94 15.88 11.19 11.01 7.54

Leaf 78.23 80.54 80.94 80.14 75.60 78.83 79.48

Stem 4.46 2.18 3.03 1.99 5.95 5.63 7.06

MIoU 30.30 30.82 32.97 32.66 30.92 31.83 31.36

Acc 78.17 80.35 80.81 79.96 75.41 78.52 79.53

Table 6 Segmentation results on 8 real rosebush models from ROSE-X data set with PointNet++

PointNet++ I II III S S + I S + II S + III

Re Flower 69.98 68.79 81.24 97.02 75.13 73.70 85.39

Leaf 98.02 98.28 97.67 28.72 98.10 98.71 98.71

Stem 78.73 85.75 87.55 48.81 84.57 87.73 89.03

Pr Flower 87.80 95.10 87.30 10.60 84.26 91.61 91.57

Leaf 95.42 96.12 97.27 96.01 96.39 96.55 97.58

Stem 83.73 83.89 86.20 78.09 89.47 90.48 92.52

IoU Flower 63.78 66.44 72.72 10.57 65.88 69.04 79.17

Leaf 93.62 94.53 95.07 28.38 94.62 95.35 96.36

Stem 68.29 73.63 76.79 42.93 76.91 80.32 83.05

MIoU 75.23 78.20 81.53 27.29 79.14 81.57 86.19

Acc 93.70 94.63 95.28 36.15 94.82 95.58 96.60
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Fig. 10 Examples to erroneous segmentation results produced by PointNet++ (S+III)

Table 7 Segmentation results on 8 real rosebush models from ROSE-X data set with DGCNN

DGCNN I II III S S + I S + II S + III

Re Flower 5.62 29.85 7.12 79.65 24.36 34.83 59.16

Leaf 97.85 95.93 98.58 84.27 95.91 97.45 98.20

Stem 9.68 28.59 27.94 49.05 46.81 73.44 67.35

Pr Flower 22.67 54.80 75.96 42.46 37.51 75.46 79.71

Leaf 82.34 86.80 84.60 92.26 88.05 92.71 93.27

Stem 58.97 51.36 65.42 47.21 77.97 74.16 84.65

IoU Flower 4.72 23.95 6.96 38.30 17.33 31.28 51.42

Leaf 80.88 83.72 83.57 78.71 84.87 90.51 91.71

Stem 9.07 22.50 24.34 31.68 41.35 58.48 60.02

MIoU 31.56 43.39 38.29 49.56 47.85 60.09 67.72

Acc 80.79 83.23 83.59 79.87 84.90 90.00 91.73
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imbalance was alleviated with incorporating synthetic 
data in training data as seen in Fig. 9d. DGCNN was able 
to capture branch and flower structures with pre-training 
with synthetic models.

Despite the incorporation of synthetic data, DGCNN’s 
performance lacks behind PointNet++, PointCNN, 
and ShellNet. These three architectures, in contrast to 
DGCNN, have the capacity to increase the size of the spa-
tial receptive fields through successive re-grouping and 
feature aggregation. Examples to erroneous segmentation 
results produced by DGCNN are visualized in Fig.  11. 
Classifying petioles as leaves (Fig. 11a) is a common error 
for all architectures, however it occurs more frequently 
with DGCNN. Confusion between leaves and flowers are 
present (Fig. 11b). Surfaces of main stems can be classi-
fied as leaf points (Fig. 11c). In some cases, boundaries of 
leaves are assigned to the stem class (Fig. 11d).

The second best results after PointNet++ were 
obtained with PointCNN (Table  8). Examples to erro-
nous segmentation results produced by PointCNN are 
shown in Fig. 12. We observe petioles classified as leaves 
(Fig. 12a and 12 d), and elongated and thick leaves clas-
sified as flowers (Fig.  12b). There is also confusion 
between leaves and petals (Fig. 12c). In some cases, main 
stem points close to leaves are classified as leaf points 
(Fig. 12d).

The quantitative performance results obtained with 
ShellNet architecture (Table  9) are close to those of 
PointCNN. They use similar strategies to group local 
points; they both recursively sub-sample the point cloud 
through selecting representative points and aggregate 
features from the closest neighbours of these representa-
tives. In PointCNN, however, aggregation through con-
volution is performed through a predicted ordering of all 

Fig. 11 Examples to erroneous segmentation results produced by DGCNN (S+III)
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Table 8 Segmentation results on 8 real rosebush models from ROSE-X data set with PointCNN

PointCNN I II III S S + I S + II S + III

Re Flower 5.40 23.49 52.55 97.04 72.90 75.52 68.21

Leaf 99.18 99.00 99.18 59.04 97.75 97.86 98.41

Stem 34.06 66.46 72.39 46.53 48.08 72.79 75.77

Pr Flower 80.53 92.07 90.32 19.94 75.83 79.56 84.35

Leaf 84.85 89.85 92.87 95.81 91.80 95.06 94.83

Stem 81.31 86.55 91.21 39.33 84.56 88.14 88.23

IoU Flower 5.33 23.03 49.76 19.82 59.15 63.25 60.55

Leaf 84.25 89.04 92.16 57.55 89.90 93.12 93.40

Stem 31.58 60.24 67.67 27.09 44.20 66.30 68.81

MIoU 40.39 57.44 69.86 34.82 64.42 74.22 74.26

Acc 84.65 89.60 92.60 60.45 90.17 93.30 93.54

Fig. 12 Examples to erroneous segmentation results produced by PointCNN (S+III)
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the neighbour points; a property to which we attribute its 
higher performance compared to ShellNet.

With ShellNet, as with the other architectures, petioles 
(Fig.  13a) and petals (Fig.  13b) were occasionally con-
fused with leaf points. Touching leaves resulting in thick 
structures are also a cause of error (Fig.  13c). Another 
source of error with ShellNet is the interference of points 
from close parts, such as the misclassifications of leaf 
points as stems (Fig. 13d).

The segmentation results obtained with RIConv 
(Table 10) fall behind all the architectures except Point-
Net. The local regions were extracted in the same way as 
in ShellNet, however, use of rotation invariant features 
resulted in significant loss of geometric information 
about the constellation of the points, which is especially 
important in distinguishing plant parts.

All networks, with the exception of PointNet, when 
trained with synthetic data only, yield relatively high 
recall and low precision for the flower class on real rose-
bush plants. We conjecture that the reason is the mis-
match of the flower class betweeen synthetic data and 
real plants in terms of both geometrical structure and the 
ratio of occurrence. High recall together with low pre-
cision for the flower class means that the networks are 
biased towards classifying a significant portion of leaves 
as flowers, causing low recall values for the leaves. When 
the networks are updated with real training plants, this 
bias is compensated and the precision for the flower class 
and the recall for the leaf class improve.

In general, the mIoU increases as the networks are 
updated with more real training data. However, for 
PointCNN (Table  8), the improvement between the 
cases S+II and S+III is not significant, and for RIConv 
(Table  10) MIoU drops about 1% with S+III compared 
to S+II. For both networks, the recall for the flower 
class decreases as the number of real training plants is 

increased from two to three. More petioles are classified 
as leaves, as these two networks start to favor classify-
ing elongated structures as leaves, which in turn trans-
lates into a drop in the precision of leaves. Despite this 
observation, PointCNN gives the second best IoU for the 
flower class among all the networks for the case S+III 
(Table 11).

To summarize the results and to demonstrate the 
effect of incorporation of synthetic models, we give the 
segmentation performances of all architectures with 
III-trained and S+III-trained networks in Table 11. The 
use of synthetic data was beneficial for almost all classes 
and all architectures, except for PointNet. There is a 
slight decrease in the IoU value for the flower class with 
RIConv, which is compensated by a significant increase 
in the performance for the stem class.

We can also observe from Table  11 that RIConv per-
formed poorly compared to other architectures due to 
the information loss with rotation invariant features. 
DGCNN used a single spatial receptive field at the very 
local level and opted for feature proximity in a non-local 
way; therefore missing the multi-scale spatial variability 
in plant parts.

The best results were obtained with PointNet++ with 
or without the use of synthetic data for training. The 
hierarchically organized local regions for feature extrac-
tion with PointNet++ are defined in terms of met-
ric radius. The spatial hierarchy is flexible and can be 
adjusted without changing the network structure. The 
next best two methods are PointCNN and ShellNet, both 
of which hierarchically regroup points and aggregate fea-
tures within the network. However, the neighbourhoods 
are defined with respect to K-neighbourhood of points 
instead of metric radius. Therefore, it is not straightfor-
ward to adjust the size of the receptive fields for these 
architectures while taking into account both the size of 

Table 9 Segmentation results on 8 real rosebush models from ROSE-X data set with ShellNet

ShellNet I II III S S + I S + II S + III

Re Flower 48.62 44.32 51.54 97.27 68.13 51.12 58.95

Leaf 96.52 97.39 98.09 66.19 95.74 98.62 98.62

Stem 30.83 54.11 59.87 41.85 58.17 66.79 73.48

Pr Flower 64.54 82.61 85.05 20.06 74.14 87.63 91.26

Leaf 87.85 90.35 91.46 94.40 92.59 92.24 93.38

Stem 66.20 71.80 80.24 70.06 71.54 85.15 87.90

IoU Flower 38.37 40.54 47.26 19.95 55.05 47.67 55.80

Leaf 85.16 88.22 89.86 63.69 88.93 91.07 92.18

Stem 26.64 44.63 52.18 35.50 47.24 59.82 66.73

MIoU 50.05 57.80 63.10 39.71 63.74 69.19 71.57

Acc 85.37 88.43 90.20 65.72 89.35 91.40 92.75
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Fig. 13 Examples to erroneous segmentation results produced by ShellNet (S+III)

Table 10 Segmentation results on 8 real rosebush models from ROSE-X data set with RIConv

RIConv I II III S S + I S + II S + III

Re Flower 45.99 40.40 56.09 81.47 38.16 61.00 55.47

Leaf 98.46 98.36 98.92 72.85 99.27 98.26 98.48

Stem 31.53 38.09 37.88 38.58 40.62 55.67 57.88

Pr Flower 85.76 88.46 91.81 21.21 90.16 89.61 92.04

Leaf 87.49 87.82 89.08 90.17 87.87 91.45 91.33

Stem 75.03 74.86 79.61 76.89 87.69 81.41 81.78

IoU Flower 42.72 38.38 53.42 20.24 36.63 56.97 52.93

Leaf 86.31 86.55 88.22 67.49 87.31 90.00 90.07

Stem 28.54 33.77 34.53 34.58 38.43 49.39 51.27

MIoU 52.52 52.90 58.72 40.77 54.12 65.45 64.76

Acc 86.82 87.08 88.68 69.55 87.94 90.57 90.59
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the plant structures and the point density of the point 
clouds.

Discussion
In their default settings, the design parameters (such as 
number of features and layers) of the six networks and 
other hyperparameters (such as the radii of local regions) 
were originally adjusted for 3D datasets which contain 
point cloud scenes of indoor environments and city-
scapes. The general practice for adjusting such parame-
ters is to search for the best-performing settings through 
experimentation with a validation set. In our case, since 
we have limited data for real rosebush models, we used 
a subset of the synthetic dataset as validation set, sys-
tematically varied the design parameters without alter-
ing the general structure and modified each network so 
as to maximize its performance on the validation set. The 
objective was to provide a fair comparison among the six 
networks, whose default parameters were determined 
using data domains different from plant data.

Methodological research is ongoing to automatically 
adjust not only the hyperparameters but the entire archi-
tecture of the network [83]. So far, the effectiveness of 
genetic algorithms for the search of design parameters 
was demonstrated with convolutional networks [84]. This 
could stand as an interesting perspective to explore such 
approaches with point cloud based neural networks.

While designing a 3D point-based architecture to 
operate effectively on plant data, an important con-
sideration is the multi-scale and self-similar nature 
of plants. The architecture should be able to handle 

multiple, hierarchical spatial receptive fields in the net-
work and their sizes should be easily tuned to the scales 
of various structures in the plants. The multi-scale fea-
ture extraction scheme is also necessary to account 
for the intra-class size variations; such as variations in 
branch diameter or leaf length and intra-class geomet-
ric variations, such as diverse range of curvature on 
the branches and leaves. Also grouping features with 
respect to their proximity in the feature space can lead 
to non-local similarity modeling to capture repetitive 
structures that are inherent to plants.

The robustness of the architecture to heterogeneous 
point density, missing information and reconstruc-
tion noise is an important factor, especially for 3D data 
obtained through structure from motion. The full real 
plant models in the ROSE-X data set together with the 
synthetic data we employed in this work can be greatly 
instrumental for a systematic analysis of the responses 
of the architectures to low quality and noisy 3D data 
through simulation of acquisition systems such as ToF 
cameras and LiDARs in virtual environments Also, data 
augmentation is possible by introducing variable point 
density and artificial noise to the point clouds. How-
ever, the architectures should eventually be tested on 
data acquired by low-cost systems including structure 
from motion.

Another issue is that the variability of local parts is 
greatly effected by the intricate plant structure, bring-
ing distinct parts close to each other. The training data 
should be able to account for diverse local geomet-
ric occurrences, such as touching leaves or branches 
due to dense foliage. More realistic synthetic data or 

Table 11 Segmentation results on 8 real rosebush models for all architectures

Bold stands for "gain in IoU obtained by incorporating synthetic models" as expressed in the caption of the Figure

The first row for each class corresponds to IoU results of networks trained with three real rosebush models (III). The second row for each class gives the IoU results for 
the case, where the networks were trained with synthetic models and updated with three real rosebush models (S+III). The third row for each class gives the gain in 
IoU obtained by incorporating synthetic models. The last three rows of the table corresponds to MIoU over all classes

PointNet PointNet++ DGCNN PointCNN ShellNet RIConv

Flower III 14.94 72.72 6.96 49.76 47.26 53.42

S+III 7.54 79.17 51.42 60.55 55.80 52.93

Gain − 7.40 + 6.45 + 44.46 + 10.79 + 8.54 − 0.49
Leaf III 80.94 95.07 83.57 92.16 89.86 88.22

S+III 79.48 96.36 91.71 93.40 92.18 90.07

Gain − 1.46 + 1.29 + 8.14 + 1.24 + 2.32 + 1.85
Stem III 3.03 76.79 24.34 67.67 52.18 34.53

S+III 7.06 83.05 60.02 68.81 66.73 51.27

Gain + 4.03 + 6.26 + 35.68 + 1.14 + 14.55 + 16.74
MIoU III 32.97 81.53 38.29 69.86 63.10 58.72

S+III 31.36 86.19 67.72 74.26 71.57 64.76

Gain − 1.61 + 4.66 + 29,43 + 4.40 + 8.47 + 6.04
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plant-specific augmentation techniques ensuring fold-
ing of leaves and branches can help enrich the labeled 
data.

Conclusion
We modified six recent 3D point-based deep learn-
ing architectures, PointNet, PointNet++, DGCNN, 
PointCNN, ShellNet, and RIConv, for segmentation of 3D 
models of real rosebush plants into their structural parts. 
We used the annotated 3D models in ROSE-X data set 
for training and testing the networks. We also conducted 
experiments where the networks were pre-trained with 
synthetic rosebush models generated by L-studio soft-
ware, and then updated by real rosebush data. The results 
indicate that pre-training with synthetic data boosts the 
performance of all networks, except PointNet. The best 
segmentation results were obtained by PointNet++ with 
a mean IoU rate of 86.19%. We attribute this success to 
the ease of determining the size of the hierarchical local 
regions to extract multi-scale features with PointNet++. 
RIConv was not as effective due to reliance on rotation 
invariant features that provide insufficient local geomet-
ric information. DGCNN , PointCNN, and ShellNet pro-
duced promising results, however defining local regions 
for feature extraction by K-neighbourhood of points is 
less practical for modeling plant geometry; since the 
optimum K for each scale will be dependent on both the 
size of the plant part structures and the point density of 
the 3D point cloud.
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