N

N

Optimal Control of Plant Disease Epidemics with Clean
Seed Usage
Frédéric Marie Hamelin, Brady Bowen, Pierre Bernhard, Vushrali A Bokil

» To cite this version:

Frédéric Marie Hamelin, Brady Bowen, Pierre Bernhard, Vushrali A Bokil. Optimal Control of Plant
Disease Epidemics with Clean Seed Usage. Bulletin of Mathematical Biology, 2021, 83 (5), pp.46.
10.1007/s11538-021-00872-w . hal-03200491

HAL Id: hal-03200491
https://institut-agro-rennes-angers.hal.science /hal-03200491

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://institut-agro-rennes-angers.hal.science/hal-03200491
https://hal.archives-ouvertes.fr

Bulletin of Mathematical Biology manuscript No.
(will be inserted by the editor)

Optimal Control of Plant Disease Epidemics with
Clean Seed Usage

Hamelin, F. M. - Bowen, B. -
Bernhard, P. - Bokil, V. A.

Received: date / Accepted: date

Abstract The distribution and use of pathogen-free planting material (“clean
seeds”) is a promising method to control plant diseases in developing countries.
We address the question of minimizing disease prevalence in plants through the
optimal usage of clean seeds. We consider the simplest possible S-I model to-
gether with a simple economic criterion to be maximized. The static optimization
problem shows a diversity of possible outcomes depending on economical and epi-
demiological parameters. We derive a simple condition showing to what extent
subsidizing clean seeds relative to the epidemiological features of the disease may
help eradicate or control the disease. Then we consider dynamic optimal control
and Pontryagin’s maximum principle to study the optimal usage of clean seeds to
control the disease. The dynamical results are comparable to the static ones and
are even simpler in some sense. In particular, the condition on the critical subsidy
rate that makes clean seed usage economically viable is unchanged from the static
optimization case. We discuss how these results may apply to the control of maize
lethal necrosis (MLN) in East-Africa.

1 Introduction

Plant diseases cause economic devastation especially in developing countries by
severely affecting production of staple food crops due to yield losses. Cassava
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mosaic disease (CMD) and Maize lethal necrosis (MLN) are some of the most
damaging crop diseases in the world [16,17].

CMD occurs in many regions across Africa, India, and Sri Lanka, areas in which
cassava is considered a primary food crop [1]. As CMD significantly decreases tuber
production, it is a major constraint to cassava production [5]. CMD is caused by
several viruses such as the African cassava mosaic virus (ACMYV). These viruses
are vectored by the whitefly Bemisia tabaci. In addition, the virus propagates
through cuttings from infected plants used for planting. Cassava is a vegetatively
propagated crop, and infected plants may not be detected. The distribution of
virus-free planting material is a promising method to control CMD [17].

MLN has recently emerged in sub-Saharan East Africa, Southeast Asia, and
South America, with large impacts on smallholder farmers [16]. MLN is caused by
coinfections between the Maize chlorotic mottle virus (MCMV) and a potyvirus
such as the Sugarcane mosaic virus (SCMV). MCMYV is spread by a variety of
insect vectors including maize thrips Frankliniella williamsi. The symptoms of
MLN include severe stunting and death, and productivity is all but lost in the
stalks that are infected [12]. In addition to vector transmission of MCMV there
is also a low, but epidemiologically significant, possibility of vertical transmission
through seeds. The distribution and use of certified virus-free seeds is a promising
method to control MLN [10].

From now on, we will use the term “clean seeds” to generically mean certified
pathogen-free seeds, tubers, or in vitro propagated planting material [18]. The use
of clean seeds can be combined with other control methods such as vector control,
crop rotations, removal of infected plants (“roguing”), and breeding plants to be
more resistant to pathogens.

Previous models [14,10,15,19,2,9] computationally explored the effects of clean
seeds in combination with other control methods with applications to MLN and
CMD among other diseases. However, we are not aware of a generic mathematical
model focusing on clean seeds as a control method. The article [5] addresses the
effectiveness of several control methods in terms of virus evolution, with special
attention to CMD. The authors note that in vitro propagation and cutting selection
holds the risk of viral evolution resulting in an increased virus titre, while roguing
does not carry the same degree of concern. The integration of epidemiological
models of control with economic considerations is an active area of research in
plant disease epidemiology [4,7].

In this paper, we address the problem of optimally controlling plant diseases
in crops using an epidemiological model and optimal control theory. Our model is
a continuous time S — I model based on ordinary differential equations in which
we divide the host plant population into two compartments; susceptible to disease
or healthy plant compartment, S, and infected plant compartment I. The model
incorporates continual harvesting and replanting via a proportion of clean seeds.
We do not consider insect vectors explicitly, instead considering them implicitly via
horizontal transmission between plants. In addition, the virus can spread vertically
via infected seeds.

We consider the question of how to control clean seed usage while optimizing
revenue from harvesting of both healthy and infected plants. Towards this goal,
we consider a profit functional where clean and infected plants are sold at differ-
ent rates, along with the cost of replanting through the use of clean seeds. Both
the healthy and infected plants are harvested though we assume that the infected
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plants are worth less per unit price than the healthy plants. Using the mathemat-
ical theory of optimal control we optimize over the revenue from harvesting by
controlling the fraction of clean seeds that are used in planting.

An outline of the paper is as follows: We describe the epidemic model in Sec-
tion 2, along with its biological interpretation. We then look into the static opti-
mization of the system in Section 3 and determine a variety of cases that relate
the use of clean seeds to epidemiological and economical parameters. We study
the case of dynamic optimal control in Section 4, where we consider a finite end
time with a full account of all remaining plants. Section 4 presents numerical sim-
ulations of the dynamical optimal control system. Finally, in Section 5, we present
a discussion and conclusion of our results.

2 S — I Model of Plant Disease with Clean Seeds and Harvesting

Our model is a modification of one presented in [5] where we include vertical
plant-to-seed transmission in addition to removal of infected seeds, as well as seed-
to-plant transmission. The term “seed” here means planting material in general,
including tubers and cuttings, depending on the crop considered.

The total density of the plant host is N = S+ I, with S and I the densities of
susceptible and infected hosts, respectively. We do not discriminate between young
and adult plant hosts for simplicity. Hosts are harvested at rate p, and replanted
at rate o. The fraction of clean seeds is ¢. The probability that an infected plant
produces infected seeds is v. The probability that infected seeds are detected and
discarded is p. The fraction of infected plants contributing to local seed production
is therefore 1 — pv. The probability that infected seeds produce infected plants is
qg. The disease transmission rate is denoted (. The equations for the S and I
compartments are given by

as _ (L=v)+ (- q)(1—p)I +5
dl q(1 —p)vl
@~ T ey M TPIS (Ib)

Descriptions of the variables and parameters in the S — I model are given in
Table 1, with the default values used in our simulations and their corresponding
ranges of values. Figure 1 displays a compartmental model for the dynamics involv-
ing replanting using seeds taken from the entire stock of plants, which corresponds
to the fraction expressed in Equations (1).

To disentangle the use of clean seeds from related control methods such as seed
selection, we then assume that growers are not able to detect between healthy and
infected seeds (p = 0) and so both are used to propagate the host plant. Let v = vg
denote the vertical transmission rate of the pathogen. Equation (1) simplifies to

ds A= nI+s
5 — o0 Ftoll—d)——F—— —nS-BIS, (2a)
U o1 - )L — 1+ p1s, (2b)

dt N
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Fig. 1 Replanting dynamics as expressed in Equation 1. The arrows represent the possible
pathways that seeds can take from the compartments on the left to the compartments on the
right. The parameters next to each arrow represent the probabilities that seeds move along
that pathway.

Variables/ Description Range Default
Parameters of Values Value
S Susceptible plant population density [0,1]

I Infected plant population density [0,1]

N Total plant population density 1

1) Fraction of clean seeds used in replanting | [0, 1]

o Replanting rate [0, 00) 1

I Harvest rate [0, 00) 1

B8 Horizontal transmission rate [0, Bs] % or %
v Probability of plant-to-seed transmission | [0, 1] % or 1
D Probability of detection of infected seeds | [0, 1] 0

q Probability of seed-to-plant transmission [0,1] 1
Ps Profit from selling uninfected plants [0, 00) 3
pr Profit from selling infected plants [0, 00) 0

c Unit cost of using clean seeds [0, 00) 1
Pg End value of remaining uninfected plants | [0, c0) 0or2
Pr End value of remaining infected plants [0, 00) 0

Table 1 List of variables and parameters in the S — I model (Equation 1) and objective
functional (Equation 3).

Our goal in this paper is to look at the optimal control problem with control
variable ¢(t), for which the objective functional

T

J(¢(-)) = PsS(T) + PrI(T) + / [pspS(t) + prpl(t) — cop(t)] dt, (3)
0

is maximized. Thus, our objective is to maximize revenue by controlling the in-
troduction of clean seeds. The objective functional represents the total profit from
the patch of crops; it contains the values of the healthy and infected plants at
the final time, the selling of both healthy and infected crops over the season, and
the cost of replenishing harvested crops through clean seeds. More specifically, the
parameter c represents an additional cost of clean seeds relative to local seeds. The
costs that do not depend on clean seed usage are left implicit in this functional.
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In the sequel, we will consider two subcases, 1) Ps = Pr (we disregard the
disease prevalence in the end), and 2) Py > P (we value disease prevalence in the
end).

For simplicity, we assume that each harvested plant is replaced by the replant-
ing of a new plant (resulting in o = uN), which is a reasonable assumption in
agriculture. As a consequence, N is a constant from the equation for the total

plant density,

dN

— =0—uN =0.

a7 H
Without loss of generality, we can assume that N = 1, and thus we have p = o.
Then the disease prevalence is I = 1 — .S, and the state equations and the optimal

control problem simplify to maximizing the functional

J(¢())) = PsS(T)+ Pr(1 —S(T))+/ [psuS(t) +pru(l — S(t)) — cuop(t)]dt, (4)
0

subject to the state equation (2a), which with o = p simplifies to the equation

85— (uow— S 4 a1 ) (1-9). (5)

We can rewrite Equation (4) in the form

T

J(¢()) = (Ps = Pr)S(T) + (Pr + Tupr) + / [(ps — pr)pS(t) — cug(t)] dt.
0

In this form, we determine that maximizing this objective functional is the same
as maximizing the functional (keeping the same notation for convenience)

T

J(o()) = (Ps = P)S(T) + / [(ps — pr)pS(t) — cue(t)] dt . (6)
0

Without loss of generality, we assume that both py = 0 and P; = 0. In the
case where either of these quantities is not zero, we can instead consider Ps and
ps to be the difference between the value of clean plants and the value of infected
plants, for the cases of terminal payoff and running payoff respectively.

Thus, incorporating all our assumptions and simplifications, the problem that
we will consider in the next sections, based on equations (5) and (6), is the maxi-
mization problem

T

max J(6()) = PsS(T) + [ [psS(0) — cot)] . (72)
0

subject to % = (pov — BS + u(l —v)) (1= 5), S(0) = So, (7b)

0<¢(t) <1 (7c)

We address this dynamic optimal control problem in Section 4. However, in
the next section, we first consider a static optimization problem.
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3 Maximizing the long-term running payoff

In this section, we are interested in finding the optimal (constant) control ¢ that
maximizes the long-term running payoff

U(¢) :==psS(¢) — c, (8)
in which S(¢) is the equilibrium value asymptotically reached by the state ODE
ds
5 = (wdv = BS+u(l—v))(1-S5). (9)
Thus, our maximization problem of interest here is to find
6" = arg max [(¢), (10)
¢
Subject to (uopv — BS + u(l —v))(1 - S) =0, (11)
0<¢<1. (12)

3.1 The Basic Reproduction Number for the Epidemic Model

We first define an important threshold parameter for the state ODE (9), that will
aid in considering the relative importance of the transmission rate to the harvesting
rate. The parameter R is defined as

B
R="=-. (13)
I
The basic reproduction number for the epidemic model (9) can be expressed as
Ro (I-¢)  + R : (14)

vertical transmission Rorizontal transmission

and can be interpreted as the sum of two different modes of transmission of the
disease; vertical and horizontal transmission. There are two equilibrium values

of S:
1. (DFE) S =1, the Disease Free Equilibrium

2. (EE) S = S, the Endemic Equilibrium, with

S .= %(¢y+(1—y)), (15)
14t _RRO. (16)

The DFE and EE are reached depending on whether Rop < 1 or Rog > 1, respec-
tively. Using the DFE and the EE, we can rewrite the state equation (9) as

ds &

= = 8E-5)1-9), (1)
The EE, S, exists and is biologically feasible when R > 1. In this case, the equa-
tion for S indicates that S is locally asymptotically stable, while S = 1 is unstable.
When Rg < 1, the DFE (S = 1) is the only equilibrium that is biologically feasible
and is stable.
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Remark 1 In the absence of control (¢ = 0), Ro equals R+ v. If R+ v < 1, the
disease gets extinct in the absence of control (which is costly to implement). Then
the optimal strategy is trivially ¢* = 0. Therefore, from now on, we make the
following assumption:

(A1): R+v>1.

3.2 Dynamics of the epidemic model

In this section, we analyze the S — I model for its equilibria. We first define a
second threshold quantity

1-R
D

&::1—

(18)

The threshold ¢, as a function of the parameters R and v, is the value of ¢ at
which Rop = 1. Using the threshold ¢, we can rewrite the basic reproduction
number, given in equation (14) as

Ro=1+v(p— ). (19)
We also rewrite the EE in equation (15) in terms of the threshold ¢ as

5::¢%+ (1]_%V),

_,_ve—9)
=1- T (21)

(20)

In the analysis of the S — I model, two cases are to be distinguished:

(A) R > 1: In this case, the threshold ¢ > 1. The equation for S asymptotically
reaches the endemic equilibrium (EE), S, for all ¢ € [0, 1]. In particular, for
full control ¢ = 1, we have that the equilibrium is S = /8 =1/Ro = 1/R <
1. This means that the prevalence of the disease is [ = 1 —1/R > 0, and one
cannot get rid of the disease.

(B) R < 1: In this case, the threshold ¢ < 1, and S attains the endemic equi-
librium, S, only on the interval ¢ € [0,(;75). For ¢ € [(5, 1], S approaches
the disease free equilibrium (DFE), S = 1. This means that the disease ap-
proaches extinction and that is a sufficient rate of control to get rid of the
disease.

In either case, the absence of control (¢ = 0) results in the endemic equilibrium
S = (1 —v)/R. This means that the pathogen has a positive equilibrium for any
vertical transmission v and will invade the entire plant population when there is
full vertical transmission, i.e. when v = 1. These results are collectively depicted

in Figure 2.
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%2

—
T-U‘l
<

0 s 1 ¢ ;

Fig. 2 Dynamics of the S—1I disease model. ¢ = 1— % DFE means Disease free equilibrium,
EE means endemic equilibrium. The biologically feasible region is in white. (Left) Case (B):
Dynamics for the case R < 1. (Right) Case (A): Dynamics for the case R > 1.

3.3 Static optimization

In this section, we consider static optimization of the problem. In this case, the
relative unit price of healthy plants, pg, versus clean seeds, ¢, also becomes impor-
tant. We denote the ratio of the two parameters, ps and ¢, as a third threshold
quantity r

ps
=2 22
" C ( )

We start with distinguishing the same two cases as in the dynamics of the S — I
model.

(A) R > 1. Then, ¢ > 1, and for all ¢ € [0,1], S asymptotically reaches the EE
equilibrium. We have

U¢) = psS(¢) — cd = psng + (1)) —co
:qﬁc(%—l)-ﬁ-cr(l;’/) (23)
—c[r—¢-Z(@-9),

Two sub-cases are then to be distinguished:
(Al) R <vr. Then ¢* = 1.
(A2) R > vr. Then ¢* = 0.
(B) R < 1. Then, ¢ < 1, and S asymptotically reaches the EE on [0, ¢) and the
DFE on [¢, 1]. Thus, we have

. ¢c(%—1)+cr%:c r—¢—%($—¢)]for¢€[0,<§),
) = c(r — @) for ¢ € [¢,1] .
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1(¢) 1(¢)

We note that £(¢) is continuous over [0, 1]. The derivative of ¢ with respect
to ¢ is:

vr -
_ c(—fl) f0r¢6(0,¢)7
t) = —6120 ford)G(&),l).

Note that £'(¢) has a discontinuity at ¢ = ¢. Two sub-cases are then to be

distinguished:

(B1) If R < vr, then ¢
Therefore, ¢* = ¢.

(B2) Otherwise if R > vr then £'(¢) < 0 for ¢ € (0,1). Therefore, ¢* = 0.

(¢) > 0 for ¢ € (0,¢) and £'(¢) < 0 for ¢ € (¢,1).

Fig. 3 Long term payoff as a function of ¢ in the case (B) R < 1. (Left) Case B1: the maximum

occurs at ¢ = ¢. (Right) Case B2: the maximum occurs at ¢ = 0.

3.4 Discussion of Static Optimization Results

The results from static optimization can be summarized in the parameter plane
(R,7) as below and in Figure 4.

(S1)

(52)

If R<1-—v, (ie., assumption (Al) as stated in Remark 1 does not hold),
then ¢* = 0, and the system converges to DFE S = 1.

If R > 1 — v (assumption (A1) holds) and R > vr, then ¢* = 0 again, but
the system converges to EE S = (1 — v)/R.

If R < vrand R > 1, then ¢* = 1, and the system converges to EE S = 1/R.
If R<vrand 1—v < R < 1, then ¢* = ¢ and the system converges to DFE
S=1.

Figure 4 displays this summary by dividing the (R, r) plane into distinct regions
of differing control strategies. Biologically we may interpret the results from static
optimization as follows:
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R =

0O 1-—v 1 R

Fig. 4 Results of static optimization: The (R,r) plane is divided into distinct regions with
differing control strategies.

(S1)

(52)

(S3)

(54)

If R<1—v, then Rp < 1 for ¢ =0 and the disease goes extinct in absence
of control (which is costly to implement). Therefore, there is no incentive to
control, and ¢* = 0.

If R>1—vand R > vr, then the disease transmission rate (8 in R = 3/u)
is too large relative to the plant renewal rate (u) or to vertical transmission
(v), to make it worthy to use clean seeds (which have a relative cost 1/r).
Hence ¢* = 0, meaning that the disease is left uncontrolled and stabilizes at
an endemic equilibrium.

If R < vrand R > 1, then the optimal strategy is to use as many clean seeds
as possible (¢* = 1) to minimize the prevalence of the disease, which remains
at an endemic equilibrium.

If R<vrand 1 —v < R < 1, then it is possible to get rid of the disease by
using an intermediate proportion of clean seeds (any ¢ € [(Z), 1] )- Since clean
seeds are costly, the optimal proportion of clean seeds is ¢* = ¢, and the
disease goes extinct.

3.4.1 Decreasing the cost of clean seeds

Case (S2) is discouraging. One may wonder whether subsidizing clean seeds may
help with controlling the disease. Let s be the discount on the unit price of clean
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seeds due to subsidies, i.e. the unit price of clean seeds is now ¢(1 — s) instead of c.
Thus, r = pg/c is now replaced with /(1 — s), and the condition R < vr becomes
vr

R<1_S.

Therefore, if the discount due to subsidies on clean seeds exceeds a critical fraction,

i.e.,
vr

- %
then Case (S2) can be avoided and the outcome of static optimization will be
determined by either Case (S3) or Case (54).

s>1

3.4.2 Decreasing vertical transmission

0 1—-111—12 1 R

Fig. 5 Changes to the (R, ) plane as v varies: Decreasing the value of v from v to v2 results
in 4 regions where the control strategy has changed.

Figure 5 shows the effect of decreasing vertical transmission v in the parameters
plane (R,r). Decreasing v has a positive effect in regions R1 and R2. In region
R1, the system switches from an uncontrolled (¢* = 0) endemic equilibrium (EE)
to disease-free equilibrium (DFE) requiring no control (¢* = 0). In region R2, the
system switches from controlled (¢* = ¢) DFE to DFE with no control (¢* = 0).
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By contrast, decreasing vertical transmission (v) has a negative effect in regions
R3 and R4. In region R3, the system switches from controlled (¢* = ¢) DFE
to uncontrolled (¢* = 0) EE. In region R4, the system switches from controlled
(¢* =1) EE (S = 1/R) to uncontrolled (¢* = 0) EE (S = (1 — v)/R). Note that
even though the decrease in v has a direct positive effect as it decreases the disease
prevalence for a given ¢, the net resulting effect is negative, as ¢* switches from 1

to 0 (meaning that it is no longer optimal to use clean seeds).

4 Dynamic Optimal Control

In this section, we address the dynamic optimal control problem stated in Section 2
in System (7). Based on the objective functional, J(¢(:)) and the state ODE and
constraints in System (7) we derive the following Hamiltonian:

H = plpsS(t) — co(t)] + At) [(vpuo(t) — BS(t) + p(1 —v))(1 = S(1))] -
This gives us the following adjoint equation:

O O ps AW — SO + (wpplt) — BS(W) +p(1 = V)] (24)

Since the Hamiltonian is linear in ¢, the optimality condition will contain no
information on the control and we cannot use this to find a characterization of
the optimal control. In Appendix C, Section 8 we show that if R # rv, then this
problem has a bang-bang optimal control, that is the optimal control ¢* cannot
be singular on an interval.

We define the switching function

_OH

Y(t) = 99 M (e + A1 =S(1)v),

Using the switching function, we characterize the optimal control as

e O Bt <0
¢ (t)—{1 it (t) >0

According to Pontryagin’s maximum principle, the transversality condition is
AT) = Ps.

Next, we solve the state and adjoint equations in backward time from every
possible value of S(T'). This will yield a field of optimal trajectories in the plane
(t,S) (in blue in Fig. 6). This method will allow us to derive a switching curve in
the plane (¢,.5) (in red in Fig. 6). Getting back to the original problem (7), the
optimal strategy is the one starting from (¢t = 0,5 = Sp).

Defining St = S(T),

Y(T) = —pc+ Ps(1 — St)vp.

We define a threshold value for St as

S’Tzl—ﬁ. (25)
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If Sp > Sp, then (T) < 0 and ¢*(T) = 0. Otherwise if Sp < Sr, (which implies
St > 0 or equivalently vPs > ¢), ¢(T) > 0 and ¢*(T) = 1.

From now on, we focus on the ¢*(T') = 0 case to derive a switching curve in
the (¢,.5) plane.

As long as ¢ = 0 (in backward time), we have, introducing a dot to denote
differentiation w.r.t. time,

S=(1=8)(=BS+u(l -v)),
A=AB(L—-28) +p(l —v)) —pps, AT)= Ps,

and
Y=pA1-8)—d<=vA(1-8)="+c.

SRS

This yields

w:yu[;\(l—S)—S)\} ,
=vu(l = S) [ABQA —29) + p(1 —v)) — pps — AMpu(l —v) = BS)]
=vp(l - S)[AB(1 = S) — ups] ,

=vp(l—-9) [g (% +C) *Mps] )

=u(l-295) {gd) + Bc — MVPS] )
with (T') = p[vPs(l — S7) — ] < 0 (since we assume ¢*(7') = 0). Using the

expression of St in (25), one may notice that for all Sy > S’T,
(T) = vu(l — S7)(BPs(1 — St) — pps) < 0

if and only if R/v < r.
Let t* be a switching time such that ¢ (t*) = 0. Then

G(t) = u(1 = S(t")) [Be — pps] -

Consequently, switching from ¢ = 0 to ¢ = 1 (in backward time) is possible iff
R
ﬁc—,uups<0<:>;<r.

(The adjoint and state variables are necessarily continuous, so the switching func-
tion ¢ is continuous as well.) As a corollary, the condition R/v > r implies that
the switching function 1) never crosses zero and so the optimal control is ¢* = 0
forall t <T.
If R/v < r, then ¢ < 0 (since )(T) < 0) as long as ¢ = 0 (in backward time).
Since the Hamiltonian is constant all along the optimal trajectory (see ap-
pendix A), we have, for all ¢ such that ¢* = 0:

H(T)=H(t),
ppsSt + Ps(u(l —v) = BST)(1 — St) = ppsS + A(pu(l —v) — BS)(1 = 9),
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which yields

(5(t) = St) + Ps(1 = S7) (85T — p(1 —v))

_ HPs
A(t) = (BS(t) — (1 — v)u) (1 — S(1))

Thus,

(kps(S(t) = St) + Ps(1 = S1)(BSr —p(1 —v)))

v =p 55(t) — (1— v

From this we get

cu+v(PsfSt(L— St) — pu((1 = v)(1 = S1)Ps + Stps +¢))

St = Be — vups

(26)

Solving $ = (1 — S)(—A3S + (1 — v)) with terminal condition S(T) = S, we get
for all ¢t € [t*,T):

(8BSt — (1 — ) expl(8 — (1 — )T — D] + (1l — v)(1 — Sr)
S0 = 35— i~ v) expl(B —a(l — )T D 1 BA - 50) D)

Equating the expressions of S(t*) given by Equations (26) and (27) yields at
most 3 possible solutions for St as a function of t*. The cubic corresponding to
these solutions can be expressed in the form

(S — D)(ASF +BS7 +C) =0, (28)

with the following coefficients

A =vPspB(E) - 1), (290)

B=v(((v—=1)Ps +ps) u— PsfB) E(t") + (2Psf — psp)) , (29b)

¢= ((Ps +c—ps)y—c+ Psuz) A+ cﬂ) E(@t*) + (psp — PsB)v, (29¢)

b= % (29d)
in which

E(t*) = exp[(8 — p(1 — v))(T — t7)].

Thus, one of the solutions of this cubic is (1 — v)u/B, which corresponds to
the endemic equilibrium in absence of control (for ¢ = 0). Using St = (1 —v)u/8
and substituting this solution into Equation (26) yields S(t*) = St = (1 —v)u/B.
Since this line is an equilibrium for the system, it cannot be crossed and thus does
not correspond to a switching curve.

In Figure 6, we present numerical simulations of the dynamic optimization
problem for different combinations of the parameters Ps and v and the thresh-
old parameter R. In Appendix B, Section 7, an outline of the numerical method
employed, the forward backward sweep, is presented. Our numerical simulations
indicate that of the remaining two solutions (the roots of a quadratic), only one
is biologically relevant. This is the one we use to draw the switching curves in
Figure 6.
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In the special case Ps = 0, the coefficient A equals zero, so Sp = —C/B. Using
Equation (26) yields the switching curve S* : t* — S(¢*) in the plane (¢, S):

5y = Be= ppsv)el T IEHET) 4y — o(1 - v))
(ﬂc — HPSV) (e(T_t)(:B_M(l_V)) — 1) ’

This is shown in the top and bottom panels of Figure 6, for the cases v = 1, and
1>v> %, respectively.

For Ps > 0, noticing that the coefficient A vanishes with E(T") = 1, one obtains
S*(T) = St as expressed in equation (25). This means that the switching curve
crosses the ¢t = T vertical line at S = S'T. This is shown in the middle panel of
Figure 6 provided vPs > c.

Finally, in Figure 7 we present a graphical depiction of the results of dynamic
optimization by dividing the (R, vr) plane into distinct regions of differing control
strategies as demonstrated by the results of this section.

5 Discussion and Conclusions

In this section, we provide both a biological and economic context in which to un-
derstand the model considered and the results presented in this paper. There are
a number of bio-economical implications that we have gathered from our model
and the control problems associated to it. In particular, static optimization, as
presented in Section 3.3, yields 3 possible nontrivial strategies, depending on pa-
rameter values (see Figure 4): no control (S2), full control (S3), and intermediate
control (S4). The region (S2) corresponds to the disease transmission rate being
too large with respect to the plant renewal rate or vertical transmission to make
the use of cleans seeds viable, which results in the optimal strategy of letting the
system approach its endemic equilibrium without any control on the disease. The
region (S3) is the opposite; while it is not possible to fully eradicate the disease
through clean seeds alone, it is still optimal to use as many clean seeds as possi-
ble to minimize the prevalence of the disease. The region (S4) is the case where
eradicating the disease is possible by using only a fraction of clean seeds.

Subsidizing clean seeds enables switching from the uncontrolled case (S2) to the
controlled cases (S3) or (S4). We derived a very simple bio-economical threshold
for the minimal amount of subsidies to make it economically viable for an individ-
ual grower to control the disease. However, as subsidizing seeds in this manner only
allows us to move along the economical parameter (r) axis in Figure 4, we cannot
use subsidies to switch from full control (S3), where the pathogen persists at en-
demic equilibrium, to intermediate control (S4), where the pathogen goes extinct.
The transition from (S3) to (S4) can only be made possible through other possi-
ble control methods decreasing horizontal transmission (R), such as introducing
partially resistant plants.

Decreasing vertical transmission (v) may have the opposite effect as it decreases
the utility of clean seeds (Figure 5 and Section 3.4.2). Hence, decreasing vertical
transmission can have a counter-productive effect. Breeding for partially resistant
plants to decrease the vertical transmission rate of the pathogen (v) should be
given caution, as it may result in the optimal strategy switching from partial or
full control to uncontrolled disease spread. Regions (R3) and (R4) in Figure 5
represent these cases.
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Fig. 6 Dynamics of different combinations of R, Pg, and v. Blue curves are trajectories under
optimal control, Red curve is the switching curve, and dashed lines are equilibrium values for

¢ = 0 and ¢ = 1 when they differ from S = 0 and S = 1 respectively. (Left Panel) R < 1:
c=1,8=3%,ps=3c=1,ve{l,2}, Ps €{0,2}, (Right Panel) R > 1: 0 = 1, 8 = 3,
ps=3,c=1,ve{l,3}, Ps €{0,2}.

An alternative way to decrease vertical transmission is to sort out diseased
seeds from the local pool of seeds to be replanted, which amounts to considering
p > 0 in our model. We assumed p = 0 for simplicity but our approach can be
extended to include positive values of p. However, this changes the dynamics and
the analysis enough to justify a separate treatment of this case. We therefore leave
the p > 0 case for future research.
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vr

0 1 R

Fig. 7 Results of dynamic optimization: The (R,vr) plane is divided into distinct regions
with differing control strategies. Examples of this bang-bang control can be seen in Figure 6.

We also developed a dynamic optimization approach maximizing an economi-
cally relevant finite-time horizon criterion in Section 4. This showed that the above
distinction between full control (S3) and intermediate control (S4) is likely over-
simplified, as in practice it may take a long time to reach an equilibrium. Rather,
the optimal strategy is either no control (S2) or bang-bang control, i.e. full control
followed by no control (see Figure 7). Intermediate control is not optimal/rational.
If a grower uses clean seeds, then they should use only clean seeds (if possible).
Although static and dynamic optimization approaches yield qualitatively contrast-
ing results, the subsidies threshold (based on the condition R < vr) is the same
following both approaches.

In theory, there may be an incentive to use clean seeds even if the unit cost of
clean seeds is greater than the unit benefit of harvested plants, i.e. r = pg/c < 1.
This reflects a population-scale effect in which a few clean seeds help protect
a greater number of plants (a phenomenon similar to herd-immunity, as would
happen through the use of genetically resistant seeds for instance).

In practice however, the parameter r would unlikely be lower than unity. For
instance, consider maize lethal necrosis (MLN) in Kenya. The price of maize is
approximately 0.5 USD per kilogram [13]. The average yield is of the order of 2
tons per hectare. The total revenue therefore approximates 1000 USD per hectare
[3,6]. This is to be compared to the cost of certified seeds, which is approximately
40 USD per hectare [6]. This yields r ~ 1000/40 = 25, which is one order of
magnitude greater than unity. This makes sense as there are significant implicit
costs, including wages and fertilizers, to be covered regardless of clean seed usage
[13].

One may finally wonder how r would compare to R (horizontal transmission)
and v (vertical transmission) in the case of MLN in Kenya. Assuming vertical
transmission approximates 5% [10] yields rv & 25 x 0.05 = 1.25. The parameter R
can then be estimated as a function of the observed disease prevalence through the
relationship R = (1 — v)/I. Considering a prevalence of 40% in absence of control
[12] leads to R ~ 95/40 = 2.375. Since R > rv, there would be no economical incen-
tive to use clean seeds to control the disease according to our models. Nevertheless,
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we derived a simple rule for subsidizing clean seeds [6] in this case: namely, the
discount on clean seeds should be at least equal to s & 1 —1.25/2.375 ~ 50%. This
way, buying clean seeds to control the disease would become economically viable.
Although the above derivation is very rough, such an economical-epidemiological
approach may help decision makers define subsidy rates that would be acceptable
to informed growers [6].

6 Appendix A

We define an extremal trajectory gf) as one where the control ¢ maximizes or min-
imizes the Hamiltonian. It is a function of both the state variable(s) (here S) and
the adjoint variable(s) (here A). We have the following important result [11]:

Theorem 1 (First integral of the energy) If both the dynamics and the run-
ning cost are time-invariant, the Hamiltonian is constant along an extremal tra-
jectory.

Proof To avoid any confusion in the notation, we will use Dieudonné’s notation
for the partial derivatives of the Hamiltonian H (S, A, ¢),

D1H(S7 )\, ¢) = 7>\(S7 >‘a ¢) )

DQH(S7 )\, (;b) = S(Sa >‘7 ¢) .

Let H(S,\) := H(S,?\,QZ)(S, A)). It follows from Danskin’s theorem (see [8]) that,
if the extremalizing ¢ is unique,

D1H(S,A) = DiH(S, X, 6(S, \)),
D2H (S, A) = DaH(S, X, $(S, \)).

Moreover, the only way é could be non-unique would be on a singular arc, where
DsH = 0, so that the conclusion of Danskin’s theorem would still hold. Hence we
have

~

% — DS, \)S(S, A, &) + DaFi(S, MA(S, A\, &) = —AS + $A = 0.

Q.E.D.

7 Appendix B

We used two different solution techniques that gave consistent results. In the main
text, we analytically solved the optimal control problem in backward time from
every possible value of S7. Conceptually, this yielded a field of optimal orbits in the
plane (¢, S) as depicted in Fig. 6. However, the blue curves in Fig. 6 were actually
computed using an alternative numerical “forward-backward sweep” method to
make sure that the results are correct regardless of the method used. The “forward-
backward sweep” numerical method yielded the same switching curve as predicted
from the mathematical analysis.



Optimal Use of Clean Seeds 19

In order to numerically compute the optimal control for various values for each
parameter, we modified the forward-backward Sweep technique as described in
[11]. Our method uses the defined initial conditions of S(7) = S- and A(T) = Ar
and an initial guess of the control ¢(t) = ¢o(t) and refines this guess until some
convergence criterion has been met. The steps in this method are described as
follows:

1. Determine an initial guess for the control ¢o(t).
2. For ¢ > 1, do the following:

(a) Solve S(t) by moving forward in time on the region [r,T] and backward in
time on the region [0, 7] using Runge-Kutta methods (RK4) to approximate
the solution to the ODE.

(b) Use these values of of S(t) to approximate the solution of the ODE for A(t)
by moving backward in time on the region [0, 7] and using RK4 with the
same timesteps.

(c¢) Calculate an approximation to (t) using S(¢) and A(t) and use this to
determine an update function ¢ ;4 (t).

(d) Update the guess for ¢ using values of ¢;—1(t) and ¢f;z(t). In our model
we use ¢;(t) = (1 — a)pi—1(t) + ag i (t) for some a € (0,1).

(e) Continue this process from Step 2 until the following convergence criteria is
reached: The relative differences between old and new values, as measured
in the infinity norm, are less than a tolerance (¢) for each of the controls,
state variables and the adjoints. If convergence is not reached, go to (a)
and repeat, unless a maximum number of iterations have been exceeded.

We used this method to compute the optimal trajectories in Figure 6. In our case,
we found that a = 0.1 was sufficient to generate the optimal control trajectories
represented, with At = 1073 the timestep for RK4 and ¢o(t) = 0.5 the initial guess
for the control. We used a tolerance of § = 103, for checking the convergence
criteria.

8 Appendix C

To show that there is no singular region of the optimal control in the cases ob-
served, we turn to proof by contradiction.

Assume ¢* is singular. Then, by the definition of ¢*, this means that there
exists some interval of time, I, such that ¢ (t) = 0 on this interval I, we have

P(t) = p(—c+ A (1 = S@)v) = 0.

Solving for A, we get that on I,

c

M= La—swy

whenever S(t) # 1. We can then take the time derivative of this quantity and the
state equation (5) to get the relationship

dA c
T m(*ﬁs(t) + pov + p(l —v)).
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Equating the above to the relationship derived from the Hamiltonian in Equa-
tion (24) and cancelling out terms, we get the identity

C
—mps + —f=0.
v

Using the definitions of R and r, we can show that the above identity is equivalent
to R = rv, which is the line dividing the regions in Figure 7. Since we are only
considering the cases R > rv and R < rv, (i.e. R # rv), we conclude that there is
no singular region of the optimal control along the switching curve.

9 Appendix D

In the case of an infinite horizon, we are interested in maximizing

oo

J(6()) = p / = (psS(t) — co(t))dt, (30)

0

with respect to ¢ € [0, 1], subject to the state equation (5) again. In the above
e % is a discount term, with the parameter 6 > 0.
To show that the integral in Equation (30) converges, we use the property that

both S(t) and ¢(t) are bounded between 0 and 1:

uo/e—at(psS(t) — cop(t))dt| < “0/‘6_‘”(;)55@) ooty
< u/e—ét max(ps, c)dt = %(ps,c).
0

The Hamiltonian H and the switch function (t) are slightly modified with
respect to the finite-horizon problem addressed in Section 4. This results in the
adjoint equation

CC% = —ppse” "+ AD[(1 = S(1))8 + (vud(t) — BS(t) + p(1 —v))],

and switch function
w(t) = (=™ + A - SW)) -
We are interested in a singular control ¢* € (0,1) such that ¢ = 0 along the
singular part of the optimal trajectory. This yields
ce—t
Alt) = 1= 5@
and differentiating this in respect to time gives us

A\ _ =0+ pév = BS +p(l—v)
ar v(1— S(0)
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Setting these two equations for the time derivative of A equal to each other
and solving for S(t) results in the following equation for S*
1)
S =1- —u.
v (r = 3)

A necessary condition for the singular control to exist is S* < 1, which occurs
whenever R < rv. This ratio has appeared in previous analysis, and represents
the conditions where it is economically beneficial to use clean seeds. From here,
we have that S* > 0 if and only if

(5<1/u<7"f§)7
v

meaning the discount rate must be small enough for long term interests to prevail
over short term interests.

If ¢* € (0,1) is constant, then the dynamics of the system result in the equi-
librium point

S = % (" v+ (1 —v)).
Equating S and S* results in the following expression for ¢*
1 é 1
=2 (R|1- —"T—— | - (1 - = (RS"-(1- .
p ( ( W(T_,D) ( u>> L (ks —(1-1))
Letting K = vu (r — R/v), we get that 0 < ¢* < 1 only if
max(K(l—%)ﬁ) <5<K(1— 1;2”) ,

which requires Ro = R + v > 1 otherwise the upper bound is negative.
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