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Introduction

Climate change is expected to profoundly impact key food production sectors, with the tropics expected to suffer losses in both sheries and agriculture. For example, by 2100 tropical areas could lose up to 200 suitable plant growing days per year due to climate change 1 . Likewise, shable biomass in the ocean could drop by up to 40% in some tropical areas 2,3 . While understanding the magnitude of losses that climate change is expected to create in key food production sectors is crucial, it is the social dimensions of vulnerability that determine the degree to which societies are likely to be affected by these changes [4][5][6][7][8] . Vulnerability is the degree to which a system is susceptible to and unable to cope with the effects of change. It is comprised of exposure (the degree to which a system is stressed by environmental or social conditions), and the social dimensions of sensitivity (the state of susceptibility to harm from perturbations), and adaptive capacity (people's ability to anticipate, respond to, and recover from the consequences of these changes) 4,9 . Together, the exposure and sensitivity domains are referred to as "potential impacts", which are the focus of this article.

Incorporating key social dimensions of vulnerability is particularly important because many coastal communities simultaneously rely on both agriculture and sheries to varying degrees [START_REF] Cinner | Livelihood diversi cation in tropical coastal communities: a network-based approach to analyzing 'livelihood landscapes[END_REF] , yet assessments of climate change impacts and the policy prescriptions that come from them often consider these sectors in isolation 1,5,[START_REF] Lotze | Global ensemble projections reveal trophic ampli cation of ocean biomass declines with climate change[END_REF][START_REF] Cheung | Signature of ocean warming in global sheries catch[END_REF][START_REF] Froehlich | Global change in marine aquaculture production potential under climate change[END_REF][START_REF] Jägermeyr | Climate impacts on global agriculture emerge earlier in new generation of climate and crop models[END_REF] . Recently, studies have begun to look at the simultaneous impacts of climate change on both sheries and agriculture at the national level [START_REF] Thiault | Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine sheries[END_REF]16 , but this coarse scale does not capture whether people simultaneously engage with-and are likely to be affected by-changes in these sectors. Indeed, whether households engage in both sheries and agriculture [START_REF] Cinner | Livelihood diversi cation in tropical coastal communities: a network-based approach to analyzing 'livelihood landscapes[END_REF] will determine whether people have the knowledge, skills, and capital to substitute sectors if one declines, or alternatively, make them particularly susceptible to the potential 'perfect storm' of a combined decline across sectors [START_REF] Thiault | Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine sheries[END_REF] . Thus, more localised analyses incorporating key social dimensions of vulnerability are required to better understand how combined impacts to sheries and agriculture may affect coastal communities. Here, we combine a measure of exposure based on model projections of losses to exploitable marine biomass (here dubbed " sheries catch potential") and agriculture from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Fast Track phase 3 dataset with a measure of sensitivity based on survey data about material wealth and engagement in sheries, agriculture, and other occupational sectors from > 3,000 households across 72 tropical coastal communities in ve countries (Table S1). We ask: "What are the potential impacts of projected changes to sheries catch potential and agriculture on coastal communities?" "How much will mitigation measures reduce these potential impacts?" and "Are lower socioeconomic status coastal communities facing more potential impacts from climate change than their wealthier counterparts? "

Results And Discussion

Our study has three key results. First, we nd that overall possible impacts on sheries catch potential is higher than possible impacts on agriculture, but there can be substantial within-country variability in both exposure and sensitivity (Fig. 1). Speci cally, exposure under the high-emissions Shared Socioeconomic Pathway 8.5 scenario (which has tracked historic cumulative CO 2 emissions [START_REF] Schwalm | RCP8. 5 tracks cumulative CO2 emissions[END_REF] , but has been recently critiqued for over-projecting CO 2 emissions and economic growth 18 ) indicates substantive losses by midcentury to sheries catch potential [Fig. 1; 14.7% +/-4.3% (SE) mean sheries catch potential loss]. To put these projected losses in perspective, Sala et al. [START_REF] Sala | Protecting the global ocean for biodiversity, food and climate[END_REF] found that strategically protecting 28% of the ocean could increase food provisioning by 5.9 million tonnes, which is just 6.9% of the 84.4 million tons of marine capture globally in 2018 [START_REF] Barange | The State of World Fisheries and Aquaculture[END_REF] . Thus, the mean expected sheries catch potential losses are approximately double that which could be buffered by strategic conservation. Model run agreement about the directionality of change for projected impacts to sheries catch potential was high (SSP5-8.5: 84.7 +/-4.5% (SE); SSP1-2.6: 89.2 +/-4.06% (SE)). Interestingly, crop models projected that agricultural productivity (based on rice, maize, and cassava-see methods) is expected to experience small average gains across the 72 sites (1.2% +/-1.5% (SE) mean agricultural gain), with a large response range between sites and crops (Fig S1). However, the average gains are not signi cantly different from zero (t = -0.80, df = 5.0, p = 0.46), and model run agreement about directionality of change was lower for agriculture (SSP5-8.5: 69.1 +/-4.82% (SE); SSP1-2.6: 70.4 +/-3.27% (SE)). These projected agricultural gains are driven exclusively by rice (Supplemental Fig. 1), which has particularly large model disagreement [START_REF] Jägermeyr | Climate impacts on global agriculture emerge earlier in new generation of climate and crop models[END_REF][START_REF] Müller | Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios[END_REF] . Excluding rice shows an average decline in agricultural production by mid-century, since maize and cassava show consistent median losses under both SSP1-2.6 and SSP5-8.5 climate scenarios (Supplemental Fig. 1). Signi cantly greater losses in sheries catch potential compared to agriculture productivity are apparent not only for our study sites (i.e. 15.9 +/-5.6% (SE) greater; t = 2.81, df = 4.97, p = 0.0379), but also for a random selection of 4,746 (10% of) coastal locations in our study countries with populations > 25 people per km 2 (Fig. 2). Among those random sites, sheries catch potential losses are an average of 15.6 +/-5.1% (SE) greater than agriculture productivity changes (t = 3.06, df = 5.00, p = 0.0282). Differences between expected losses at our sites and the randomly selected sites are small for agriculture (Cohen's D for SSP5 - 8.5 = - 0.31, SSP1 - 2.6 = - 0.35) and negligible for sheries catch potential (Cohen's D for SSP5 - 8.5 = - 0.02, SSP1 - 2.6 = - 0.03), indicating that our sites are not particularly biased towards high or low exposure for the study region. Not only is the level of exposure generally higher in sheries compared to agriculture, but the sensitivity is on average nearly twice as high (Fig. 1A,B; 0.077 +/-0.007 mean sheries sensitivity; 0.04+/-0.01 mean agricultural sensitivity; t = 3.0, df = 2.26, p-value = 0.0815).

Our analysis also reveals high within-country variability in potential impacts (i.e. both exposure and sensitivity), particularly for sheries (Fig. 1) -a nding that may be masked in studies looking at nationallevel averages [START_REF] Thiault | Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine sheries[END_REF]16 . Looking only at the mean expected losses can obscure the more extreme sheries catch potential losses projected for many communities (Figs. 1,2). For example, under SSP5-8.5, our Indonesian sites are projected to experience very close to the average sheries catch potential losses among our study sites (15.9 +/-2.1%SE), but individual sites range from 6.5-32% losses (Fig. 1B). There is also substantial within-country variation in how communities are likely to experience climate change impacts, based on their sensitivity (Fig. 1A,B). For example, in the Philippines, exposure to sheries is consistently moderate (range 8.9-12.6% loss), but sensitivity ranges from our lowest (0.001) to our highest recorded scores (0.32). There is also within-country variability in model agreement, particularly for the agricultural models in Indonesia, where agricultural model agreement ranges from 50-85% and sheries model agreement ranges from 56-100% for SSP5-8.5, and 50-80% and 50-94%, respectively, for SSP1-2.6.

The second key result from our integrated assessment reveals that some locations will bear a double burden of losses to sheries and agriculture simultaneously, but mitigation efforts that reduce greenhouse gas emissions could curb these losses. Speci cally, under SSP5-8.5, 64% of our study sites are expected to lose productivity in sheries and agriculture simultaneously (Fig. 3A), but this would reduce to 37% of sites under the low emissions scenario SSP1-2.6 (Fig. 3B). Again, the effect of mitigation is consistent in the random selection of 4,746 sites (Supplemental Fig. 2), with 70% of randomly selected sites expected to experience a double burden under SSP5 8.5, and 47% under SSP1 2.6. Many of the sites expected to experience the highest losses to both sheries catch potential and agriculture have moderate to high sensitivity (Fig. 3A, Supplemental Fig. 3), which means the impacts of these changes could be profoundly felt by coastal communities.

Over a third of our sites (36% under SSP5-8.5) are expected to experience increases in agriculture (due to CO 2 fertilization effects that fuel potential increases particularly in rice yields) while experiencing losses in sheries catch potential. For these sites, a question of critical concern is whether the potential gains in agriculture could help offset the losses in sheries catch potential. The answer to this lies in part in the degree of substitutability between sectors. Our survey of 3008 households reveals high variation among countries, and even within some countries in the degree of household occupational multiplicity incorporating both agriculture and sheries sectors (Table 1). 31% of households in our study engaged in both shing and agriculture, though this ranged from 10% of households in the Philippines to 77% of households in Papua New Guinea. This means that the degree to which agricultural gains might possibly offset some sheries losses at the household scale is very context dependent. Our survey also revealed that 17% of households were involved in agriculture but not sheries, ranging from 33% in Madagascar to 3% in our Papua New Guinean study communities. Alternatively, more than a third of households surveyed in Indonesia and Philippines were involved in sheries but not agriculture (36% and 37% respectively), compared to a low value of 16% in Madagascar. In 12% of the Philippines communities surveyed (n = 3), not a single household was engaged in agriculture. Thus, for 32% of households across our sample, including some entire communities, potential agricultural gains will not offset potential sheries losses. In these locations building adaptive capacity to buffer change will be critical 9 . Our third key result is that coastal communities with lower socioeconomic status are more likely to experience potential impacts than communities of higher socioeconomic status across the climate mitigation scenarios (SSP1-2.6 and SSP5-8.5; Fig. 4). Speci cally, we examined the relationship between the average material style of life (a metric of wealth based on material assets; see methods) in a community and the relative potential impacts of simultaneous sheries catch potential and agriculture losses (measured as the Euclidean distance of sensitivity and exposure from the origin). Importantly, socioeconomic status is related to both sensitivity and exposure (Supplemental Fig. 4). In other words, low socioeconomic status communities tend to have higher sensitivity to sheries and agriculture than the wealthy, and are signi cantly more likely to be exposed to climate change impacts. Our ndings regarding the relationship between socioeconomic status and sensitivity are consistent with a broad body of literature that shows how people tend to move away from natural resource dependent occupations as they become wealthier [START_REF] Cinner | Livelihood diversi cation in tropical coastal communities: a network-based approach to analyzing 'livelihood landscapes[END_REF][START_REF] Ellis | The determinants of rural livelihood diversi cation in developing countries[END_REF][START_REF] Ellis | Household strategies and rural livelihood diversi cation[END_REF][START_REF] Niehof | The signi cance of diversi cation for rural livelihood systems[END_REF][START_REF] Barrett | Nonfarm income diversi cation and household livelihood strategies in rural Africa: concepts, dynamics, and policy implications[END_REF] . One potential interpretation of our ndings is that alternative livelihood programs (e.g. jobs outside the sheries or agricultural sectors, such as the service industry) could reduce sensitivity in lower socioeconomic status communities. However, decades of research on livelihood diversi cation has highlighted a multitude of reasons why alternative livelihood projects frequently fail 26 , including that they do not provide high levels of non-economic satisfactions (e.g., social, psychological, and cultural) [START_REF] Béné | Not by rent alone: analysing the pro-poor functions of smallscale sheries in developing countries[END_REF][28][START_REF] Marshall | The links between resource dependency and attitude of commercial shers to coral reef conservation in the Red Sea[END_REF] , as well as cultural barriers to switching occupations (e.g. caste systems) [START_REF] Coulthard | Adapting to environmental change in artisanal sheries-Insights from a South Indian Lagoon[END_REF] , and attachment to identity and place [START_REF] Marshall | Social vulnerability of marine resource users to extreme weather events[END_REF] . Alternative occupations need to provide some of the same satisfactions, including basic needs (safety, income), social and psychological needs (time away from home, community in which you live, etc.), and self-actualization (adventure, challenge, opportunity to be own boss, etc.). For example, shing attracts individuals manifesting a personality con guration referred to as an externalizing disposition, which is characterized by a need for challenges, adventure, and risk. Fishing can be extremely satisfying for people with this personality complex, while many alternative occupations can lead to job dissatisfaction, which has negative social and psychological consequences [START_REF] Seara | Fishing as therapy: Impacts on job satisfaction and implications for shery management[END_REF][START_REF] Pollnac | Job satisfaction in the shery in two southeast Alaskan towns[END_REF] . Research has shown that recreational shing captain or guide jobs produce some of the same satisfactions as shing and have been successfully introduced as alternative occupations [START_REF] Pollnac | Job satisfaction in the shery in two southeast Alaskan towns[END_REF] . Despite these limited successes, alternative livelihood programs frequently fail and are not a viable substitute for mitigating climate change for the ~ 6 million coral reef shers globally [START_REF] Teh | A global estimate of the number of coral reef shers[END_REF] .

Our study is an important rst step in examining the potential simultaneous impacts to sheries catch potential and agriculture in coastal communities, but has some limitations, some of which could be addressed in future studies. First, our measure of exposure was dynamic (i.e., it was projected into the future), while our measures of sensitivity and material wealth were static (i.e., from a single point in time)

and did not consider potential changes over time. Although there are projections of how national-scale measures of wealth (e.g. gross domestic product; GDP) may change in the future, there are no reliable projections for household-or community-scale changes to material wealth or livelihoods. As a supplemental analysis, we examined observed changes in sensitivity and material wealth over 15 and 16 years, respectively, in two Papua New Guinean coastal communities (Fig. 5). We found that, over the observed time frame (2001-2016), which is approximately half that of the predicted time frame of exposure, sensitivity scores were extremely stable, particularly in Ahus (Fig. 5). Similarly, material wealth was also reasonably stable over time, but did re ect a shift in both communities toward more houses being built out of sturdier material (e.g., wood plank walls and oor, metal roofs). Importantly, while there were absolute changes to material wealth in both communities, the relative position stayed very similar.

Although these data do not allow us to make inferences about what will happen into the future, they do highlight that, at least in decadal timeframes, these indicators are reasonably stable. One alternative approach may have been to assume that projected national-scale changes to GDP would apply evenly across each coastal community within a country (i.e., adjust the intercept of both material wealth and correlated sensitivity for each country relative to the projected changes in GDP). However, given the wide spread of material wealth and sensitivity scores within countries, we ultimately were less comfortable with the assumptions inherent in the approach (i.e., that national-scale changes would affect all communities in a country equally) than with the caveat that our metrics were static.

Second, there are key limitations and assumptions to the models we used. For example, many tropical small-scale sheries target seagrass [START_REF] Nordlund | Global signi cance of seagrass shery activity[END_REF] and coral reef habitats [START_REF] Teh | A global estimate of the number of coral reef shers[END_REF] , which are not represented in the global ensemble models. Additionally, the ensemble models were developed at relatively low spatial resolution (e.g. 1° cells), and are not designed to capture higher resolution structures and processes. Our approach for dealing with this was to make transparent the degree of ensemble model run agreement about the direction of change, which relies on the assumption that we have greater con dence in projections that have higher model run agreement. Another limitation is that there may be discrepancies between the total consumer biomass (see method) in the absence of shing that is outputed by the models used here and what would actually be harvested by shers since total consumer biomass can include both target and non-target species as well as other taxa entirely. Despite these limitations, we assumed that total consumer biomass is directly related to potential sheries yields [START_REF] Lotze | Global ensemble projections reveal trophic ampli cation of ocean biomass declines with climate change[END_REF] . Likewise, we included just 3 crops in the agricultural models (rice, maize, and cassava), which are key in the study region, with many study countries growing 2 or more of these crops. For example, Indonesia is the 3rd largest producer of rice in the world, and the 6th largest producer of maize and cassava 36 . However, subsistence agriculture in Papua New Guinea is dominated by banana and yams, for which agricultural yield projections were not available. We used an unweighted average of projected changes in these three crops to represent a portfolio of small-scale agriculture, with a sensitivity test based on agricultural projections weighted by current yields/production area proportions of current yields (Supplemental Fig. 1). Finally, it is important to keep key model assumptions in mind when interpreting these data. For example, the agricultural models assumed no changes in farm management or climate change adaptation over time, while the sheries models do not explicitly resolve predation impacts from higher trophic levels on phytoplankton.

Third, our sensitivity metric examined a somewhat narrow aspect of what makes people sensitive to climate change. Sensitivity is thought to contain dimensions of economic, demographic, psychological, and cultural dependency [START_REF] Marshall | The dependency of people on the Great Barrier Reef, Australia[END_REF] . Our metric was based on people's engagement in natural resource-based livelihoods, which primarily captures the economic dimensions (although livelihoods do provide cultural and psychological contributions to people 26,28,[START_REF] Marshall | The links between resource dependency and attitude of commercial shers to coral reef conservation in the Red Sea[END_REF][START_REF] Marshall | Social vulnerability of marine resource users to extreme weather events[END_REF]38 ).

Fourth, our study explicitly focused on the potential impacts of climate change in 72 Indo-Paci c coastal communities by examining their sensitivity and exposure, but our methodology did not enable us to incorporate adaptive capacity. Adaptive capacity is a latent trait that enables people to adapt to and take advantage of the opportunities created by change [START_REF] Adger | New indicators of vulnerability and adaptive capacity[END_REF][START_REF] Brooks | Adaptation policy frameworks for climate change: Developing strategies, policies and measures[END_REF] , and is critically important in determining the fate of coastal communities under climate change. Adaptive capacity is thought to consist of dimensions of assets, exibility, social organisation, learning, socio-cognitive, and agency 9,[START_REF] Barnes | Social determinants of adaptive and transformative responses to climate change[END_REF][START_REF] Cinner | Social dimensions of resilience in social-ecological systems[END_REF] . Unfortunately, indicators of these dimensions of adaptive capacity were not collected in a standardised manner across all of the different projects comprising this study.

Fifth, we investigated the potential impacts of climate change on two key food production sectors, but there may be other climate change impacts which have much more profound impacts on people's wellbeing. For example, sea level rise may destroy homes and other infrastructure [START_REF] Bosello | Economy-wide estimates of the implications of climate change: Sea level rise[END_REF] , while heat waves may result in direct mortality [START_REF] Mora | Global risk of deadly heat[END_REF] . Lastly, we used shared socioeconomic pathway exploratory scenarios that bracket the full range of scenario variability (SSP5-8.5 and SSP1-2.6). At the time of publication, these were the only scenarios available for both sheries and agriculture using the ISIMIP Fastrack Phase 3 dataset. Future publications may wish to explore additional scenarios.

Our study quanti es the potential impacts of climate change on key food production sectors in tropical coastal communities across a broad swath of the Indo-Paci c. We nd that both exposure and sensitivity to sheries is generally higher than to agriculture, but some places may experience losses from both sectors simultaneously. These losses may be compounded by other drivers of change, such as over shing or soil erosion, which is already leading to declining yields [START_REF] Mcclanahan | Improving sustainable yield estimates for tropical reef sheries[END_REF]46 . Simultaneous losses to both sheries catch potential and agriculture will limit people's opportunity to adapt to changes through switching livelihoods between food production sectors 9 . This will especially be the case in lower socioeconomic status communities where dependence on natural resources is higher [START_REF] Cinner | Livelihood diversi cation in tropical coastal communities: a network-based approach to analyzing 'livelihood landscapes[END_REF] . Together, our novel integration of model projections and socioeconomic surveys highlight the importance of assessing climate change impacts across sectors, but reveals important mismatches between the scale at which people will experience the impacts of climate change and the scale at which modelled projections about climate change impacts are currently available.

Methods

Sampling of coastal communities

Here, we integrated data from ve different projects that had surveyed coastal communities across ve countries [START_REF] Diedrich | Social capital plays a central role in transitions to sport shing tourism in small-scale shing communities in Papua New Guinea[END_REF][48][START_REF] Cinner | Comanagement of coral reef social-ecological systems[END_REF][START_REF] Pollnac | Monitoring the BALANCED Philippines Project: Promising Results after only 18 Months[END_REF] . Between 2009 and 2015, we conducted socioeconomic surveys in 72 sites from Indonesia (n = 25), Madagascar (n = 6), Papua New Guinea (n = 10), the Philippines (n = 25), and Tanzania (Zanzibar) (n = 6). Site selection was for broadly similar purposes-to evaluate the effects of various coastal resource management initiatives (collaborative management, integrated conservation and development projects, recreational shing projects) on people's livelihoods in rural and peri-urban villages. Within each project, sites were purposively selected to be representative of the broad range of socioeconomic conditions (e.g., population size, levels of development, integration to markets) experienced within the region. We did not survey strictly urban locations (i.e., major cities). Because our sampling was not strictly random, care should be taken when attempting to make inferences beyond our speci c study sites.

We surveyed between 13 and 150 households per site, depending on the population of the communities and the available time to conduct interviews per site. All projects employed a comparable sampling design: households were either systematically (e.g., every third house), randomly sampled, or in the case of three villages, every household was surveyed (a census) (Table S1). Respondents were generally the household head, but could have been other household members if the household head was not available during the study period (i.e. was away). In the Philippines, sampling protocol meant that each village had an even number of male and female respondents. Respondents gave verbal consent to be interviewed.

A standard methodology was employed to assess material style of life, a metric of material assets-based wealth 48,[START_REF] Cinner | Poverty, perceptions and planning: why socioeconomics matter in the management of Mexican reefs[END_REF] . Interviewers recorded the presence or absence of 16 material items in the household (e.g., electricity, type of walls, type of ceiling, type of oor). We used a Principal Component Analysis on these items and kept the rst axis (which explained 34.2% of the variance) as a material wealth score. Thus, each community received a mean material style of life score, based on the degree to which surveyed households had these material items, which we then scaled from 0-1. We also conducted an exploratory analysis of how material style of life has changed in two sites in Papua New Guinea (Muluk and Ahus villages) over fteen and sixteen year time span across four and ve time periods (2001, 2009, 2012, 2016 and 2002, 2009, 2012, 2016, 2018), respectively, that have been surveyed since 2001/2 [START_REF] Cinner | Sixteen years of social and ecological dynamics reveal challenges and opportunities for adaptive management in sustaining the commons[END_REF] . These surveys were semi-panel data (i.e. the community was surveyed repeatedly, but we did not track individuals over each sampling interval) and sometimes occurred in different seasons. For illustrative purposes, we plotted how these villages changed over time along the rst two principal components.

Sensitivity

We asked each respondent to list all livelihood activities that bring in food or income to the household and rank them in order of importance. Occupations were grouped into the following categories: farming, cash crop, shing, mariculture, gleaning, sh trading, salaried employment, informal, tourism, and other.

We considered shing, mariculture, gleaning, sh trading together as the ' sheries' sector, farming and cash crop as the 'agriculture' sector and all other categories into an 'off-sector'.

We then developed three distinct metrics of sensitivity based on the level of dependence on agriculture, sheries, and both sectors together. Each metric incorporates the proportion of households engaged in a given sector (e.g., sheries), whether these households also engage in occupations outside of this sector (agriculture and salaried/formal employment; referred to as 'linkages' between sectors), and the directionality of these linkages (e.g., whether respondents ranked sheries as more important than other agriculture and salaried/formal employment) (Eq. 1-3)

S A = A A + NA × N A + NA × r a 2 + 1 r a + r na + 1 1 S F = F F + NF × N F + NF × r f 2 + 1 r f + r nf + 1 2 
S AF = AF AF + NAF × N AF + NAF × r af 2 + 1 r af + r naf + 1 3 ( ) ( ) ( )
where S A , S F and S AF are a community's sensitivity in the context of agriculture, sheries and both sectors, respectively. A, F and AF are the number of households relying on agriculture-related occupations within that community, shery-related and agriculture-and sheries-related occupations within the community, respectively. NA, NF and NAF are the number of households relying on non-agriculture-related, non-sheries-related, and non-agriculture-or-sheries-related occupations within the community, respectively. N is the number of households within the community. r a , r f and r af are the number of times agriculture-related, sheries-related and agriculture-and-sheries-related occupations were ranked higher than their counterpart, respectively. r na , r nf and r naf are the number of times non-agriculture, nonsheries, and non-agriculture-and-sheries-related occupations were ranked higher than their counterparts. As with the material style of life, we also conducted an exploratory analysis of how joint agriculture-sheries sensitivity has changed over time in a subset of sites (Muluk and Ahus villages in Papua New Guinea) that have been sampled since 2001/2002 [START_REF] Cinner | Sixteen years of social and ecological dynamics reveal challenges and opportunities for adaptive management in sustaining the commons[END_REF] . Although our survey methodology has the potential for bias (e.g. people might provide different rankings based on the season, or there might be gendered differences in how people rank the importance of different occupations [START_REF] Lau | What matters to whom and why? Understanding the importance of coastal ecosystem services in developing coastal communities[END_REF] ), our time-series analysis suggest that seasonal and potential respondent variation do not dramatically alter our community-scale sensitivity metric.

Exposure

To evaluate the exposure of communities to the impact of future climates on their agriculture and sheries sectors, we used projections of production potential from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) Fast Track phase 3 experiment dataset of global simulations. Production potential of agriculture and sheries for each of the 72 community sites and 4,746 randomly selected sites from our study countries with coastal populations > 25 people/km 2 were projected to the mid-century (2046-2056) under two emission scenarios (SSP1-2.6, and SSP5-8.5) and compared with values from a reference historical period (1983-2013).

For sheries exposure (E F ), we considered relative change in simulated total consumer biomass (all modelled vertebrates and invertebrates with a trophic level > 1). For each site, the twenty nearest ocean grid cells were determined using the Haversine formula (Supplemental Fig. 5). We selected twenty grid cells after a sensitivity analysis to determine changes in model agreement based on different numbers of cells used (1, 3, 5, 10, 20, 50, 100; Supplemental Figs. 67), which we balanced off with the degree to which larger numbers of cells would reduce the inter-site variability (Supplemental Fig. 8). 25th and 75th percentiles for the change in marine animal biomass across the model ensemble were also reported. Projections of the change in total consumer biomass for the 72 sites were extracted from simulations conducted by the Fisheries and marine ecosystem Model Intercomparison Project (FishMIP 3,[START_REF] Tittensor | A protocol for the intercomparison of marine shery and ecosystem models: Fish-MIP v1. 0[END_REF] ). FishMIP simulations were conducted under historical, SSP1-2.6 (low emissions) and SSP5-8.5 (high emissions) scenarios forced by two Earth System Models from the most recent generation of the Coupled Model Intercomparison project (CMIP6) [START_REF] Eyring | Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[END_REF] ; GFDL-ESM4 56 and IPSL-CM6A-LR [START_REF] Boucher | Presentation and evaluation of the IPSL-CM6A-LR climate model[END_REF] . The historical scenario spanned 1950-2014, and the SSP scenarios spanned 2015-2100. Nine FishMIP models provided simulations: APECOSM 58,[START_REF] Maury | From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity[END_REF] , BOATS 60,61 , DBEM 2,62 , DBPM 63 , EcoOcean 64,65 , EcoTroph 66,67 , FEISTY 68 , Macroecological 69 , and ZooMSS 11 . Simulations using only IPSL-CM6A-LR were available for APECOSM and DBPM, while the remaining 7 FishMIP models used both Earth System Model forcings. This resulted in 16 potential model runs for our examination of model agreement, albeit with some of these runs being the same model forced with two different ESMs. Thus, the range of model agreement could range from 8 (half model runs indicating one direction of change, and half indicating the other) to 16 (all models agree in direction of change). Model outputs were saved with a standardised 1° spatial grid, at either a monthly or annual temporal resolution.

For agriculture exposure (E A ), we used crop model projections from the Global Gridded Crop model Intercomparison Project (GGCMI) Phase 3 [START_REF] Jägermeyr | Climate impacts on global agriculture emerge earlier in new generation of climate and crop models[END_REF] , which also represents the agriculture sector in ISIMIP. We Details on model inputs, climate data, and simulation protocol are provided in ref [START_REF] Jägermeyr | Climate impacts on global agriculture emerge earlier in new generation of climate and crop models[END_REF] . At each site, and for each crop, we calculated the average change (%) between projected vs. historical yield within 11x11 cell window. We then averaged changes in rice, maize and cassava to obtain a single metric of agriculture exposure (E A ).

We also obtained a composite metric of exposure (E AF ) by calculating each community's average change in both agriculture and sheries:

E AF = E A + E F 2 4
Potential Impact

We calculated relative potential impact as the Euclidian distance from the origin (0) of sensitivity and exposure.

Sensitivity Test

To determine whether our sites displayed a particular exposure bias, we compared the distributions of our sites and 4,746 sites that were randomly selected from 47,460 grid cells within 1 km of the coast of the 5 countries we studied which had population densities > 25 people/km 2 , based on the SEDAC gridded populating density of the world dataset (https://sedac.ciesin.columbia.edu/data/set/gpw-v4-populationdensity-rev11/data-download).

We used Cohen's D to determine the size of the difference between our sites and the randomly selected sites.

Validating ensemble models

We attempted a two-stage validation of the ensemble model projections. First, we reviewed the literature on downscaling of ensemble models to examine whether downscaling validation had been done for the ecoregions containing our study sites.

While no sheries ensemble model downscaling had been done speci c to our study regions, most of the models of the ensemble have been independently evaluated against separate datasets aggregated at scales down to Large Marine Ecosystems (LMEs) or Exclusive Economic Zones (EEZs) (see [START_REF] Lotze | Global ensemble projections reveal trophic ampli cation of ocean biomass declines with climate change[END_REF] ). For example, the DBEM was created with the objective of understanding the effects of climate change on exploited marine sh and invertebrate species 2,[START_REF] Pauly | Sea Around Us concepts, design and data[END_REF] . This model roughly predicts species' habitat suitability;

and simulates spatial population dynamics of sh stocks to output biomass and maximum catch potential (MCP), a proxy of maximum sustainable yield and maximum yield estimated from stock assessment models (R 2 of 0.44) with and without shing respectively [START_REF] Lotze | Global ensemble projections reveal trophic ampli cation of ocean biomass declines with climate change[END_REF] .

Crop yield estimates simulated by GGCMI crop models have been evaluated against FAOSTAT national yield statistics [START_REF] Jägermeyr | Climate impacts on global agriculture emerge earlier in new generation of climate and crop models[END_REF][START_REF] Jägermeyr | A regional nuclear con ict would compromise global food security[END_REF][START_REF] Müller | Global gridded crop model evaluation: benchmarking, skills, de ciencies and implications[END_REF] . These studies show that the models, and especially the multi-model mean, capture large parts of the observed inter-annual yield variability across most main producer countries, even though some important management factors that affect observed yield variability (e.g., changes in planting dates, harvest dates, cultivar choices, etc.) are not considered in the models. While GCM-based crop model results are di cult to validate against observations, Jägermeyr et al. [START_REF] Jägermeyr | Climate impacts on global agriculture emerge earlier in new generation of climate and crop models[END_REF] show that the CMIP6based crop model ensemble reproduces the variability of observed yield anomalies much better than CMIP5-based GGCMI simulations. In an earlier crop model ensemble of GGCMI, Müller et al. [START_REF] Müller | Global gridded crop model evaluation: benchmarking, skills, de ciencies and implications[END_REF] show that most crop models and the ensemble mean are capable of reproducing the weather-induced yield variability in countries with intensely managed agriculture. In countries where management introduces strong variability to observed data, which cannot be considered by models for lack of management data time series, the weather-induced signal is often low [START_REF] Ray | Climate variation explains a third of global crop yield variability[END_REF] , but crop models can reproduce large shares of the weather-induced variability, building trust in their capacity to project climate change impacts [START_REF] Müller | Global gridded crop model evaluation: benchmarking, skills, de ciencies and implications[END_REF] .

We then attempted to validate the models in our study regions. For the crop models, we examined production-weighted agricultural projections weighted by current yields/production area (Supplemental Fig. 1). We used an observational yield map (SPAM2005) and multiplied it with fractional yield time series simulated by the models to calculate changes in crop production over time, which integrates results in line with observational spatial patterns. The weighted estimates were not signi cantly different to the unweighted ones (t = 0.17, df = 5, p = 0.87). For the sheries models, our study regions were data poor and lacked adequate stock assessment data to extend the observed global agreement of the sensitivity of sh biomass to climate during our reference period (1983-2013). Instead, we provide the degree of model run agreement about the direction of change in the ensemble models to ensure transparency about the uncertainty in this downscaled application.

Analyses

To account for the fact that communities were from ve different countries we used linear mixed effects models (with country as a random effect) for all analyses. All averages reported (i.e. exposure, sensitivity, and model agreement) are estimates from these models. In both our comparison of sheries and agriculture exposure and test of differences between production-weighted and unweighted agriculture exposure we wanted to maintain the paired nature of the data while also accounting for country. To accomplish this we used the differences between the exposure metrics as the response variable (e.g.

sheries exposure minus agriculture exposure), testing whether these differences are different from zero. We also used linear mixed effects models to quantify relationships between material style of life and potential impacts under different mitigation scenarios (SSP1-2.6 and 8.5), estimating 95% con dence intervals from 1000 bootstrap replications. To further explore whether these relationships between material style of life and potential impacts were driven by exposure or sensitivity, we conducted a supplemental analysis to quantify relationships between material style of life and: 1) joint sheries and agricultural sensitivity; 2) joint sheries and agricultural exposure under different mitigation scenarios.

We present both the conditional R 2 (i.e., variance explained by both xed and random effects) and the marginal R 2 (i.e., variance explained by only the xed effects) to help readers compare among the material style of life relationships. 

  used a window of 11x11 cells centred on the site and removed non-land cells (Fig S5). The crop models use climate inputs from 5 CMIP6 ESMs (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL), downscaled and bias-adjusted by ISIMIP and use the same simulation time periods. We considered relative yield change in three rain-fed and locally relevant crops: rice, maize, and cassava, using outputs from 4 global crop models (EPIC-IIASA, LPJmL, pDSSAT, and PEPIC), run at 0.5° resolution. These 4 models with 5 forcings generate 20 potential model runs for our examination of model agreement. Yield simulations for cassava were only available from the LPJmL crop model. All crop model simulations assumed no adaptation in growing season and fertilizer input remained at current levels.

Figures Figure 1 Potential

 1 Figures

Figure 2 A

 2 Figure 2

Figure 3 The

 3 Figure 3

Figure 4

 4 Figure 4

  

Table 1

 1 Proportion of surveyed households in each study country engaged in both agriculture and sheries, agriculture but not sheries, and sheries but not agriculture. Note, proportions do not add up to 1 because some households were not engaged in agriculture or sheries.

	country	Number of	Agriculture and	Agriculture, no	Fisheries, no
		households	sheries	sheries	agriculture
	indonesia	1140	0.25	0.18	0.36
	madagascar	339	0.42	0.33	0.16
	papua new	318	0.77	0.03	0.18
	guinea				
	philippines	973	0.11	0.18	0.37
	tanzania	238	0.69	0.04	0.26

  2,62,[START_REF] Cheung | Projecting global marine biodiversity impacts under climate change scenarios[END_REF] . Compared with spatially explicit catch data from the Sea Around Us Project (SAUP; www.seaaroundus.org)[START_REF] Pauly | Sea Around Us concepts, design and data[END_REF] there were strong similarities in the responses to warming extremes for several EEZs in our current paper (Indonesia and Philippines) and weaker for the EEZs of Madagascar, Papua New Guinea, and Tanzania. At the LME level, DBEM MCP simulations explained about 79% of the variation in the SAUP catch data across LMEs[START_REF] Cheung | Marine high temperature extremes amplify the impacts of climate change on sh and sheries[END_REF] . The four LMEs analyzed in this paper (Agulhas Current; Bay of Bengal; Indonesian Sea; and Sulu-Celebes Sea) fall within the 95% con dence interval of the linear regression relationship62 . Another example, BOATS, is a dynamic biomass size-spectrum model parameterised to reproduce historical peak catch at the LME scale and observed catch to biomass ratios estimated from the RAM legacy stock assessment database (in 8 LMEs with su cient data). It explained about 59% of the variability of SAUP peak catch observation at the LME level with the Agulhas Current, Bay of Bengal, and Indonesian Sea catches reproduced within +/-50% of observations 61 . The EcoOcean model validation found that all four LMEs included in this study t very close to the 1:1 line for overserved and predicted catches in 200064,65 . DBPM, FEISTY, and APECOSM have also been independently validated by comparing observed and predicted catches. While the models of this ensemble have used different climate forcings when evaluated independently, when taken together the ensemble multi-model mean reproduces global historical trends in relative biomass, that are consistent with the long term trends and year-on-year variation in relative biomass change (R 2 of 0.96)
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