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Abstract

Photosynthetic light response curve parameters help us understand the interspecific varia-

tion in photosynthetic traits, leaf acclimation status, carbon uptake, and plant productivity in

specific environments. These parameters are also influenced by leaf traits which rely on

species and growth environment. In accessions of four amaranth species (Amaranthus.

hybridus, A. dubius, A. hypochondriacus, and A. cruentus), we determined variations in the

net photosynthetic light response curves and leaf traits, and analysed the relationships

between maximum gross photosynthetic rate, leaf traits, and whole-plant productivity. Non-

rectangular hyperbolae were used for the net photosynthesis light response curves. Maxi-

mum gross photosynthetic rate (Pgmax) was the only variant parameter among the species,

ranging from 22.29 to 34.21 μmol m–2 s–1. Interspecific variation existed for all the leaf traits

except leaf mass per area and leaf inclination angle. Stomatal conductance, nitrogen, chlo-

rophyll, and carotenoid contents, as well as leaf area correlated with Pgmax. Stomatal con-

ductance and leaf nitrogen explained much of the variation in Pgmax at the leaf level. At the

plant level, the slope between absolute growth rate and leaf area showed a strong linear

relationship with Pgmax. Overall, A. hybridus and A. cruentus exhibited higher Pgmax at the

leaf level and light use efficiency at the whole-plant level than A. dubius, and A. hypochon-

driacus. Thus, A. hybridus and A. cruentus tended to be more efficient with respect to car-

bon assimilation. These findings highlight the correlation between leaf photosynthetic

characteristics, other leaf traits, and whole plant productivity in amaranths. Future studies

may explore more species and accessions of Amaranthus at different locations or light

environments.
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Interspecific variation in leaf traits, photosynthetic

light response, and whole-plant productivity in

amaranths (Amaranthus spp. L.). PLoS ONE 17(6):

e0270674. https://doi.org/10.1371/journal.

pone.0270674

Editor: Umakanta Sarker, Bangabandhu Sheikh

Mujibur Rahman Agricultural University,

BANGLADESH

Received: December 15, 2021

Accepted: June 14, 2022

Published: June 30, 2022

Copyright: © 2022 Osei-Kwarteng et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: MOK recieved a scholarship for her PhD.

studies from a collaboration between the Ministry

of Education, Ghana, and the German Academic

Exchange Service (DAAD), Germany. The funders

had no role in study design, data collection and

https://orcid.org/0000-0001-7429-5647
https://orcid.org/0000-0001-7750-9268
https://orcid.org/0000-0002-7077-498X
https://orcid.org/0000-0002-0015-5550
https://doi.org/10.1371/journal.pone.0270674
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270674&domain=pdf&date_stamp=2022-06-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270674&domain=pdf&date_stamp=2022-06-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270674&domain=pdf&date_stamp=2022-06-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270674&domain=pdf&date_stamp=2022-06-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270674&domain=pdf&date_stamp=2022-06-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270674&domain=pdf&date_stamp=2022-06-30
https://doi.org/10.1371/journal.pone.0270674
https://doi.org/10.1371/journal.pone.0270674
http://creativecommons.org/licenses/by/4.0/


Introduction

The response of photosynthesis to light is vital in predicting carbon fixation in the field

because leaf photosynthesis rate is mainly influenced by the variations in light under field con-

ditions [1, 2]. Photosynthetic light response curves describe the relationship between leaf net

photosynthesis rate and the photosynthetic photon flux density (PPFD) incident on the leaf

surface [1, 3, 4]. They reveal the current acclimation state of a leaf, which helps to understand

carbon uptake and productivity of plants in specific environments [3, 5, 6]. Leaf photosynthe-

sis response to light can be described by several models such as the rectangular and non-rect-

angular hyperbola or exponential functions and their modifications [1, 3–9] The non-

rectangular hyperbola model is among the most commonly used due to its broad applicability

to C3 and C4 species [5, 7, 10–12]. The parameters of these models are often included in can-

opy photosynthesis and ecosystem models of plant productivity and gas exchange [1, 12, 13].

Some leaf traits are indicators of plant acclimation to the growth light environment [14,

15]. Interspecific and intraspecific photosynthetic variation among and across species can be

explained by leaf traits such as nitrogen content, chlorophyll (Chl) content, leaf dry mass per

unit area (LMA), leaf angle, and stomatal conductance (gs) [1, 3, 12, 16–19].

Plants develop photosynthetic characteristics and other leaf traits depending on the local

light environment [20–23]. Most of our knowledge on photosynthetic light response curves

and leaf traits stems from plants grown under controlled conditions, which is insufficient to

assess plant acclimation to natural growth light conditions [22, 24, 25]. Plants grown under

natural light conditions experience rapid fluctuations in light due to solar movement, weather,

and canopy characteristics [21, 25–28], and variations in light can occur at timescales ranging

from seconds to weeks [24, 29, 30]. Consequently, acclimation to natural light conditions may

result in different physiological, biochemical, and morphological properties of plants [22, 24].

Acclimation of plants to alterations in natural light environments depends on the plant species

(phenotypic plasticity) and the environment to which it is adapted [26, 28, 30–35]. Acclima-

tion may occur at the leaf and whole-plant levels [21, 22, 25, 30, 36]. Plants grown under natu-

ral light conditions may combine the characteristics of both low light and high light-grown

plants, allowing them to use light efficiently [24, 37]. For instance, some classical responses of

plants to high light conditions include: high chlorophyll (Chl) a to Chl b ratio (Chl a/b) [22–

24, 28, 33, 38–43]; low total Chl content [38, 42–45]; high LMA [22, 24, 38]; low Chl b content;

higher leaf photosynthesis rates [24, 33, 38, 43, 46, 47], erect leaf orientation [22], and the

opposite is experienced under low light conditions [22, 46, 48]. Quantum yield of CO2 uptake

is at its upper limit under low light conditions and also often shows no significant difference

between high and low light-grown plants [4, 23, 32]. The convexity factor tends to be higher

in low light and vice versa, with intermediate values found under medium light conditions

[11, 23].

Amaranths (Amaranthus spp. L.) are NAD-dependent malic enzyme (NAD-ME) subpath-

way C4 type, annuals, herbaceous, dicotyledonous, or rarely short-lived perennials with world-

wide distribution. The genus consists of about 87 species originating from the tropics [49, 50].

Consequently, amaranths perform best in warm climates and thrive under high irradiance lev-

els [50–54]. They grow well at day temperatures above 25˚C and night temperatures not lower

than 15˚C. The genus includes vegetable (A. tricolor L., A. blitum L., A. dubius L, A. cruentus
L., and A. viridis L.), grain (A. hypochondriacus L., A. cruentus L., and A. caudatus L.), weed

(A. palmeri, A. retroflexus, and A. hybridus) and ornamental species (brightly coloured A. tri-
color, A. caudatus and A. hypochondriacus) [53, 55–57]. The leaves of all the species can be

consumed depending on regional preferences [53, 58]. Variations in photosynthetic capacity

among 12 amaranth species were found to be positively correlated with stomatal conductance,
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nitrogen and Chl contents, and LMA [16]. However, no comparative studies have been con-

ducted in amaranth species under natural growth light conditions on the photosynthesis light

response, leaf traits, and how interspecific variations in photosynthetic light response curve

parameters at the leaf level are related to other leaf traits and whole-plant productivity.

The objectives of this study were: 1) to determine the variations in the net photosynthetic

light response (PN/I) curves and leaf traits, 2) to explain the variations in the variant parameter

[i.e., maximum gross photosynthetic rate (Pgmax)] by the leaf traits, and 3) to explore how the

variation in Pgmax correlates with growth rate and leaf area at the whole-plant level in four

amaranth species. We hypothesised that there is variation in the leaf photosynthetic light

response curves and leaf traits among the amaranth species. The differences in the leaf photo-

synthetic light response curves correlate with leaf traits and whole plant productivity.

Parameters of the non-rectangular hyperbola such as the maximum gross photosynthetic

rate (Pgmax), apparent quantum yield at zero PPFD [α (I0)], convexity (θ) and dark respiration

rate (RD) were estimated for each gas exchange measurement. Key leaf traits such as stomatal

conductance (gs), nitrogen per unit leaf area (Na), leaf dry mass per unit area (LMA), Chloro-

phyll (Chl, Chl a, Chl b), carotenoid (Car) content, leaf area (LA) and leaf inclination angle

were measured.

Under the natural growth light environments of this study, interspecific variation in Pgmax

and some key leaf traits were observed among the amaranth species. Interspecific variation in

Pgmax was mainly explained by gs and Na, while at the whole-plant level, Pgmax was strongly

influenced by the variations in light use efficiency (slope of the natural logarithm of absolute

growth rate and leaf area per plant).

Materials and methods

Plant materials

Accessions of four cultivated Amaranthus species, namely, A. hybridus (‘IP7’; weed), A. dubius
(‘Mombo 2’; vegetable), A. hypochondriacus (‘TZ-SMN-102’; grain), and A. cruentus ‘Ex-Zim/

Madiira 1’; vegetable) were obtained from the Asian Vegetables Research and Development

Centre (AVRDC), Arusha, Tanzania (S1 Fig). All the species were reported to have been col-

lected (i.e., country of collection) from Africa, but the origin of A. hybridus is unknown; A.

dubius and A. hypochondriacus are from Tanzania, and A. cruentus from Zimbabwe. The num-

ber of days to flowering (from sowing to 50% inflorescence when characterised in Tanzania)

are 31, 25, 35, 73 for A. hybridus, A. dubius, A. hypochondriacus, and A. cruentus, respectively

[59]. The four amaranth species were chosen because of their genetic diversity (variation), con-

trasting plant architecture (morphology), and since they are taxonomically well characterised

and commercially important in East Africa [52, 53, 57, 60–63].

Experimental site, cultivation, and experimental design

The experiment was conducted at the Institute of Horticultural Production Systems, Leibniz

University of Hannover, Germany (52.2˚N, 9.7˚E). Seeds were sown on March 18, 2014, in

trays with Potgrond (peat) tray substrate (Klasmann-Deilmann, Geest, Germany) and raised

in a growth cabinet at 22˚C/ 20˚C, day and night temperature, respectively. The nutrient com-

position of the Potgrond substrate was: 210 mg L–1 N, 240 mg L–1 P2O5, 270 mg L–1 K2O 100

mg L–1 Mg and 150 mg L–1 S, with a pH of 6.0. Vigorous plants were transplanted into 10 litre

pots (diameter of ca. 26 cm (top) & 19 cm (bottom); height, 24 cm) of a 1:1 mixture of sand

and Potgrond peat-based substrate. Pots were arranged at a spacing of 60 cm and 40 cm,

between and within rows, respectively. Plants were grown under natural light conditions in

the glasshouse without supplementary light from lamps. However, the temperature was
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regulated as 24/22˚C, day/night air temperatures, respectively. Ventilators were opened when

the air temperature was higher than 26˚C. Plants were watered daily with 0.5–1% (50-100g/

100L H2O) Ferty1 2 MEGA [16+6+26 (+3.4)] to avoid nutrient and water stress. The experi-

ment was conducted as a randomised complete block design and replicated four times. Photo-

synthesis measurements were conducted on two of these replications.

The weather data were recorded at 12-minutes intervals by the Institute’s weather station,

situated at 36 m from the glasshouse.

Gas exchange and leaf trait measurements

Data on the leaf traits and photosynthesis gas exchange were collected on May 7, 12, and 20,

2014, corresponding to 50, 55, and 63 days after sowing (DAS), respectively (S1 Table). All gas

exchange measurements were made on the uppermost youngest fully expanded leaves. These

leaves were selected from different plants at each measurement date. A portable photosynthesis

gas exchange system (LI-6400, LI-COR, Inc., Lincoln, NE, USA) equipped with a red/blue

light-emitting diode (LED) light source was used for the simultaneous measurement of photo-

synthesis and stomatal conductance. Measurements were made at 400 μmol mol-1 ambient

atmospheric CO2 concentration, a flow rate of 300 μmol s-1, mean leaf temperature of 25˚-

C ± 1.6˚C, and a vapour pressure deficit (VPD) of 1.3 ± 0.3 kPa. Measurements were made

from 09:00 h to 15:00 h, at photosynthetic photon flux density (PPFD) levels of 0, 50, 100, 150,

200, 250, 300, 400, 450, 500, 600, 800, 1,000 1,200 and 1,500 μmol (photon) m–2 s–1. The light

curves were started at the lowest PPFD. Leaves were adapted for at least 5–20 min per light

level to ensure that photosynthesis and stomatal conductance were stable before data logging.

Following the gas exchange measurements, the same youngest fully expanded leaves were

used for leaf trait measurements. Leaves were placed on ice in a cool box and taken to the labo-

ratory to determine leaf area and leaf pigments. Leaf area was measured with a leaf area meter

LI-3100 (LI-COR, Lincoln, NE, USA). Leaves were oven-dried at 70˚C for at least 96 h and

weighed to determine their dry mass.

Chl and Car contents were determined in a whole-pigment extract of leaf tissues by

UV-VIS spectroscopy [40]. The absorbance of the extract was measured at 470.0 nm, 648.6

nm, and 664.2 nm for the calculation of the Chl a, Chl b and Car contents [40]. Nitrogen con-

tent was determined by the Nelson and Sommers [64] procedure.

Leaf inclination angle was obtained with a three-dimensional (3D) digitiser (Fastrak, Polhe-

mus Inc., Colchester, VT, USA) [65, 66]. Leaf inclination angle is expressed in the range from

zero to 180 degrees, where zero indicates an upward vertical leaf and 180 a downward drop-

ping leaf [66].

Estimation of growth rate and the relationship between growth rate and

leaf area

The oven-dried weight of the above-ground plant parts (shoots) at five measurement dates

(28, 42, 50, 55, and 63 DAS) (S1 Table) and the intervals (14, 8, 5, and 8 days) between the mea-

surement dates were used to calculate the growth rate. Absolute growth rate (AGR; increment

in dry weight per unit time) of the plants across the measurement intervals was calculated as

AGR ¼
W2 � W1

t2 � t1
ð1Þ

where W1 and W2 are the dry weights at the beginning and the end of the interval at times t1

and t2, respectively [67]. Plant growth rate and total leaf area per plant were assessed to explore

the variation in Pgmax at the whole-plant level. In crops, light interception is often
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exponentially related to leaf area [68–70], and growth can be considered the product of light

interception and light use efficiency [69, 70]. Thus, we can expect a linear relationship between

the natural logarithm of absolute growth rate and leaf area per plant, where the slope of the

relationship should indicate light use efficiency.

Photosynthesis model

The four-parameter non-rectangular hyperbola leaf photosynthesis model [4] was employed

in this study. We used a Microsoft Excel routine (Solver) to estimate the four key parameters

of the PN/I curve. The routine uses the non-linear least square curve fitting procedure (general-

ised reduced gradient method) [4].

The model is of the form:

PN ¼
aðI0Þ x I þ Pgmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðI0Þ x I þ ðPgmaxÞ
2
� 4y x aðI0Þ x I x Pgmax

q

2y
� RD ð2Þ

Where I [μmol photon) m–2 s–1] is the photosynthetic photon flux density (PPFD); Pgmax

[μmol (CO2) m–2 s–1] is the asymptotic estimate of the maximum gross photosynthetic rate; α
(I0) [μmol (CO2) μmol-1 (photon)], is the apparent quantum yield at I = 0 (based on incident

light) [4, 37, 71]; θ [dimensionless] is the convexity or rate of bending of the curve (the ratio of

physical-to-total resistance (carboxylation resistance + physical resistance [8, 72]) and RD

[μmol (CO2) m–2 s–1] is dark respiration (measured at I = 0, intercept on the Y-axis). PN [μmol

(CO2) m–2 s–1] is the net photosynthetic rate. It is important to note that the definition of

apparent quantum yield, α (I0), does not correspond to the original concept of the maximum

quantum yield (α) of photosynthesis light response. The maximum quantum yield, α, is usu-

ally defined as the slope of the curve at the linear portion in the range of PPFD between 0 and

200 μmol (photon) m–2 s–1 [4, 73–76]. In contrast, α (I0) is the derivative of the four-parameter

non-rectangular hyperbola at I = 0 [4]. Thus α (I0) is instead the maximum value of quantum

yield higher than any point on the PN/I curve [4]. The parameters of the non-rectangular

hyperbola were estimated separately for each leaf.

Statistical analysis

A two-way ANOVA was conducted on the parameters of the PN/I curve and the leaf traits to

test the effects of the species and measurement dates. Significant differences between means

were determined using the Tukey honest significant difference (THSD) test at a 5% probability

level. It is also important to report some effect size measures that indicate whether the

observed statistical differences among groups are of practical significance. For a two-way

ANOVA and small sample size, the effect size measure omega squared (ω2) is recommended

[77–82]. ω2 also determines the percentage of the variation in the dependent variable attribut-

able to the individual independent factors (i.e., species and measurement dates) [78]. ANOVA

and ω2 were both computed using JMP Pro software version 13 (SAS Institute Inc., 2016). Cor-

relation (Pearson’s) analysis was used to establish the association between leaf traits and maxi-

mum gross photosynthetic rate (Pgmax). Linear regression analysis was also used to establish

the relationship between the leaf traits and Pgmax.
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Results

Environmental variables

The mean air temperature, mean relative humidity, mean daily photosynthetically active radia-

tion (PAR) and mean daily light integral (DLI) during the growing period are shown in Fig 1

below.

The range of the daily mean PAR and DLI in the glasshouse during the growth period were

35.2 to 257 μmol m–2 s–1 and 3.1 to 22.2 mol m–2 d–1, respectively. The mean temperature and

relative humidity during the whole growth period were 22.7˚C and 58.4%, respectively. Light

intensities at and in the five- or ten-day intervals before measurements were highest for the

third measurement date (May 20, 2014; 63 DAS), followed by the first (May 7, 2014; 50 DAS)

and the second (May 12, 2014; 55 DAS) (Table 1).

Net photosynthetic-light response (PN/I) curves

Non-rectangular hyperbolae described the net photosynthesis light response (PN/I) of the four

amaranth species well at each measurement date (S2 Fig). The two-way ANOVA test showed

Fig 1. Weather variables during the growing period. (A) Mean air temperature and relative humidity. (B) Daily mean photosynthetically active radiation

(PAR) and daily light (PAR) integral (DLI). The red spots in A correspond to the five days (28, 42, 50, 55, and 63 DAS) for the growth rate measurements and

the red spots in B correspond to the three days (50, 55, and 63 DAS) for the photosynthetic light response and leaf trait measurements. DAS denotes days after

sowing.

https://doi.org/10.1371/journal.pone.0270674.g001

Table 1. Daily light integral (DLI) at three measurement dates, means across five (5 d) and ten days (10 d) prior, and the average from transplanting to the three

measurement dates (TM).

Measurement Date (2014) Days after sowing (DAS) Daily Light Integral (DLI) (mol PAR m-2 d-1)

- - - Daily Mean (5 d) Mean (10 d) Mean (TM)

1 07 May 50 10.61 11.61 11.48 11.37

2 12 May 55 9.23 9.25 10.42 11.11

3 20 May 63 22.20 16.50 14.05 11.80

https://doi.org/10.1371/journal.pone.0270674.t001
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no main effect of measurement date and an interactive effect of measurement dates and species

on all the model parameters (S2 Table). The maximum gross photosynthesis rate (Pgmax) was

the only parameter that differed (p<0.001) among the species. Due to the lack of measurement

date effects, the data on the PN/I curves were pooled for the species (Fig 2).

The mean separation test on Pgmax categorised the species into two; high (A. cruentus and

A. hybridus) and low Pgmax (A. dubius and A. hypochondriacus). Apparent quantum yield at

PPFD of zero, dark respiration, and convexity were not significantly different among the spe-

cies (Table 2).

Interspecific variations in leaf traits

The two-way ANOVA showed a significant species effect on most of the leaf traits except for

LMA and leaf inclination angle (S3 Table). There was a measurement date effect on both total

Chl and Chl b (S4 Table). Significant interactions between measurement date and species were

also found for Chl a and Chl b ratio (Chl a/b) (S5 Table). A. hybridus had the highest values for

all pigments, while A. cruentus had the highest Na and gs values (Table 3).

Fig 2. The response of net photosynthetic rate, PN, to photosynthetic photon flux density (PPFD) on new fully

expanded leaves of four amaranth species. The symbols for each species represent the mean pooled data of six light

response curves (n = 6, two from each of the three measurement dates) since there was no measurement date effect on

the light response curves. Lines joining the points were omitted for clarity. Bars represent ± SD. Measurement

conditions were leaf temperature of 25˚C, CO2 concentration of 400 μmol mol-1, average relative humidity of 60–70%,

and a vapour pressure deficit of 1.3 ± 0.3 kPa.

https://doi.org/10.1371/journal.pone.0270674.g002
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Relation between maximum gross photosynthesis rate (Pgmax) and leaf

traits

Positive correlations were found between Pgmax and leaf pigments except for Chl b. Correla-

tions were highly significant for Pgmax and stomatal conductance and nitrogen per unit area

(S6 Table).

Accordingly, Pgmax showed a strong positive linear relationship with gs measured at

1500 μmol (photons) m–2 s–1. A positive linear relationship was also found between Na, leaf

pigments, and Pgmax (Fig 3).

Leaf inclination angle showed a positive linear relationship with Pgmax only at the first mea-

surement date (50 DAS). LMA exhibited a weak linear relationship with Pgmax only at the third

measurement date (63 DAS; Fig 4).

Relationship between whole-plant variables and maximum gross

photosynthesis rate (Pgmax)

A strong linear relationship was found between the natural logarithm of absolute growth rate

and leaf area per plant for all the species (Fig 5).

The slopes of the linear relationship varied among the species (Table 4). The differences in

slopes corroborate the pattern of the variation in the Pgmax. Accordingly, A. cruentus and A.

hybridus had high and similar slopes while A. dubius and A. hypochondriacus exhibited low

slopes (Table 4).

Discussion

In the present study, we investigated the net photosynthetic light response (PN/I) curves, leaf

traits, and productivity at the whole-plant level in four amaranth species. We observed varia-

tion in maximum gross photosynthetic rate, Pgmax, and some key leaf traits among the species.

Table 2. Means and confidence intervals (95%) for apparent quantum yield at zero PPFD (α(I0)), convexity (θ), dark respiration rate (RD), and the mean compari-

son (Tukey honest significant test) of species effect on maximum gross photosynthesis (Pgmax).

Species Pgmax (μmol (CO2) m–2 s–1) α(I0) (μmol (CO2) μmol (photon) –1) RD (μmol (CO2) m–2 s–1) θ
A.hybridus 32.57A (± 4.16) 0.07 (± 0.02) 2.05 (± 1.00) 0.66 (± 0.36)

A.dubius 22.29B (± 4.16) 0.08 (± 0.03) 1.09 (± 1.00) 0.41 (± 0.36)

A.hypochondriacus 21.86B (± 4.16) 0.08 (± 0.02) 1.02 (± 1.00) 0.49 (± 0.36)

A.cruentus 34.21A (± 4.16) 0.07 (± 0.02) 1.12 (± 1.00) 0.34 (± 0.36)

Mean values of Pgmax with different superscripts are significantly different at the 5% level. n = 24

https://doi.org/10.1371/journal.pone.0270674.t002

Table 3. Mean comparison (Tukey Honest Significant Difference) and 95% confidence intervals of amaranth species for stomatal conductance (gs), nitrogen content

per unit area (Na), chlorophyll (Chl), and carotenoids (Car) contents. n = 24 (gs), n = 48 for the rest of the traits.

Species gs (mol m–2 s–1) Na (g m–2) Chl a (mmol m–2) Chl b (mmol m–2) Total Chl (mmol m–2) Car (mmol m–2)

A. hybridus 0.20A (± 0.07) 1.95AB (± 0.34) 0.55A (± 0.11) 0.15A (± 0.03) 0.71A (± 0.13) 0.23A (± 0.04)

A.dubius 0.14AB (± 0.07) 1.85AB (± 0.34) 0.38B (± 0.11) 0.09C (± 0.03) 0.46B (± 0.13) 0.16B (± 0.04)

A.hypo-chondriacus 0.10B (± 0.07) 1.66B (± 0.34) 0.43B (± 0.11) 0.10BC (± 0.03) 0.53B (± 0.13) 0.18B (± 0.04)

A. cruentus 0.19A (± 0.07) 2.03A (± 0.34) 0.46AB (± 0.11) 0.11B (± 0.03) 0.58AB (± 0.13) 0.19B (± 0.04)

The stomatal conductance (gs) presented here was measured at the maximum light level (1500 μmol m–2 s–1).

https://doi.org/10.1371/journal.pone.0270674.t003
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Fig 3. Relationship between leaf traits and maximum gross photosynthetic rate (Pgmax) for four amaranth species (A.

hybridus, A. dubius, A. hypochondriacus, and A. cruentus). A–F (stomatal conductance (gs) measured at the maximum PPFD

of 1500 μmol (photons) m–2 s–1, nitrogen per unit area (Na), carotenoids (Car), Chlorophyll (Chl a, total Chl, Chl b). The three

data points for each species represent the means of the variables at the three measurement dates (50, 55, and 63 days after

sowing). Measurement conditions for the gas exchange measurements were leaf temperature of 25˚C, CO2 concentration of

400 μmol mol-1, average relative humidity of 60–70%, and a vapour pressure deficit of 1.3 ± 0.3 kPa.

https://doi.org/10.1371/journal.pone.0270674.g003
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At the leaf level, stomatal conductance predominantly explained this variation. At the whole-

plant level, the slope of the linear relationship between the natural logarithm of absolute

growth rate and leaf area per plant varied among the species and was strongly correlated with

Pgmax.

Pgmax is widely used for the ecophysiological characterisation of plant species and compara-

tive analysis of growth conditions [83]. Many plant anatomical or morphological, chemical

(e.g. Chl content per leaf area), physiological (e.g. photosynthesis rate per leaf area) and growth

traits (e.g. growth rate) are better related to the daily light integral (DLI; i.e., the PAR inte-

grated over the day) than to instantaneous or peak values of PAR at any specific moment in

time [35, 84]. Hence the average DLI during an experimental treatment can be used to quan-

tify the light intensity experienced by plants [35]. The average DLIs calculated from the onset

of the experiment in the glasshouse to each measurement date were similar for the three mea-

surement dates (Table 1). The similarity in the average DLI presumably is why measurement

dates had no significant effect on the parameters of the PN/I curves [35, 84]. Hence, the differ-

ences in Pgmax observed among the species represented the species’ innate acclimated photo-

synthetic performance under the conditions of growth [75, 85, 86]. The observed Pgmax are in

the range reported in previous studies for amaranths [45, 75, 87]. Also, the trend of the varia-

tions in Pgmax among the species agrees with the findings of [16]. These researchers found that

weedy amaranths such as A. hybridus and fast-growing amaranths such as A. cruentus exhibit

a higher photosynthesis rate than grain (A. hypochondriacus) and vegetable amaranths (A.

dubius).
Quantum yields of normal healthy leaves do not differ among species under non-stressed

growth conditions [36, 44, 88, 89]. Ehleringer et al. [90] also found that the quantum yield of

both C4 and C3 species is not dependent on the growth light and temperature conditions. Our

values are similar to the theoretical quantum yield for C4 plants (i.e., 0.07, when there is no

Fig 4. Relation between maximum gross photosynthesis rate (Pgmax) and leaf inclination angle (left) and leaf dry

mass per unit area (LMA) (right) at measurement date 1 (50 DAS) and 3 (63 DAS), respectively. The four data

points represent the means of each species. Bars represent the ± SD of the means. DAS denotes days after sowing.

https://doi.org/10.1371/journal.pone.0270674.g004
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CO2 leakage from the bundle sheath to the mesophyll and 0.063 μmol (CO2) μmol (photon) –1

when there is leakage) [90–92]. Our values are also consistent with those of NAD-ME enzyme

type C4 grass species, Sporobolus cyrptandrus, Panicum virgatum, and maize (Zea mays)

[0.06 μmol (CO2) μmol (photon) –1] [7, 90]. Harley and Ehleringer [75] determined the quan-

tum yields of four amaranth species, including three species used in this study. They also

found no significant difference among the species.

The coefficient θ represents the photosynthetic efficiency in the intermediate light range

above the linear section determined by the maximum quantum yield. Photosynthesis in the

intermediate light range is most efficient when θ is high [11]. Commonly observed leaf θ values

range from 0.5 to 0.99 [11, 13, 71, 93], and two of our values were in this range. Nevertheless,

all our values (Table 2) were in the range observed in C4 plants [7, 93].

Fig 5. The relationship between the natural logarithm of absolute growth rate (AGR) and leaf area per plant of four amaranth species

(A. hybridus, A. dubius, A. hypochondriacus, and A. cruentus). The four data points for each species represent the means of the variables at

the four measurement date intervals. Bars represent the ± SD of the means.

https://doi.org/10.1371/journal.pone.0270674.g005
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RD is known to vary depending on the acclimation state or ambient light environment [94,

95]. The observed RD was reasonably proportional to the observed Pgmax, indicating the cou-

pling relationship between photosynthesis rate and respiration rate [96].

Interspecific variation in leaf traits

The species showed interspecific variation in leaf traits except for LMA and leaf inclination

angle. The variation in gs, Na, and Chl content agrees with the findings of [16], who found

interspecific variation in 12 amaranth species. LMA indicates the position of species along a

gradient of resource-rich to resource-poor environments [97]. Average DLI during plant

growth determines the LMA of plants [84, 98]. In our study, the average DLI received by the

plants at the measurement dates were similar (Table 1), which is consistent with the similar

LMA among the species and measurement dates. At the species level, A. hybridus and A. cruen-
tus had higher total Chl content, Chl a, Na, and gs than A. dubius and A. hypochondriacus,
which corroborated their higher Pgmax (Tables 2 and 3) [2, 16, 99, 100].

Plants grown under natural light conditions possess high acclimation capacity to alterations

in light, which is measurable in the pigment composition of thylakoids [24, 41]. Thus under

natural growth light conditions, plants combine the characteristics of low and high light-

grown plants for an efficient utilisation of light [24]. The observed decrease in total Chl and

Chl b; and increase in Chl a/b ratio at the last measurement date corroborated the known

properties of plants grown in natural fluctuating light conditions [24, 41]. Our data shows that

the PAR and DLI prior to, or on, the first and second measurement dates (7 and 12 May 2014;

50 and 55 DAS) were similar and lower than at the last measurement date (20 May 2014; 63

DAS) (Table 1 and Fig 1B). Both Chl b and total Chl are known to decrease in high growth

light environments due to the reduced proportion in light-harvesting complex proteins in

favour of electron transport, photophosphorylation, and carbon fixation components [33, 38,

41, 43–45, 48]. Chl a/b ratio is a primary index of the acclimation to light, which measures the

proportion of light-harvesting complex to other Chl components [101]. A higher ratio occurs

in high growth light environments where Chl a content or the photosystem I chlorophyll

increases and the proportion of light-harvesting chlorophyll a/b-protein complex decreases

[41, 42, 48]. The increase in the Chl a/b ratio was species-specific, as noted by [28, 42]. A.

dubius and A. cruentus showed a significant increase in Chl a/b ratio at the last measurement

date. In contrast, A. hybridus and A. hypochondriacus maintained a similar Chl a/b ratio across

the measurement dates (S5 Table). This suggests that A. dubius and A. cruentus could reduce

their light-harvesting complex proteins when the growth light environment improved [29, 41–

43]. The observed range of values was similar to reported values for C4 plants, including ama-

ranths [41, 42]. The central role of Chl b and Car is to broaden the absorption spectrum of

plants for maximal light capture [33, 35, 48]. Among the species, A. hybridus differed in Chl b
and Car content suggesting a broader spectrum for maximal light capture (Table 3).

Table 4. The slope of the linear relationship between the natural logarithm of absolute growth rate (AGR) and

leaf area per plant.

Species Slope (g d-1m-2)

A.hybridus 11.32A

A.dubius 2.26B

A.hypochondriacus 0.84B

A.cruentus 12.48A

There was a strong linear relationship between the slope and Pgmax (Fig 6).

https://doi.org/10.1371/journal.pone.0270674.t004
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The interspecific variation observed in gs, in the present study, ranging from 0.14 to 0.20

mol m–2 s–1, is similar to values in [34] found in 12 amaranth species (0.17 to 0.26 mol m–2 s–

1). Their values were slightly higher than ours, probably due to the differences in the leaf tem-

peratures (30˚C and 25˚C) used for the gas exchange measurements. Liu and Stützel [51]

reported variation in gs between 0.35 mol m–2 s–1 and ca. 0.60 mol m–2 s–1 among four geno-

types of amaranth. Our values are comparatively low, apparently due to the low temperatures

(24/22˚C, day/night) during our study compared to the high temperatures (30/20˚C, day/

night) in their research. Urban et al. [102] showed that gs increased by about 40% when

the temperature was increased by 10˚C at a constant VPD of 1 kPa in both broadleaf

and coniferous species. Low light environments can also contribute to stomatal closure

[103, 104].

Fig 6. The relationship between maximum gross photosynthetic rate (Pgmax) and the slope between the natural

logarithm of absolute growth rate and leaf area per plant.

https://doi.org/10.1371/journal.pone.0270674.g006
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Exploring the relationship between leaf traits and the maximum gross

photosynthesis rate (Pgmax)

Interspecific variation in Pgmax was directly related to biochemical and physiological leaf traits

such as stomatal conductance, nitrogen, and Chl content. In contrast, structural leaf traits such

as leaf thickness were not directly involved [16]. Our observation confirms these findings. The

interspecific variation in Pgmax was also mainly explained by stomatal conductance and nitro-

gen content, although leaf pigments were also associated (Fig 3). Many C3 and C4 plant species

showed similar positive linear relationships [16, 50, 99, 105–107]. According to von Caem-

merer et al. [103], the striking correlation between photosynthetic capacity and gs maintains

the Ci (intercellular CO2 concentration) /Ca (ambient CO2 concentration) ratio constant

when photosynthetic capacity is modulated in the long-term by growth conditions. The fairly

strong positive relationship between Pgmax and leaf inclination angle at the first measurement

date (Fig 4) suggests that as leaf inclination angle increased (i.e., became more horizontal from

50˚ to 100˚), Pgmax also increased. Also, leaf angles tend to be more horizontal under low light

environments to increase the efficiency of direct light absorption [22, 108]. Plants maximise

their total net photosynthetic gain by maximizing whole plant PPFD absorption and photosyn-

thetic light use efficiency via simultaneous adjustments in leaf angle and leaf photosynthetic

capacity [109].

Plant leaf area, growth rate, light use efficiency, and Pgmax

Plant productivity, especially in low light environments, depends on the net photosynthetic

rate of individual leaves but is also strongly dependent on the total leaf area displayed for light

interception [36]. Our findings demonstrate that the slope between the natural logarithm (ln)

of absolute growth rate and leaf area per plant, representing light use efficiency (LUE), was

strongly associated with the variation in Pgmax. The two species (A. cruentus and A. hybridus)
with a higher Pgmax showed higher slopes (Fig 5). Thus, A. cruentus and A. hybridus were more

efficient in converting light energy into photosynthates [110].

Conclusion

Our data revealed interspecific variation in the maximum gross photosynthetic rate (Pgmax),

stomatal conductance, nitrogen content, and leaf pigments per unit area among four amaranth

species. The variation in Pgmax was mainly explained by stomatal conductance and nitrogen

content at the leaf level. At the whole-plant level, light use efficiency showed a strong positive

linear relationship with Pgmax. Notable was the variation in total Chl, Chl b, and Chl a/b ratio

at the measurement dates, which tended to combine the characteristics of both high and low

light-grown plants. Overall, A. cruentus and A. hybridus were superior to A. dubius and A.

hypochondriacus with respect to the Pgmax, leaf traits, and light use efficiency. Thus, A. hybridus
and A. cruentus tend to be more efficient in carbon acquisition. These findings highlight the

correlation between leaf photosynthetic characteristics, other leaf traits, and whole plant pro-

ductivity in amaranths. Future studies may explore more species and accessions of Amar-
anthus spp.at different locations or light environments.
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rophyll a (mmol m-2s-1); Chl b, Chlorophyll b (mmol m-2s-1). Values represent Pearson’s cor-

relation coefficient (r). Significance at P: <0.001���; <0.01��; <0.05�; NS—not significant.

(DOCX)

Acknowledgments

Our appreciation goes to the technical staff of the Institute of Horticultural Production Sys-

tems, Leibniz University Hannover, especially Mss Ilona Napp and Marie-Luise Lehmann.

The publication of this article was funded by the Open Access Publishing Fund of Leibniz Uni-

versität Hannover.

Author Contributions

Conceptualization: Mildred Osei-Kwarteng, Hartmut Stützel.
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Visualization: Mildred Osei-Kwarteng, Dany Moualeu-Ngangue, Hartmut Stützel.
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