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Abstract 

Biodiversity-based cropping systems are an interesting option to address the many 

challenges that agriculture faces. However, benefits of these systems should not 

obscure the fact that creating biodiversity-based cropping systems represents a major 

change for farmers. To address this challenge, we argue that designing biodiversity-

based cropping systems requires transforming ecological concepts into technical 

opportunities. Indeed, integrating ecological concepts such as plant–soil feedback and 

plant functional traits more strongly into cropping system design offers promising 

opportunities for the provision of ecosystem services, such as pest and disease control, 

crop production (including crop yield stability), climate regulation and regulation of soil 

quality. Accordingly, we demonstrate that designing biodiversity-based cropping 

systems requires considering not only the short term but also the long term. This would 

ensure that the expected ecosystem services have enough time to build up and provide 

their full effects, that the cropping systems are resilient and that they avoid the 
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limitations of short-term assessments, which do not sufficiently consider multi-year 

effects. Considering long-term consequences of system change – induced by 

biodiversity – is essential to identify potential trade-offs between ecosystem services, 

as well as agricultural obstacles to and mechanisms of change. Including farmers and 

other food-chain actors in cropping system design would help find acceptable 

compromises that consider not only the provision of ecosystem services, but also other 

dimensions related to economic viability, workload or the technical feasibility of crops, 

which are identified as major obstacles to crop diversification. This strategy represents 

an exciting research front for the development of agroecological cropping systems. 

 

Keywords 

plant functional trait; plant–soil feedback; participatory design; conceptual modelling; 

process-based modelling; multicriteria assessment 

 

Highlights 

• Biodiversity-based cropping systems can reduce negative impacts of agriculture. 

• Designing biodiversity-based systems mobilises concepts from agronomy and 

ecology. 

• Designed systems must be assessed in the long term to ensure their sustainability. 

• A framework for the design and assessment of cropping systems is proposed. 
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1. Cropping system design needs ecological concepts to propose both short-

term and long-term beneficial innovations 

Human societies face enormous challenges in reducing negative impacts of their 

activities on the environment (Rockström et al., 2009; Running, 2012), while ensuring 

that the necessary changes are socially just (Biermann, 2012). Among human 

activities, those in the agricultural and food sectors have strong impacts (Juniper, 2021; 

Meier, 2017), and many studies point to the urgency of changing, sometimes deeply, 

the current dominant food systems to innovative and sustainable ones (Béné et al., 

2019; Frison and Clément, 2020; Meynard et al., 2016; Theurl et al., 2020). This 

transition concerns everyone – researchers, input suppliers, farmers, advisers, food 

processors, consumers, etc. – and should be driven by public policies (Cambeses-

Franco et al., 2022; De Schutter et al., 2020; Galli et al., 2020; Kugelberg et al., 2021). 

Upstream of the food systems, agronomists and ecologists can work with farmers to 

design new cropping systems that meet social and environmental expectations 

(Lacombe et al., 2018). One promising way to design these new cropping systems is 

crop diversification (e.g. Birthal and Hazrana, 2019; Dwivedi et al., 2017; Juventia et 

al., 2021; Li et al., 2019; Massawe et al., 2016), defined by Gaba et al. (2015) as 

increasing the number of plant species on a given area of land. Crop diversification is 

an “intentional addition of functional biodiversity to cropping systems” (Tamburini et al., 

2020) and indirectly influences the associated biodiversity (e.g. soil biota 

communities). A variety of agricultural practices can diversify crops on farms (Figure 

1): all are based on complex biological interactions, which have long been studied in 

ecology (e.g. Lidicker, 1979), although recent knowledge has not been sufficiently 

implemented in practice (Lescourret et al., 2015; Perfecto and Vandermeer, 2015). 

Crop diversification provides many benefits for developing biodiversity-based cropping 
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systems, such as economic revenue from a variety of value-added crops, an increase 

in pest and disease control while reducing the use of inputs, improvement in soil and 

water quality, preservation of biodiversity, and enhancement of nutritional diversity 

(Duru et al., 2015; Peterson et al., 2018). 

These biodiversity-based systems may differ greatly from existing cropping systems 

and can sometimes be technically difficult to implement and sociologically difficult to 

accept. Moreover, their potential benefits may not be visible in the short term, 

discouraging farmers from pursuing them. Even worse, agronomic production and 

economic revenue can be poor during the transition to more diversified cropping 

system (Wang et al., 2021). Overall, although diversification is an appealing option, it 

is considered a complex and high-risk strategy, which leads to reluctance to adopt it 

and ultimately slows the development of biodiversity-based systems. 

In this Discussion article, we first argue that designing biodiversity-based systems 

requires considering not only the short term but also the long term (i) to ensure that the 

systems designed are sustainable and resilient and (ii) to avoid the limitations of short-

term assessments, which fail to anticipate long-term consequences of system change. 

In other words, major changes in cropping systems can be beneficial in the short term, 

but detrimental in the long term because the long-term consequences are usually 

ignored when designing the new systems. For example, John and Babu (2021) 

illustrate this with the Green Revolution in India. In the 1960s, the main issue there 

was to produce enough food to avoid famines: this short-term priority led to the design 

of cropping systems that succeeded in increasing agricultural production, which 

reduced poverty and malnutrition, but that had unintended and adverse long-term 

consequences for human health and the environment. Assessing cropping systems 

over the long term would (i) reduce the risk of not anticipating future negative impacts 



5 
 

of these systems and (ii) allow for better assessment of future positive effects of these 

systems. 

Second, we argue that designing biodiversity-based cropping systems also requires 

using ecological concepts to expand technical opportunities for farmers, one of the 

difficulties being to transform ecological concepts into crop management practices. 

Indeed, using ecological concepts to design biodiversity-based cropping systems 

offers promising opportunities for the provision of ecosystem services (see, for 

example, the meta-analysis of crop diversification effects by Beillouin et al. (2021)). 

Moreover, using ecological concepts reinforces the importance of the long term, as 

considering the long term is necessary to ensure that the expected ecosystem services 

have enough time to build up and provide their full effects. 

Finally, by using concepts from ecology and agronomy, we propose an approach to 

design and assess biodiversity-based cropping systems for both short- and long-term 

perspectives. 

 

2. What are the short, medium and long terms for assessing changes in 

biodiversity-based systems? 

In ecology, as in agronomy, there is no single definition of the short, medium or long 

term. For example, Rull and Vegas-Vilarrúbia (2011) highlighted that some ecologists 

consider data acquired from experiments that last one or more decades to be long 

term, whereas others consider paleontological data that covering centuries to millennia 

to be long term. 

As this article focuses on designing and assessing systems on which humans 

deliberately act, we propose considering not only biogeochemical processes but also 

tactical, social, and even societal elements to define the short, medium, and long 
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terms. Regarding biogeochemical processes, not only must the dynamics of these 

processes be considered, but also the technological ability to measure in situ 

significant changes in variables that describe these processes (and these changes 

must make sense to farmers). The concept of fast and slow variables is of particular 

interest (Therond et al., 2017): the former (e.g. soil water storage, soil nitrogen 

dynamics) change over a time scale of less than one day to a few days or months, 

whereas the latter (e.g. soil carbon stock) change over a time scale of one to several 

years. Regarding tactical elements, farmers plan crop management practices by 

considering the state of the agroecosystem each day and anticipating effects of their 

crop management practices for the entire growing season and, for practices such as 

weed management, for the entire crop rotation. The temporal dimension of public 

policies must also be considered, as they structure on-farm activities (e.g. “Directive 

2009/128/EC of the European Parliament and of the Council of 21 October 2009 

establishing a framework for Community action to achieve the sustainable use of 

pesticides”). Public policies can have long temporal horizons of up to several decades 

(Commaille et al., 2014; Howlett and Goetz, 2014) (e.g. the agreement on global 

warming of the 2015 United Nations Climate Change Conference). 

Consequently, we consider the short term to be a period of one day to one cropping 

year (0-1 year), the middle term to be a period of one cropping year to one crop rotation 

(ca. 1-10 years) and the long term to be a period from one crop rotation to the active 

life span of a farmer on the same farm (ca. 10-50 years). 

 

3. Insights from ecology to address long-term trajectories of biodiversity-based 

cropping systems 
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3.1. The long-term stability and productivity of biodiversity-based cropping 

systems: theoretical background 

Boivin and Crowther (2021) state that cropping system principles have yet to embody 

long-term issues, whereas the long term is an inherent temporal scale in ecology 

especially when studying the temporal stability of ecosystem functions (de Bello et al., 

2021). In line with this, we argue that long-term issues are even more important for 

biodiversity-based cropping systems than for conventional cropping systems. Indeed, 

according to Thakur et al. (2021), positive productivity–diversity relationships become 

stronger over time. These authors particularly refer to an emerging concept: plant–soil 

feedback. 

What is plant-soil feedback? The nature of soil influences the productivity, succession 

and reproductive success of plants, but in turn plants alter abiotic and biotic soil 

conditions that may influence other individuals in that soil after disappearance of causal 

plants. Plant–soil feedback is an important concept for explaining how terrestrial 

ecosystems respond to global land use and climate change (van der Putten et al., 

2016). For ecologists, plant–soil feedback can be explained as modifications of 

pathogen populations (Ehrenfeld et al., 2005; Mariotte et al., 2018) and nutrient cycling 

mediated by soil microbes (Kulmatiski et al., 2011), which echoes the “pre-crop effect” 

of agronomists’ crop-rotation rules (i.e. benefits of one crop that carry over to 

subsequent crop). However, plant–soil feedback and the pre-crop effect, although 

similar at first sight, differ greatly. First, the timespan considered is several years to 

decades (van der Putten et al., 2016; Wurst and Ohgushi, 2015) for the former, but 

only one year (rarely more) for the latter. Second, plant–soil feedback embraces a 

more comprehensive and holistic interpretation because, for example, it considers a 

wide range of processes hidden in above- and below-ground interactions. 
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Accordingly, recent knowledge on plant–soil feedback can be used to replace the 

short-term, sometimes empirical, pre-crop effects of agronomists (Pernilla Brinkman et 

al., 2010). For example, metrics of plant–soil feedback were used successively to 

identify (i) the most productive crop rotations (Koyama et al., 2022) and (ii) the best 

combination of agricultural practices, such as fertilisation, irrigation (Wei et al., 2018) 

and soil inoculation (Pineda et al., 2020), to enhance positive carry-over effects. 

Positive plant–soil feedback should therefore be managed with respect to nutrient and 

water availability to ensure both overyielding effects, as in intercropping (Yu et al., 

2016), and the success of entire crop rotations. Metrics of plant–soil feedback should 

also be included in the criteria used to design biodiversity-based cropping systems 

(Section 4). One should note that plants’ abilities to compete are inextricably related to 

the outcomes of plant–soil feedback (Beals et al., 2020) and are associated with plant 

functional traits (Cortois et al., 2016), as described in the following section. 

 

3.2. Ecological metrics to design and predict long-term biodiversity-based 

cropping system performances: insights from trait-based ecology 

A “functional trait” is a physiological, morphological or life-history characteristic of an 

organism that can respond to environmental changes (response trait) or modify the 

process of an ecological function (effect trait) (Garnier and Navas, 2012). Trait-based 

ecology relies on this trait concept, and many studies describe how to measure plant 

functional traits, either root traits (Fort and Freschet, 2020; Freschet et al., 2021) or 

above-ground traits (Cornelissen et al., 2003; Ordoñez et al., 2009). Currently, 

considerable knowledge is available in databases such as the TRY Plant Trait 

Database (Pakeman, 2014). These databases can be used to design biodiversity-

based cropping systems that combine short- and long-term issues. 
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In disturbed and competitive environments such as agricultural fields, there exists an 

interspecific trade-off between plant functional traits that infer rapid resource 

acquisition and those that infer resource conservation (Kurze et al., 2021). For 

example, high specific leaf area (a well-known plant functional trait) is associated with 

an acquisitive resource-use strategy, whereas high leaf dry matter content (another 

well-known plant functional trait) is associated with a conservative resource-use 

strategy. The plant economics spectrum was developed based on these different 

resource-acquisition strategies (Díaz et al., 2016): using plant functional traits, it 

ranges species from resource-conservative (i.e. slow-growing) to resource-acquisitive 

(i.e. fast-growing). This theory is used to explain shifts in and intensities of plant–soil 

feedback (De Long et al., 2019) but also competition or co-existence strategies 

(Mariotte et al., 2018). This theory is thus essential for predicting long-term ecosystem 

functioning (de Bello et al., 2021; Faucon et al., 2017) and can be fruitfully used in a 

new approach for designing biodiversity-based cropping systems (Section 5.2). 

Originally developed for grasslands, trait-based ecology is beginning to be considered 

in farmers’ crop management decisions (Barot et al., 2017; Martin and Isaac, 2018), 

sometimes because it has been included in decision support tools (e.g. Damour et al., 

2018). For example, according to Gaba et al. (2014) and Fried et al. (2021), trait-based 

ecology can be used to interpret weed responses to environmental and cropping 

system changes and then to develop sustainable weed management that preserves 

positive aspects of weeds (e.g. limiting erosion, sheltering bees) while limiting weed 

impacts on crop yields. Moreover, the plant economics spectrum can be adapted to 

the design of cropping systems as well as agricultural management, such as 

intercropping (Faucon et al., 2017; Hinsinger et al., 2011; Li et al., 2014; Mariotte et 

al., 2018) and agroforestry systems (Cardinael et al., 2018). Beyond simply combining 
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plant species to avoid competition by temporal or spatial niche differentiation or 

facilitation (Hinsinger et al., 2011; Li et al., 2014), this theory helps to conceptualize 

community effects on ecosystem functioning in a variety of environments. 

Trait-based ecology can indeed be used to build a community functional parameter 

(i.e. a weighted average of each plant functional trait) for process-based models, as 

described by Violle et al. (2007). This community functional parameter helps predict 

effects of a plant community on ecosystem functioning, for example by combining 

information at the species level to predict biomass of a community (Enquist et al., 

2007). If this community functional parameter is used in process-based models to 

design cropping systems, plant community effects on ecosystem functioning can be 

modelled in response to external drivers (Violle et al., 2007). 

 

3.3. Limits and future research in ecology for biodiversity-based cropping 

system design 

Agronomists still under-use concepts related to plant functional traits and plant–soil 

feedback, especially when designing cropping systems. Such concepts are useful for 

disentangling complex interactions between above- and below-ground components 

and defining potential long-term outcomes. We are convinced that embracing 

ecological concepts provides information that can help to (i) cope with uncertain and 

changing environments (Schneider and Lynch, 2020), (ii) increase soil carbon storage 

(Kell, 2012, 2011), (iii) promote interactions with beneficial microbes to increase plant 

performances with limited nutrient resources (Cantarel et al., 2015; Hunter et al., 2014), 

(iv) improve plant health (Mitter et al., 2016) and (v) manage weeds sustainably (den 

Hollander et al., 2007). 
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We propose here an initial example of ecological research that will help design 

cropping systems. Selective breeding has generated high-yielding crops that often 

invest the bare minimum in defence against pests or longevity. Accordingly, new 

breeding programs address plants’ abilities to interact with their biotic environment 

(Litrico and Violle, 2015) to reduce input needs (Jacquet et al., 2022; Schmidt et al., 

2016). These programs must re-integrate some plant functional traits that were 

removed from existing cultivars (Abbo et al., 2014; Schmidt et al., 2016), such as root 

traits (Wang et al., 2020) for resource-acquisition and carbon-storage issues. 

Simultaneously, these programs should focus on plant functional traits (Cortois et al., 

2016) and crop management practices (e.g. reduced tillage, fertilisation, soil 

inoculation) that may magnify positive plant–soil feedback. This becomes all the more 

necessary as plant–soil feedback has gained new interest in the face of extreme 

climatic events related to climate change (de Oliveira et al., 2020; De Vries and Shade, 

2013; Seybold et al., 1999; Thorsen et al., 2010; Yang et al., 2018), which argues for 

integrating it into cropping system design in a long-term perspective. 

However, some obstacles remain. Agronomists’ reluctance to use ecological concepts 

may have been caused, in part, by different definitions of “long term” in agronomy and 

ecology (see Section 2 for analysis of the terms “short”, “medium” and “long term”). 

However, as cropping system design has recently reconnected with the long term for 

agroforestry systems and perennial forage crops (Jose, 2012), we believe that the 

same could apply to biodiversity-based cropping systems that use annual crops, 

especially considering productivity–diversity relationships (Section 3.1). However, the 

processes that underlie productivity–diversity relationships are still debated in ecology 

due to their dependence on ecological contexts, including temporal and spatial scales, 

which argues for (i) further research in ecology to provide usable knowledge for 
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agronomists and (ii) using other sources of information to design biodiversity-based 

cropping systems (Section 5.2) to avoid “the exception that proves the rule” pitfall that 

discourages bridges between ecology and agronomy. Accordingly, incorporating 

recent ecological knowledge into process-based models (Sections 3.2 and 5.1) could 

be placed on the research agenda to investigate effects of more diversified cropping 

systems on ecosystem functioning by testing targeted beneficial plant functional traits 

in silico without waiting for the next generation of cultivars to be released. This 

approach could influence breeding programs and increase collaborative development 

of process-based models, as recently reviewed (Gaudio et al., 2022). 

 

4. Renewing the criteria for designing biodiversity-based cropping systems for 

the long term 

Designing cropping systems with more attention to ecological concepts and the long 

term requires clearly defining the goals targeted, as these goals can be diverse and 

sometimes conflict with each other (Carof et al., 2013; Sadok et al., 2008). For 

example, it is challenging to design a cropping system that can simultaneously produce 

high crop yields at moderate cost with low environmental impacts. Multi-criteria 

assessment (MCA) tools generally consider this diversity of goals; thus, they are often 

used to design and assess cropping systems (Colbach et al., 2017; Iocola et al., 2020; 

Ravier et al., 2015; Reckling et al., 2016; Sadok et al., 2009). Most MCA tools assess 

cropping systems using economic, social and environmental criteria (Craheix et al., 

2016). Assessing cropping systems in the three dimensions of sustainability is 

necessary for farmers to adopt them (e.g. Winters et al., 2006), even though the 

cropping-system level has relatively few economic and social aspects in itself (Sadok 

et al., 2009). Table 1 presents a summary of most common indicators of MCA tools 



13 
 

(Carof et al., 2013; German et al., 2017). These MCA tools have shown their utility in 

many situations for the design of cropping systems. They have been criticised, 

however, for their limited consideration of temporal effects, such as pre-crop nitrogen 

effects of legumes, yield variability due to climatic risks, price volatility, and changes in 

ecological properties of agroecosystems (German et al., 2017; Iocola et al., 2020). 

Indeed, many MCA tools are static and assess systems using only one or a few- years 

of data in a given soil and climate context, which do not reveal benefits of biodiversity-

based cropping systems, especially in the long term. 

Seeking high resource-use efficiency is often considered a relevant strategy to 

increase the sustainability of cropping systems. This strategy can cause crop diversity 

to decrease, however, as growing a few crops can be more efficient than growing many 

in a given context under stable conditions (Kahiluoto and Kaseva, 2016). In contrast, 

crop diversity is known to increase the stability of cropping system performances under 

variable conditions (e.g. Beillouin et al., 2021; Liu et al., 2019; Macholdt et al., 2020; 

Tilman et al., 2006; Section 3). Thus, trying to increase short-term sustainability may 

decrease long-term sustainability by altering the cropping system’s resilience to 

variable conditions. An important characteristic of crop diversity is functional 

redundancy, which allows cropping systems to supply ecosystem services under 

variable conditions (Lin, 2011). We thus suggest examining not only the average 

performances of cropping systems but also their variability as a function of changes in 

soil properties and climatic conditions. Doing so will improve assessment of the long-

term sustainability of cropping systems and their resilience to climate change or 

economic risks (e.g. Peterson et al., 2018). As a recent IPES-Food report (IPES-Food, 

2016) outlines, biodiversity-based systems do not provide benefits immediately, given 

the time they need to increase soil quality, biodiversity and soil resilience. 
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We therefore propose several complementary indicators that focus more attention on 

long-term changes in cropping system properties as well as ecological aspects of 

cropping systems (Table 1). From an economic viewpoint, farmers specialise in a few 

crops as a short-term strategy to achieve economies of scale (e.g. labour, machinery) 

and to maximise annual income. However, crop diversification can sometimes provide 

higher average income (Kasem and Thapa, 2011; Pellegrini and Tasciotti, 2014; 

Reckling et al., 2016). Because this economic benefit may be observed at the crop-

rotation level rather than the crop level, crop-rotation profit is more relevant than crop 

profit for comparing low- and high-diversification strategies. Carof et al. (2019) illustrate 

this for the introduction of protein crops into low-diversified cropping systems in 

western France. As protein crops are less profitable than other grain crops, a 

biodiversity-based cropping system that rotates protein crops with grain crops is less 

economically advantageous than a low-diversified cropping system when annual crop 

profits are compared. However, this conclusion no longer holds true at the crop-rotation 

level, as rotating protein crops with other grain crops decreased costs by 118 € ha-1 for 

grain crops following protein crops in the situation described by Carof et al. (2019). 

This is due to pre-crop effects of protein crops (lower fertiliser and pesticide costs, and 

higher yield, for subsequent crop). Only the crop-rotation profit reveals these economic 

benefits over time. Crop diversification can also be seen as an interesting strategy for 

long-term stability in income (Ridier et al., 2021), which is another interesting indicator 

to monitor. Reliance on public subsidies is also a more important indicator in the long 

term, as public-support policies usually must be renegotiated every few years (e.g. five 

years for European Union Common Agricultural Policy subsidies). Finally, to better 

represent plant–soil feedback, we also included an indicator based on Marques et al. 
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(2020) that reflects how a crop benefits the yield or growth of another crop (“Rotational 

- intercropping value”). 

For environmental aspects, we suggest estimating dynamics of soil organic matter 

content in addition to the soil organic matter content at a given time. This indicator, 

among others, requires using process-based crop models. Indeed, its annual change 

is often undetectable and difficult to measure, but the cumulative change over the long 

term can be modelled with sufficient accuracy and has a strong influence on soil 

properties and crops. We also suggest paying more attention to the soil phosphorus 

balance, which is often overlooked in short term studies, but is a major concern over 

the long term (Cordell et al., 2009; Sattari et al., 2012). Finally, we propose two 

indicators related to the changes in ecological properties of the agroecosystem – plant 

functional diversity1 and soil resilience2 (de Bello et al., 2010; Díaz et al., 2007) – both 

of which are likely to be influenced by crop diversity. 

Social indicators can also be added to consider long-term dimensions of cropping 

systems better. For example, working conditions and peak workload may be 

considered less crucial in the short term, but they become increasingly important for 

farmers over several years. 

 

5. How should biodiversity-based cropping systems be designed over the long 

term? 

5.1. Which tools should be used to design cropping systems? 

                                                           
1 Functional diversity is “the range and value of those species and organismal traits that influence ecosystem 

functioning” (Tilman, 2001). 
2 Soil resilience is “the ability of soil to resist or recover from an anthropogenic or natural perturbation” (Lal, 1997). 
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As soon as the long term becomes a focus, mathematical or statistical modelling 

becomes a particularly useful tool for predicting effects of new biodiversity-based 

cropping systems and thus for designing them. In this long-term approach, we 

emphasise that designers are more interested in an indicator’s predicted trajectory 

than its exact value. For example, it is more important to know whether the stock of 

soil organic matter will increase or decrease, and at what rate, than how much will be 

stocked after 50 years. From this viewpoint – in which trajectory is more important than 

exact value – common weaknesses of models (e.g. parameter uncertainty; Boote et 

al., 1996) are less problematic than when models are used as decision support tools 

for crop management, for example. Using multi-year data to calibrate models, 

however, is a good practice to improve the accuracy of modelled scenario results (Abi 

Saab et al., 2015; Angulo et al., 2013). In such approaches, long-term experiments are 

crucial, but they are encountered mainly in Europe and North America, and do not yet 

consider a wide variety of cropping systems. An open international database of these 

long-term experiments could serve to improve crop models in order to reconstruct 

trajectories of agroecosystem structure and functioning under climate change to 

project scenarios in the future. Metamodelling3 has been applied successfully to crop 

models and should be encouraged for scenario projection and regional assessments 

(Florin et al., 2011; Ramanantenasoa et al., 2019). However, metamodels require a 

huge experimental design to test them before implementation and depend on the 

knowledge embedded in crop models. An intermediate approach is to combine existing 

process-based or statistical models with conceptual models (i.e. a representation of a 

system and its drivers using scientific assumptions and expert assessments). A sound 

conceptual model reduces the risk of over-parametrisation and helps to visualise 

                                                           
3 Metamodelling is the process of constructing “a simplification of [an] original model that retains its salient features, 

or a single model created by combining the results of multiple models” (Sparks et al., 2011). 
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emerging properties (i) during discussions among experts, regardless of their 

disciplines or the type of knowledge, or (ii) when processes have yet to be described 

extensively enough for process-based models to capture. Figure 2 shows an example 

of a conceptual model we created to understand effects of crop diversification on seven 

ecosystem services; it was then used to compare three process-based models for the 

design of biodiversity-based cropping systems (Carof et al., 2020). 

Besides scientists (agronomists and ecologists, at least), farmers and other food-chain 

actors, should be involved in the design, modelling and assessment of biodiversity-

based cropping systems (Moraine et al., 2016). This participatory approach combines 

multiple sources of knowledge, including farm practices, industry requirements and 

scientific literature and experiments (Reckling et al., 2016). This expert knowledge can 

also be used to mitigate the weaknesses of crop models (Ballot et al., 2018). 

Participation can also broaden the set of indicators used for multicriteria assessment 

based on actors’ priorities and concerns (Paas et al., 2021). Finally, such an approach 

encourages farmers to implement new cropping systems on their own farms (Le Bellec 

et al., 2012). 

 

5.2. The approach we propose 

In line with Meunier et al. (2022), who combined different types of models “to assess a 

bundle of ecosystem services provided by a diversity of cereal-legume intercrops”, we 

propose an approach that combines, for the design of cropping systems, conceptual, 

process-based and statistical models with a participatory approach (and other 

resources) to balance the weaknesses of some with the strengths of others (Figure 3). 

This approach aims to better consider short- and long-term objectives and 

consequences of cropping systems at all stages of design. This is difficult, because 

short-term issues (e.g. the need to produce food in quantity, to earn enough money) 
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usually take priority over long-term issues, especially for farmers. However, by 

involving farmers and other food-chain actors at several key moments (using resources 

such as expert knowledge or participatory workshops), this is also why our approach 

is interesting. Indeed, assembling a variety of actors allows common knowledge, social 

networks and shared expectations to be developed, which can in turn favour crop 

diversification (Meynard et al., 2018). Using resources (e.g. projection models, 

prospective studies, process-based models) to think in the long term is useful for 

assessing long-term benefits of diversified cropping systems, but also for assessing 

long-term effects of climate change on these cropping systems, which is a major 

concern for farmers. On this topic, participative approaches have been useful for 

improving decision support for and the adaptive capacity of farmers (Bartels et al., 

2013). Finally, we emphasise that the approach we propose requires the involvement 

of ecologists in addition to agronomists. Indeed, during the participatory workshops for 

the design step of the approach, ecologists will open up the field of possibilities by 

allowing discussion of new crop rotations and management practices based on 

ecological concepts (Section 3). During the assessment step of the approach, 

ecologists will propose new indicators to complement the most common ones 

(Table 1). 

However, despite the potential of combining process-based crop models with other 

sources of knowledge, doing so has some limitations. Insufficient data availability is 

one of the main difficulties for long-term assessment of diversified cropping systems, 

especially for the needs of model validation and calibration. Moreover, most process-

based models usually ignore some important characteristics of cropping systems, such 

as pest and weed pressure, pre-crop effects and soil biology (Reckling et al., 2016), 

and are not parameterised for many crops used in diversified systems, let alone their 
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functional traits. This stresses the importance of combining conceptual modelling, 

process-based modelling and participatory approaches. 

 

6. Final remarks and future perspectives 

Beginning in the 1960s, the Green Revolution transformed agriculture by mobilizing 

researchers, policy makers, advisers and farmers. The existing wealth of 

environmental, social and economic data has forced a re-examination of the short-term 

perspective of cropping system design based on a few crops, as promoted in the last 

few decades. This article provides strategies to engage research efforts in order to 

better include ecological concepts and long-term perspectives in the design and 

assessment of biodiversity-based cropping systems. To do so, multi-actor and 

multidisciplinary research must be developed and then supplemented by multicriteria 

assessment of the cropping systems designed. This approach is not simple and faces 

several obstacles, such as data availability, model limitations, aversion to change by a 

variety of food-chain actors and aversion to economic risk. However, these obstacles 

must be overcome and transformed into opportunities to respect the rights of the next 

generation to live sustainably in an era of global change. 
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Tables 

Table 1. Most common indicators in multicriteria assessment tools and additional 

indicators proposed to better consider long-term and ecological aspects of cropping 

systems. 

Dimension Commonly used indicator Proposed indicator 

Economic Crop yield Crop yield 

  Yield stability 

  Rotational - intercropping value 

 Crop gross profit Crop rotation gross profit 

 Annual farmer income Annual farmer income 

  Farmer income stability 

  Sensitivity to subsidies 

Environmental Nitrogen balance Nitrogen balance 

  Phosphorus balance 

 Soil organic matter content Soil organic matter content 

  Soil organic matter dynamics 

 Greenhouse gas emissions Greenhouse gas emissions 

  Soil microbial index (Shannon) 

  
Resilience of soil microbial 
activity 

  Plant diversity index (Shannon) 

Social Average workload Average workload 

  Peak workload 

  
Farmer’s health risks due to 
pesticide use 

 Working conditions (qualitative) Working conditions (qualitative) 
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Figures 

 

Figure 1. On a given area of land, various non-exclusive cropping patterns for crop 

diversification are possible, such as annual intercropping (i.e. growing two or more 

annual crops on the same area at the same time), alley cropping (i.e. growing one 

or more crops between rows of trees), field margins (i.e. growing groups of plants at 

field edges, such as grass margins, hedgerows and wildflower strips), relay cropping 

(i.e. sowing then growing a crop into another standing crop before the latter is 

harvested) and crop rotation (i.e. growing crops – including cover crops – in 

succession on a given area). These cropping patterns differ in the degree to which 

crop diversification occurs in space and time (Y-axis) and the degree to which direct 

or indirect interactions between plant species predominate (X-axis). 
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Figure 2. (a) Conceptual model of an agroecosystem, defined here as an agricultural 

field including below- and aboveground environments, to understand effects of crop 

diversification on a variety of ecosystem services, following the protocol of Lamanda 

et al. (2012). From left to right: (i) The active environment includes elements (i.e. 

climate, cropping system management, environmental properties) that act on the 

system; they are characterised by state variables such as temperature, rainfall and 

soil type. (ii) The system includes components (e.g. weeds, pests, diseases) that are 

influenced by the active environment and that influence the passive environment. 

They are characterised by state variables such as weed biomass and disease 

severity. (iii) The passive environment includes outputs of the system (e.g. 

ecosystem services such as agricultural production, greenhouse gas (GHG) 

regulation, nitrogen (N) and phosphorus (P) regulation), which are characterised by 

indicators such as crop yield and soil organic N content. As an example, relationships 

among the active environment, the system and the passive environment for the 

output "Erosion control" are illustrated for (b) one year and (c) over the long term (30 

years). Each relationship relies on an assumption (H1 to H7): for example, strategies 

for crop diversification influence spatial crop structure over time (H1), which enriches 

soil organic matter through crop residues and rhizodeposition (H5). 
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Figure 3. A framework for the design of cropping systems assessed in the short and 

long terms. 

 


