Reducing salt level in food: Part 1. Factors affecting the manufacture of model cheese systems and their structure-texture relationships.
Résumé
A model lipoproteic matrix able to mimic hard-type cheese was produced with controlled structural and textural properties. Changes in the microstructural and rheological properties of these model cheeses made from different milk concentrate powder, anhydrous milk fat, salt contents and pH values at renneting were characterised. Rheological properties were measured by texture profile analysis, fat globule and protein aggregate size distributions by laser light scattering. Microstructural properties of the model matrices were studied by confocal laser scanning and scanning electron microscopy.Significant differences between the matrices were found for the structural, physico-chemical and rheological parameters measured. Cheeses with higher dry matter content were significantly harder and contained more insoluble proteins than cheeses with lower dry matter content. The salt concentration and the pH at renneting had significant influence on cheese hardness and adhesiveness of rheological parameters. The model lipoproteic matrix presented air bubbles and powder aggregates which could not be avoided during the manufacture of products. However, compared with classic cheese making with rennet or acid coagulation, the technology used here allows model cheeses to be produced rapidly with a good reproducibility of texture.